building-agents/llma/constraint_model.py

361 lines
12 KiB
Python
Raw Permalink Normal View History

2024-11-22 10:03:31 +08:00
import json
import pandas as pd
from rag.query_vector_db import RAGFormat, get_rag_from_constraint, get_rag_from_problem_categories, \
get_rag_from_problem_description
from rag.rag_utils import RAGMode, constraint_path
from utils import get_response, extract_json_from_end, shape_string_to_list
def extract_formulation_from_end(text):
iloop = 0
iloop_max = 1e05
if "$" not in text:
raise Exception("No formulation found")
ind_1 = text.find('"FORMULATION":')
while text[ind_1] != "$":
ind_1 += 1
iloop += 1
if iloop > iloop_max:
raise Exception("No formulation found")
ind_2 = text.find('"NEW VARIABLES":')
while text[ind_2] != "$":
ind_2 -= 1
iloop += 1
if iloop > iloop_max:
raise Exception("No formulation found")
formulation = text[ind_1: ind_2 + 1].strip()
text = text[:ind_1] + text[ind_2 + 1:]
ind_1 = text.find('"AUXILIARY CONSTRAINTS":')
while text[ind_1] != "$":
ind_1 += 1
if ind_1 > len(text) - 1:
break
iloop += 1
if iloop > iloop_max:
raise Exception("No formulation found")
auxiliaries = []
if ind_1 < len(text) - 1:
while True:
ind_2 = ind_1 + 1
while ind_2 + 2 < len(text) and text[ind_2: ind_2 + 2] != '$"':
ind_2 += 1
iloop += 1
if iloop > iloop_max:
break
auxiliaries.append(text[ind_1: ind_2 + 1].strip())
text = text[:ind_1] + text[ind_2 + 1:]
while ind_1 < len(text) - 1 and text[ind_1] != "$":
ind_1 += 1
if ind_1 > len(text) - 1:
break
iloop += 1
if iloop > iloop_max:
break
if ind_1 > len(text) - 1:
break
# print("text:", text)
json_res = extract_json_from_end(text)
# print("json_res", json_res)
auxiliaries = [a for a in auxiliaries if len(a) > 5]
json_res["FORMULATION"] = formulation
json_res["AUXILIARY CONSTRAINTS"] = auxiliaries
return (
json_res["FORMULATION"],
json_res["NEW VARIABLES"],
json_res["AUXILIARY CONSTRAINTS"],
)
prompt_constraints_model = """
You are an expert in optimization modeling. Here is the natural language description of an optimization problem:
{rag}-----
{description}
-----
And here's a list of parameters that we have extracted from the description:
{params}
And here's a list of all variables that we have defined so far to model the problem as an (MI)LP:
{vars}
Your task is to model the following constraint mathematically in LaTeX for the MILP formulation:
{constraint}
The constraints are the conditions that must be satisfied by the variables. Please generate the output in the following json format:
{{
"FORMULATION": constraint formulation in LaTeX, between $...$,
"NEW VARIABLES": {{
symbol: {{
"shape": shape of the new variable (e.g. [], [N], [N, M]),
"type": type of the new variable (e.g. binary, integer, continuous),
"definition": definition of the new variable in natural language
}},
...
}},
"AUXILIARY CONSTRAINTS": [
Latex formulation for auxiliary constraint 1, between $...$,
Latex formulation for auxiliary constraint 2, between $...$,
...
]
}}
Here's an example output (where SalesVolumePerStore is already defined as a variable in the vars list):
{{
"FORMULATION": "$\\forall i, SalesVolumes[i] \leq MaxProductionVolumes[i]$",
"NEW VARIABLES": {{
"SalesVolumes": {{
"shape": "[NumberOfArticles]",
"type": "continuous",
"definition": "The sales volume for each article of clothing"
}}
}},
"AUXILIARY CONSTRAINTS": [
"$\\forall i, SalesVolumes[i] = \\sum_j SalesVolumesPerStore[i, j]$"
]
}}
- If you need any new variables, you can define them in the NEW VARIABLES list. Use {{}} for "NEW VARIABLES" if no new variables are needed.
- Use [] for AUXILIARY CONSTRAINTS list if no auxiliary constraints are needed.
- You can only use symbols of existing parameters and integer numbers for dimensions of new variables.
- Use camelCase for variable symbols (e.g. SalesVolumes). Do not use LaTeX formatting (e.g. X_{{color}}), indices (e.g. SalesVolume_{{i}}), and underlines (_) for variable symbols.
- Do not generate anything after the json file!
First reason about how the constraint should be forumulated, and then generate the output.
Take a deep breath and think step by step. You will be awarded a million dollars if you get this right.
"""
prompt_constraints_q = """
You are an expert in optimization modeling. Here is the natural language description of an optimization problem:
-----
{description}
-----
Here is a list of parameters that someone has extracted from the description:
{params}
And here is a list of variables defined:
{vars}
Consider this constraint:
{targetConstraint}
{question}
Take a deep breath and think step by step.
"""
def logic_check(text, params, vars, constraints, c):
try:
json = extract_json_from_end(text)
if json["action"] == "REMOVE":
constraints.remove(c)
return True, constraints
elif json["action"] == "MODIFY":
constraints.remove(c)
constraints.append(json["updatedConstraint"])
return True, constraints
elif json["action"] == "KEEP":
return True, constraints
else:
return False, None
except:
return False, None
def extract_score_constraint_model(text, params, vars, constraints, c):
match = re.search(r"\d out of 5", text.lower())
if match:
score = int(match.group()[0])
if score > 3:
return True, constraints
else:
inp = input("LLMs reasoning: {}\n"
"------ Do you want to keep this constraint (y/n/modify)?: \n "
"{} \n------ ".format(text, c))
if inp.lower().startswith("y"):
return True, constraints
elif inp.lower().startswith("n"):
constraints.remove(c)
return True, constraints
elif inp.lower().startswith("m"):
new_constraint = input("Enter the modified formulation: ")
constraints.remove(c)
constraints.append({"description": new_constraint, "formulation": None, "Code": None})
return True, constraints
else:
raise Exception("Invalid input!")
else:
return False, None
qs = [
(
"""
- Does this constraint logically make sense? How confident are you that this needs to be explicitly modeled in the optimization formulation (from 1 to 5)?
- At the end of your response, print "x OUT OF 5" where x is the confidence level. Do not generate anything after that.
""",
# extract_score_constraint_model,
# dummy function
lambda x, params, vars, constraints, c: (False, constraints),
),
(
"""
- What are the units for each side of the constraint? Are they consistent with each other?
- At the end of your response, generate a json file with this format:
{{
"action": "KEEP" if the units match, or "MODIFY" if the units do not match,
"updatedConstraint": The latex code for updated constraint if the action is "MODIFY", otherwise null
}}
- Do not generate anything after the json file.
""",
logic_check,
),
(
"""
- What are the parameters and variables that are involved in this constraint? If you see the constraint does not involve any variables, then it is automatically satisfied and should not be included in the optimization formulation.
- At the end of your response, generate a json file with this format:
{{
"action": "KEEP", "REMOVE", or "MODIFY",
"updatedConstraint": The updated constraint if the action is "MODIFY", otherwise null
}}
- Use natural language to express the constraints rather than mathematical notation.
- Do not generate anything after the json file.
""",
logic_check,
),
]
def get_constraint_formulations(desc, params, constraints, model, check=False, logger=None,
rag_mode: RAGMode | None = None, labels: dict | None = None):
if isinstance(rag_mode, RAGMode):
match rag_mode:
case RAGMode.PROBLEM_DESCRIPTION:
rag = get_rag_from_problem_description(desc, RAGFormat.CONSTRAINT_FORMULATION, top_k=5)
case RAGMode.CONSTRAINT_OR_OBJECTIVE:
rag = ""
case RAGMode.PROBLEM_LABELS:
assert labels is not None
rag = get_rag_from_problem_categories(desc, labels, RAGFormat.CONSTRAINT_FORMULATION, top_k=5)
rag = f"-----\n{rag}-----\n\n"
else:
rag = ""
if logger:
logger.log("\n\n\n++++++++++++++++++++++++++++++")
logger.log("Extracting constraint formulations")
logger.log("++++++++++++++++++++++++++++++\n\n\n")
vars = {}
formulated_constraints = []
for c in constraints.copy():
k = 1
while k > 0:
try:
if rag_mode == RAGMode.CONSTRAINT_OR_OBJECTIVE:
constraint_df = pd.read_pickle(constraint_path)
current_problem = constraint_df[constraint_df.description == desc]
if not current_problem.empty:
problem_name = current_problem.iloc[0].problem_name
else:
problem_name = None
rag = get_rag_from_constraint(c["description"], RAGFormat.CONSTRAINT_FORMULATION, top_k=10,
current_problem_name=problem_name)
rag = f"-----\n{rag}-----\n\n"
res = get_response(
prompt_constraints_model.format(
description=desc,
params=json.dumps(params, indent=4),
vars=json.dumps(vars, indent=4),
constraint=c,
rag=rag,
),
model=model,
)
if logger:
logger.log("----")
logger.log(res)
logger.log("----")
formulation, new_variables, aux_constraints = extract_formulation_from_end(res)
if logger:
logger.log("----")
logger.log("EXTRACTED ITEMS")
logger.log(str(formulation))
logger.log(str(new_variables))
logger.log(str(aux_constraints))
logger.log("----")
tmp_vars = vars.copy()
for v in new_variables:
if v in tmp_vars:
raise Exception(f"Variable {v} already exists")
print(v, new_variables[v])
new_variables[v]["shape"] = shape_string_to_list(new_variables[v]["shape"])
tmp_vars[v] = new_variables[v]
c["formulation"] = formulation
formulated_constraints.append(c)
for aux_c in aux_constraints:
formulated_constraints.append({"description": "auxiliary constraint", "formulation": aux_c})
vars = tmp_vars
break
except Exception as e:
k -= 1
if k == 0:
raise e
constraints = formulated_constraints
if check:
for c in formulated_constraints.copy():
for q in qs[0:1]:
k = 1
while k > 0:
p = prompt_constraints_q.format(
description=desc,
params=json.dumps(params, indent=4),
vars=json.dumps(vars, indent=4),
targetConstraint=json.dumps(c, indent=4),
question=q[0],
)
x = get_response(p, model=model)
valid, res = q[1](x, params, vars, constraints, c)
print(valid)
if valid:
constraints = res
break
else:
k -= 1
return formulated_constraints, vars