import os import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def plot_optimization_result(datasource, directory): sns.set_theme(style='whitegrid') # "white", "dark", "whitegrid", "darkgrid", "ticks" plt.rcParams["figure.figsize"] = (16, 9) fig, axs = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.7, hspace=0.3) plt.autoscale(tight=True) T = np.array([i for i in range(24)]) # 绘制步长成本 in ax[0] axs[0, 0].cla() axs[0, 0].set_ylabel('Cost') axs[0, 0].set_xlabel('Time (h)') axs[0, 0].bar(T, datasource['step_cost']) # 绘制soc和价格 in ax[1] axs[0, 1].cla() # 设置第一个 y 轴 axs[0, 1].set_ylabel('Price') axs[0, 1].set_xlabel('Time [h]') line1, = axs[0, 1].plot(T, datasource['price'], drawstyle='steps-mid', label='Price', color='pink') # 创建第二个 y 轴 ax2 = axs[0, 1].twinx() ax2.set_ylabel('SOC') line2, = ax2.plot(T, datasource['soc'], drawstyle='steps-mid', label='SOC', color='grey') # 为每个轴分别创建图例 lines = [line1, line2] labels = [line.get_label() for line in lines] axs[0, 1].legend(lines, labels, loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) # 绘制累计发电量和消耗量 in ax[2] axs[1, 0].cla() axs[1, 0].set_ylabel('Power [kWh]') axs[1, 0].set_xlabel('Time [h]') # 处理电池充放电数据 battery_positive = np.maximum(np.array(datasource['battery_energy_change']), 0) # charge battery_negative = np.minimum(np.array(datasource['battery_energy_change']), 0) # discharge # 处理电网进出口数据 imported_from_grid = np.array(datasource['grid_import']) exported_2_grid = np.array(datasource['grid_export']) axs[1, 0].bar(T, datasource['gen1'], label='Gen1') axs[1, 0].bar(T, datasource['gen2'], label='Gen2', bottom=datasource['gen1']) axs[1, 0].bar(T, datasource['gen3'], label='Gen3', bottom=datasource['gen2'] + datasource['gen1']) axs[1, 0].bar(T, -battery_positive, color='blue', hatch='/', label='ESS charge') axs[1, 0].bar(T, -battery_negative, hatch='/', label='ESS discharge', bottom=datasource['gen3'] + datasource['gen2'] + datasource['gen1']) axs[1, 0].bar(T, datasource['pv'], label='Pv Gen', bottom=-battery_negative + datasource['gen3'] + datasource['gen2'] + datasource['gen1']) axs[1, 0].bar(T, datasource['wind'], label='Wind Gen', bottom=datasource['pv'] - battery_negative + datasource['gen3'] + datasource['gen2'] + datasource[ 'gen1']) # 生成即进口 axs[1, 0].bar(T, imported_from_grid, label='Grid import', bottom=datasource['pv'] + datasource['wind'] - battery_negative + datasource['gen3'] + datasource[ 'gen2'] + datasource['gen1']) # 负载即出口 axs[1, 0].bar(T, -exported_2_grid, label='Grid export', bottom=-battery_positive) # 绘制净负载曲线 axs[1, 0].plot(T, datasource['load'], linewidth=2.0, label='Load', drawstyle='steps-mid', alpha=0.7) axs[1, 0].legend(loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) fig.savefig(f"{directory}/gurobi.svg", format='svg', dpi=600, bbox_inches='tight') print('gurobi figure have been ploted and saved') def plot_evaluation_information(eval_data, directory): sns.set_theme(style='whitegrid') with open(eval_data, 'rb') as tf: test_data = pickle.load(tf) # 用条形图表示每一步的不平衡和奖励 plt.rcParams["figure.figsize"] = (16, 9) fig, axs = plt.subplots(2, 2) plt.subplots_adjust(wspace=0.7, hspace=0.3) plt.autoscale(tight=True) # 为评估环境准备数据 eval_data = pd.DataFrame(test_data['system_info']) eval_data.columns = ['time_step', 'price', 'load', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2', 'gen3', 'pv', 'wind', 'unbalance', 'operation_cost', 'reward'] # 绘制奖励 in axs[0] axs[0, 0].cla() axs[0, 0].set_xlabel('Time (h)') axs[0, 0].set_ylabel('Cost') axs[0, 0].bar(eval_data['time_step'], eval_data['operation_cost']) # 绘制能源充/放电与价格关系图 in ax[1] axs[0, 1].cla() axs[0, 1].set_xlabel('Time (h)') axs[0, 1].set_ylabel('Price') line1, = axs[0, 1].plot(eval_data['time_step'], eval_data['price'], drawstyle='steps-mid', label='Price', color='pink') ax2 = axs[0, 1].twinx() ax2.set_ylabel('SOC') line2, = ax2.plot(eval_data['time_step'], eval_data['soc'], drawstyle='steps-mid', label='SOC', color='grey') lines = [line1, line2] labels = [line.get_label() for line in lines] axs[0, 1].legend(lines, labels, loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) # 绘制发电量和负载量 in ax[2] axs[1, 0].cla() axs[1, 0].set_xlabel('Time [h]') axs[1, 0].set_ylabel('Power [kWh]') # axs[1,0].set_xticks([i for i in range(24)], [i for i in range(1, 25)]) battery_positive = np.maximum(np.array(eval_data['battery']), 0) # charge battery_negative = np.minimum(np.array(eval_data['battery']), 0) # discharge imported_from_grid = np.minimum(np.array(eval_data['unbalance']), 0) exported_2_grid = np.maximum(np.array(eval_data['unbalance']), 0) x = eval_data['time_step'] axs[1, 0].bar(x, eval_data['gen1'], label='Gen1') axs[1, 0].bar(x, eval_data['gen2'], label='Gen2', bottom=eval_data['gen1']) axs[1, 0].bar(x, eval_data['gen3'], label='Gen3', bottom=eval_data['gen1'] + eval_data['gen2']) axs[1, 0].bar(x, -battery_positive, color='blue', hatch='/', label='ESS charge') axs[1, 0].bar(x, -battery_negative, label='ESS discharge', hatch='/', bottom=eval_data['gen1'] + eval_data['gen2'] + eval_data['gen3']) axs[1, 0].bar(x, eval_data['pv'], label='Pv Gen', bottom=-battery_negative + eval_data['gen3'] + eval_data['gen2'] + eval_data['gen1']) axs[1, 0].bar(x, eval_data['wind'], label='Wind Gen', bottom=eval_data['pv'] - battery_negative + eval_data['gen3'] + eval_data['gen2'] + eval_data['gen1']) axs[1, 0].bar(x, imported_from_grid, label='Grid import', bottom=eval_data['pv'] + eval_data['wind'] - battery_negative + eval_data['gen3'] + eval_data[ 'gen2'] + eval_data['gen1']) axs[1, 0].bar(x, -exported_2_grid, label='Grid export', bottom=-battery_positive) axs[1, 0].plot(x, eval_data['load'], linewidth=2.0, drawstyle='steps-mid', label='Load') axs[1, 0].legend(loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) # 绘制不平衡度 in axs[3] axs[1, 1].cla() axs[1, 1].set_xlabel('Time [h]') axs[1, 1].set_ylabel('Power [kWh]') axs[1, 1].bar(eval_data['time_step'], eval_data['unbalance'], label='Exchange with Grid', width=0.4) axs[1, 1].bar(eval_data['time_step'] + 0.4, eval_data['load'], label='netload', width=0.4) axs[1, 1].legend(loc='upper right', bbox_to_anchor=(1.45, 1), fontsize=12, frameon=False, labelspacing=0.5) # fig.savefig(f"{directory}/rl.svg", format='svg', dpi=600, bbox_inches='tight') print('rl figure have been ploted and saved') def plot_soc(gurobi, rl_data, directory): with open(rl_data, 'rb') as tf: test_data = pickle.load(tf) rl_data = pd.DataFrame(test_data['system_info']) rl_data.columns = ['time_step', 'price', 'load', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2', 'gen3', 'pv', 'wind', 'unbalance', 'operation_cost', 'reward'] T = rl_data['time_step'] plt.rcParams["figure.figsize"] = (6, 4) # 10 3 fig, axs = plt.subplots(1, 1) plt.autoscale(tight=True) axs.cla() axs.set_xlabel('Time [h]', fontsize=12) axs.set_ylabel('Price', fontsize=12) line1, = axs.plot(T, gurobi['price'] / 10, drawstyle='steps-mid', label='Price', color='pink') axs.grid(True, which='both', axis='y', linestyle='None', linewidth=0, color='black') axs.grid(True, which='both', axis='x', linestyle='--', linewidth=0.5, color='black') ax2 = axs.twinx() ax2.set_ylabel('SOC', fontsize=12) line2, = ax2.plot(T, gurobi['soc'], drawstyle='steps-mid', label='MILP', color='grey') line3, = ax2.plot(T, rl_data['soc'], drawstyle='steps-mid', label='LMPPO', color='blue') ax2.grid(True, which='both', axis='both', linestyle='--', linewidth=0.5, color='black') lines = [line1, line2, line3] labels = [line.get_label() for line in lines] axs.legend(lines, labels, loc='upper right', fontsize=12, frameon=True, framealpha=0.8) print('soc figure have been ploted and saved') fig.savefig(f"{directory}/soc.png", format='png', dpi=600, bbox_inches='tight') def plot_energy(gurobi, rl_data, directory): with open(rl_data, 'rb') as tf: test_data = pickle.load(tf) rl_data = pd.DataFrame(test_data['system_info']) rl_data.columns = ['time_step', 'price', 'load', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2', 'gen3', 'pv', 'wind', 'unbalance', 'operation_cost', 'reward'] T = rl_data['time_step'] plt.rcParams["figure.figsize"] = (6, 9) fig, axs = plt.subplots(2, 1) plt.subplots_adjust(wspace=0.5, hspace=0.3) plt.autoscale(tight=True) axs[0].cla() axs[0].set_xlabel('Time [h]\n(a)', fontsize=12) axs[0].set_ylabel('Power [kWh]', fontsize=12) # 电池充放电数据 battery_positive = np.maximum(np.array(gurobi['battery_energy_change']), 0) battery_negative = np.minimum(np.array(gurobi['battery_energy_change']), 0) # 电网进出口数据 imported_from_grid = np.array(gurobi['grid_import']) exported_2_grid = np.array(gurobi['grid_export']) axs[0].bar(T, gurobi['gen1'], label='Gen1') axs[0].bar(T, gurobi['gen2'], label='Gen2', bottom=gurobi['gen1']) axs[0].bar(T, gurobi['gen3'], label='Gen3', bottom=gurobi['gen2'] + gurobi['gen1']) axs[0].bar(T, -battery_positive, color='blue', hatch='/', label='ESS charge') axs[0].bar(T, -battery_negative, hatch='/', label='ESS discharge', bottom=gurobi['gen3'] + gurobi['gen2'] + gurobi['gen1']) axs[0].bar(T, gurobi['pv'], label='Pv', bottom=-battery_negative + gurobi['gen3'] + gurobi['gen2'] + gurobi['gen1']) axs[0].bar(T, gurobi['wind'], label='Wind', bottom=gurobi['pv'] - battery_negative + gurobi['gen3'] + gurobi['gen2'] + gurobi['gen1']) # 生成即进口 axs[0].bar(T, imported_from_grid, label='Import', bottom=gurobi['pv'] + gurobi['wind'] - battery_negative + gurobi['gen3'] + gurobi['gen2'] + gurobi[ 'gen1']) # 负载即出口 axs[0].bar(T, -exported_2_grid, label='Export', bottom=-battery_positive) # 绘制净负载曲线 axs[0].plot(T, gurobi['load'], linewidth=2.0, label='Load', drawstyle='steps-mid') axs[0].grid(True, which='both', axis='both', linestyle='--', linewidth=0.5, color='black') axs[0].legend(loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) # rl axs[1].cla() axs[1].set_xlabel('Time [h]\n(b)', fontsize=12) axs[1].set_ylabel('Power [kWh]', fontsize=12) battery_positive = np.maximum(np.array(rl_data['battery']), 0) battery_negative = np.minimum(np.array(rl_data['battery']), 0) imported_from_grid = np.minimum(np.array(rl_data['unbalance']), 0) exported_2_grid = np.maximum(np.array(rl_data['unbalance']), 0) axs[1].bar(T, rl_data['gen1'], label='Gen1') axs[1].bar(T, rl_data['gen2'], label='Gen2', bottom=rl_data['gen1']) axs[1].bar(T, rl_data['gen3'], label='Gen3', bottom=rl_data['gen1'] + rl_data['gen2']) axs[1].bar(T, -battery_positive, color='blue', hatch='/', label='ESS charge') axs[1].bar(T, -battery_negative, label='ESS discharge', hatch='/', bottom=rl_data['gen1'] + rl_data['gen2'] + rl_data['gen3']) axs[1].bar(T, rl_data['pv'], label='Pv', bottom=-battery_negative + rl_data['gen3'] + rl_data['gen2'] + rl_data['gen1']) axs[1].bar(T, rl_data['wind'], label='Wind', bottom=rl_data['pv'] - battery_negative + rl_data['gen3'] + rl_data['gen2'] + rl_data['gen1']) axs[1].bar(T, imported_from_grid, label='Import', bottom=rl_data['pv'] + rl_data['wind'] - battery_negative + rl_data['gen3'] + rl_data[ 'gen2'] + rl_data['gen1']) axs[1].bar(T, -exported_2_grid, label='Export', bottom=-battery_positive) axs[1].plot(T, rl_data['load'], linewidth=2.0, drawstyle='steps-mid', label='Load') axs[1].grid(True, which='both', axis='both', linestyle='--', linewidth=0.5, color='black') axs[1].legend(loc='upper right', bbox_to_anchor=(1.4, 1), fontsize=12, frameon=False, labelspacing=0.3) print('energy figure have been ploted and saved') # fig.savefig(f"{directory}/energy.png", format='png', dpi=600, bbox_inches='tight') def plot_melt(ppo, llm, lmppo, milp, ram, directory): with open(ppo, 'rb') as t1: ppo = pickle.load(t1) with open(llm, 'rb') as t2: llm = pickle.load(t2) with open(lmppo, 'rb') as t3: lmppo = pickle.load(t3) with open(milp, 'rb') as t4: milp = pickle.load(t4) with open(ram, 'rb') as t5: ram = pickle.load(t5) T = lmppo.index milp['unbalance'] = 0 plt.rcParams["figure.figsize"] = (6, 8) fig, (ax1, ax2) = plt.subplots(2, 1) plt.subplots_adjust(wspace=0.5, hspace=0.4) plt.autoscale(tight=True) print('ppo平均奖励', ppo['reward'].mean(), 'ppo平均不平衡度', ppo['unbalance'].mean()/1e3) print('llm平均奖励', llm['reward'].mean(), 'llm平均不平衡度', llm['unbalance'].mean()/1e3) print('lmppo平均奖励', lmppo['reward'].mean(), 'lmppo平均不平衡度', lmppo['unbalance'].mean()/1e3) print('milp平均奖励', milp['reward'].mean(), 'milp平均不平衡度', milp['unbalance'].mean()/1e3) print('ram平均奖励', ram['reward'].mean(), 'ram平均不平衡度', ram['unbalance'].mean()/1e3) ax1.cla() ax1.set_xlabel('Day\n(a)', fontsize=12) ax1.set_ylabel('Reward [-]', fontsize=12) ax1.plot(T, ppo['reward'], color='#374FE6', label='PPO', marker='o', markersize=5) ax1.plot(T, llm['reward'], color='#BB5D5D', label='LLM', marker='o', markersize=5) ax1.plot(T, lmppo['reward'], color='#6DBA4F', label='LMPPO', marker='o', markersize=5) ax1.plot(T, milp['reward'], color='#8B5B29', label='MILP', marker='o', markersize=5) ax1.plot(T, ram['reward'], color='#B0B0B0', label='RAN', marker='o', markersize=5) ax1.grid(True, which='both', axis='both', linestyle='--', linewidth=0.5, color='black') ax1.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), fontsize=12, frameon=False, ncol=5, labelspacing=0.3, columnspacing=1.5) ax2.cla() ax2.set_xlabel('Day\n(b)', fontsize=12) ax2.set_ylabel('Power imbalance [kW]', fontsize=12) ax2.plot(T, ppo['unbalance'] / 1e3, color='#374FE6', label='PPO', marker='o', markersize=5) ax2.plot(T, llm['unbalance'] / 1e3, color='#BB5D5D', label='LLM', marker='o', markersize=5) ax2.plot(T, lmppo['unbalance'] / 1e3, color='#6DBA4F', label='LMPPO', marker='o', markersize=5) ax2.plot(T, milp['unbalance'], color='#8B5B29', label='MILP', marker='o', markersize=5) ax2.plot(T, ram['unbalance'] / 1e3, color='#B0B0B0', label='RAN', marker='o', markersize=5) ax2.grid(True, which='both', axis='both', linestyle='--', linewidth=0.5, color='black') ax2.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), fontsize=12, frameon=False, ncol=5, labelspacing=0.3, columnspacing=1.5) print('melt figure have been ploted and saved') plt.autoscale() fig.savefig(f"{directory}/melt.png", format='png', dpi=600, bbox_inches='tight') def make_dir(directory, feature_change): cwd = f'{directory}/DRL_{feature_change}_plots' os.makedirs(cwd, exist_ok=True) return cwd class PlotArgs: def __init__(self) -> None: self.cwd = None self.feature_change = None self.plot_on = None