import pandas as pd from gurobipy import Model, GRB, quicksum import json # 读取数据 data = pd.read_csv("data.csv") price = data['price'] load = data['load'] pv = data['pv'] wind = data['wind'] # 总数据量和周期数 total_period = len(data) days = total_period // 24 # 存储所有结果 all_results = [] for day in range(days): # 获取每天的24条数据 start_idx = day * 24 end_idx = (day + 1) * 24 daily_price = price[start_idx:end_idx] daily_load = load[start_idx:end_idx] daily_pv = pv[start_idx:end_idx] daily_wind = wind[start_idx:end_idx] # 初始化模型 m = Model("OptimizationProblem_Day{}".format(day)) # 决策变量 Ag1 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=-1, ub=1, name="ag1") Ag2 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=-1, ub=1, name="ag2") Ag3 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=-1, ub=1, name="ag3") Apv = m.addVars(24, vtype=GRB.CONTINUOUS, lb=-1, ub=1, name="apv") Asoc = m.addVars(24, vtype=GRB.CONTINUOUS, lb=-1, ub=1, name="asoc") # 定义变量相关的约束 soc = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0.2, ub=0.8, name="soc") pg1 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, ub=150, name="pg1") pg2 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, ub=375, name="pg2") pg3 = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, ub=500, name="pg3") pv_power = m.addVars(24, vtype=GRB.CONTINUOUS, name="pv_power") # 设置交换约束 grid_energy_export = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, ub=100, name='export') grid_energy_import = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, ub=100, name='import') excess_energy = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, name='excess') shortage_energy = m.addVars(24, vtype=GRB.CONTINUOUS, lb=0, name='shortage') # 初始值约束 m.addConstr(soc[0] == 0.2, name="soc_init") m.addConstr(pg1[0] == 0, name="pg1_init") m.addConstr(pg2[0] == 0, name="pg2_init") m.addConstr(pg3[0] == 0, name="pg3_init") # 添加soc和pg的递推约束 m.addConstrs((soc[t] == soc[t - 1] + 0.18 * Asoc[t] for t in range(1, 24)), name="soc_update") m.addConstrs((pg1[t] == pg1[t - 1] + 100 * Ag1[t] for t in range(1, 24)), name="pg1_update") m.addConstrs((pg2[t] == pg2[t - 1] + 100 * Ag2[t] for t in range(1, 24)), name="pg2_update") m.addConstrs((pg3[t] == pg3[t - 1] + 200 * Ag3[t] for t in range(1, 24)), name="pg3_update") # 光伏发电功率 m.addConstrs((pv_power[t] == daily_pv.iloc[t] * (1 + Apv[t]) for t in range(24)), name="pv_power_update") # 供需平衡约束 m.addConstrs((pg1[t] + pg2[t] + pg3[t] + pv_power[t] + daily_wind.iloc[t] + grid_energy_import[t] == daily_load.iloc[t] + 0.18 * Asoc[t] + grid_energy_export[t] + excess_energy[t] - shortage_energy[t] for t in range(24)), name="power_balance") # excess_energy 和 shortage_energy 约束 m.addConstrs( (excess_energy[t] == pg1[t] + pg2[t] + pg3[t] + pv_power[t] + daily_wind.iloc[t] + grid_energy_import[t] - daily_load.iloc[t] - 0.18 * Asoc[t] - grid_energy_export[t] for t in range(1, 24)), name="excess_energy") m.addConstrs((shortage_energy[t] == daily_load.iloc[t] + 0.18 * Asoc[t] + grid_energy_export[t] - pg1[t] - pg2[t] - pg3[t] - pv_power[t] - daily_wind.iloc[t] - grid_energy_import[t] for t in range(1, 24)), name="shortage_energy") # 成本函数部分 battery_cost = quicksum((Asoc[t] + 0.1 * soc[t]) for t in range(1, 24)) gen1_cost = quicksum((0.0034 * pg1[t] ** 2 + 3 * pg1[t] + 30) for t in range(1, 24)) gen2_cost = quicksum((0.001 * pg2[t] ** 2 + 10 * pg2[t] + 40) for t in range(1, 24)) gen3_cost = quicksum((0.001 * pg3[t] ** 2 + 15 * pg3[t] + 70) for t in range(1, 24)) renewable_cost = quicksum((0.01 * pv_power[t] + 0.01 * daily_wind.iloc[t]) for t in range(24)) # 计算惩罚和收益 excess_penalty = quicksum(excess_energy[t] * 50 for t in range(24)) shortage_penalty = quicksum(shortage_energy[t] * 50 for t in range(24)) sales_revenue = quicksum(0.5 * daily_price.iloc[t] * grid_energy_export[t] for t in range(24)) purchase_cost = quicksum(daily_price.iloc[t] * grid_energy_import[t] for t in range(24)) # 设置目标函数 objective = (battery_cost + gen1_cost + gen2_cost + gen3_cost + renewable_cost + excess_penalty + shortage_penalty - sales_revenue + purchase_cost) m.setObjective(objective, GRB.MINIMIZE) # 求解 m.optimize() if m.status == GRB.OPTIMAL: day_results = [] for t in range(24): gen1_cost = 0.0034 * pg1[t].x ** 2 + 3 * pg1[t].x + 30 gen2_cost = 0.001 * pg2[t].x ** 2 + 10 * pg2[t].x + 40 gen3_cost = 0.001 * pg3[t].x ** 2 + 15 * pg3[t].x + 70 battery_cost = Asoc[t].x + 0.1 * soc[t].x renewable_cost = 0.01 * pv_power[t].x + 0.01 * daily_wind.iloc[t] excess_penalty = excess_energy[t].x * 50 shortage_penalty = shortage_energy[t].x * 50 sales_revenue = 0.5 * daily_price.iloc[t] * grid_energy_export[t].x purchase_cost = daily_price.iloc[t] * grid_energy_import[t].x current_obj = (gen1_cost + gen2_cost + gen3_cost + battery_cost + renewable_cost + excess_penalty + shortage_penalty - sales_revenue + purchase_cost) day_results.append([ Asoc[t].x, Ag1[t].x, Ag2[t].x, Ag3[t].x, Apv[t].x, ]) # 保存当天的结果 all_results.extend(day_results) # 最后将所有结果保存到一个JSON文件 with open("./results_day.json", "w") as f: json.dump(all_results, f, indent=4)