import numpy.random as rd import os import json from copy import deepcopy from net import * class AgentBase: def __init__(self): self.state = None self.device = None self.action_dim = None self.if_off_policy = None self.explore_noise = None self.trajectory_list = None self.criterion = torch.nn.SmoothL1Loss() self.cri = self.cri_target = self.if_use_cri_target = self.cri_optim = self.ClassCri = None self.act = self.act_target = self.if_use_act_target = self.act_optim = self.ClassAct = None def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, _if_per_or_gae=False, gpu_id=0): # 显式调用self.init()进行多进程 self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu") self.action_dim = action_dim self.cri = self.ClassCri(net_dim, state_dim, action_dim).to(self.device) self.act = self.ClassAct(net_dim, state_dim, action_dim).to(self.device) if self.ClassAct else self.cri self.cri_target = deepcopy(self.cri) if self.if_use_cri_target else self.cri self.act_target = deepcopy(self.act) if self.if_use_act_target else self.act self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate) self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) if self.ClassAct else self.cri del self.ClassCri, self.ClassAct def select_action(self, state) -> np.ndarray: states = torch.as_tensor((state,), dtype=torch.float32, device=self.device) action = self.act(states)[0] action = (action + torch.randn_like(action) * self.explore_noise).clamp(-1, 1) return action.detach().cpu().numpy() def explore_env(self, env, target_step): state = self.state trajectory = list() for _ in range(target_step): action = self.select_action(state) state, next_state, reward, done, = env.step(action) trajectory.append((state, (reward, done, *action))) state = env.reset() if done else next_state self.state = state return trajectory @staticmethod def optim_update(optimizer, objective): optimizer.zero_grad() objective.backward() optimizer.step() @staticmethod def soft_update(target_net, current_net, tau): for tar, cur in zip(target_net.parameters(), current_net.parameters()): tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau)) def save_or_load_agent(self, cwd, if_save): def load_torch_file(model_or_optim, _path): state_dict = torch.load(_path, map_location=lambda storage, loc: storage) model_or_optim.load_state_dict(state_dict) name_obj_list = [('actor', self.act), ('act_target', self.act_target), ('act_optim', self.act_optim), ('critic', self.cri), ('cri_target', self.cri_target), ('cri_optim', self.cri_optim), ] name_obj_list = [(name, obj) for name, obj in name_obj_list if obj is not None] if if_save: for name, obj in name_obj_list: save_path = f"{cwd}/{name}.pth" torch.save(obj.state_dict(), save_path) else: for name, obj in name_obj_list: save_path = f"{cwd}/{name}.pth" load_torch_file(obj, save_path) if os.path.isfile(save_path) else None class AgentDDPG(AgentBase): def __init__(self): super().__init__() self.explore_noise = 0.1 self.if_use_cri_target = self.if_use_act_target = True self.ClassCri = Critic self.ClassAct = Actor def update_net(self, buffer, batch_size, repeat_times, soft_update_tau) -> (float, float): buffer.update_now_len() obj_critic = obj_actor = None for _ in range(int(buffer.now_len / batch_size * repeat_times)): obj_critic, state = self.get_obj_critic(buffer, batch_size) # critic loss self.optim_update(self.cri_optim, obj_critic) self.soft_update(self.cri_target, self.cri, soft_update_tau) action_pg = self.act(state) # policy gradient obj_actor = -self.cri(state, action_pg).mean() # actor loss, makes it bigger self.optim_update(self.act_optim, obj_actor) self.soft_update(self.act_target, self.act, soft_update_tau) return obj_actor.item(), obj_critic.item() def get_obj_critic(self, buffer, batch_size) -> (torch.Tensor, torch.Tensor): with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_q = self.cri_target(next_s, self.act_target(next_s)) q_label = reward + mask * next_q q_value = self.cri(state, action) obj_critic = self.criterion(q_value, q_label) return obj_critic, state class AgentTD3(AgentBase): def __init__(self): super().__init__() self.explore_noise = 0.1 # standard deviation of exploration noise self.policy_noise = 0.2 # standard deviation of policy noise self.update_freq = 2 # delay update frequency self.if_use_cri_target = self.if_use_act_target = True self.ClassCri = CriticTwin self.ClassAct = Actor def update_net(self, buffer, batch_size, repeat_times, soft_update_tau) -> tuple: buffer.update_now_len() obj_critic = obj_actor = None for update_c in range(int(buffer.now_len / batch_size * repeat_times)): obj_critic, state = self.get_obj_critic(buffer, batch_size) self.optim_update(self.cri_optim, obj_critic) action_pg = self.act(state) # policy gradient obj_actor = -self.cri_target(state, action_pg).mean() # use cri_target instead of cri for stable training self.optim_update(self.act_optim, obj_actor) if update_c % self.update_freq == 0: # delay update self.soft_update(self.cri_target, self.cri, soft_update_tau) self.soft_update(self.act_target, self.act, soft_update_tau) return obj_critic.item() / 2, obj_actor.item() def get_obj_critic(self, buffer, batch_size) -> (torch.Tensor, torch.Tensor): with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_a = self.act_target.get_action(next_s, self.policy_noise) # policy noise next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a)) # twin critics q_label = reward + mask * next_q q1, q2 = self.cri.get_q1_q2(state, action) obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label) # twin critics return obj_critic, state class AgentSAC(AgentBase): def __init__(self): super().__init__() self.ClassCri = CriticTwin self.ClassAct = ActorSAC self.if_use_cri_target = True self.if_use_act_target = False self.alpha_log = None self.alpha_optim = None self.target_entropy = None def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, _if_use_per=False, gpu_id=0, env_num=1): super().init(net_dim, state_dim, action_dim, learning_rate, _if_use_per, gpu_id) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32, requires_grad=True, device=self.device) self.alpha_optim = torch.optim.Adam((self.alpha_log,), lr=learning_rate) self.target_entropy = np.log(action_dim) def select_action(self, state): states = torch.as_tensor((state,), dtype=torch.float32, device=self.device) actions = self.act.get_action(states) return actions.detach().cpu().numpy()[0] def update_net(self, buffer, batch_size, repeat_times, soft_update_tau): buffer.update_now_len() alpha = self.alpha_log.exp().detach() obj_critic = obj_actor = None for _ in range(int(buffer.now_len * repeat_times / batch_size)): '''objective of critic (loss function of critic)''' with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_a, next_log_prob = self.act_target.get_action_logprob(next_s) next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a)) q_label = reward + mask * (next_q + next_log_prob * alpha) q1, q2 = self.cri.get_q1_q2(state, action) obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label) self.optim_update(self.cri_optim, obj_critic) self.soft_update(self.cri_target, self.cri, soft_update_tau) '''objective of alpha (temperature parameter automatic adjustment)''' action_pg, log_prob = self.act.get_action_logprob(state) # policy gradient obj_alpha = (self.alpha_log * (log_prob - self.target_entropy).detach()).mean() self.optim_update(self.alpha_optim, obj_alpha) '''objective of actor''' alpha = self.alpha_log.exp().detach() with torch.no_grad(): self.alpha_log[:] = self.alpha_log.clamp(-20, 2) obj_actor = -(torch.min(*self.cri_target.get_q1_q2(state, action_pg)) + log_prob * alpha).mean() self.optim_update(self.act_optim, obj_actor) self.soft_update(self.act_target, self.act, soft_update_tau) return obj_critic.item(), obj_actor.item(), alpha.item() class AgentPPO(AgentBase): def __init__(self): super().__init__() self.ClassCri = CriticAdv self.ClassAct = ActorPPO self.if_off_policy = False self.ratio_clip = 0.2 # ratio.clamp(1 - clip, 1 + clip) self.lambda_entropy = 0.02 # could be 0.01~0.05 self.lambda_gae_adv = 0.98 # could be 0.95~0.99, GAE (Generalized Advantage Estimation. ICLR.2016.) self.get_reward_sum = None # self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, if_use_gae=False, gpu_id=0, env_num=1): super().init(net_dim, state_dim, action_dim, learning_rate, if_use_gae, gpu_id) self.trajectory_list = list() self.get_reward_sum = self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw def select_action(self, state): states = torch.as_tensor((state,), dtype=torch.float32, device=self.device) actions, noises = self.act.get_action(states) return actions[0].detach().cpu().numpy(), noises[0].detach().cpu().numpy() def explore_env(self, env, target_step): state = self.state trajectory_temp = list() last_done = 0 for i in range(target_step): action, noise = self.select_action(state) next_state, reward, done, _ = env.step(np.tanh(action)) trajectory_temp.append((state, reward, done, action, noise)) if done: state = env.reset() last_done = i else: state = next_state self.state = state '''splice list''' trajectory_list = self.trajectory_list + trajectory_temp[:last_done + 1] self.trajectory_list = trajectory_temp[last_done:] return trajectory_list def update_net(self, buffer, batch_size, repeat_times, soft_update_tau): with torch.no_grad(): buf_len = buffer[0].shape[0] buf_state, buf_action, buf_noise, buf_reward, buf_mask = [ten.to(self.device) for ten in buffer] '''get buf_r_sum, buf_logprob''' bs = 2 ** 10 buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)] buf_value = torch.cat(buf_value, dim=0) buf_logprob = self.act.get_old_logprob(buf_action, buf_noise) buf_r_sum, buf_advantage = self.get_reward_sum(buf_len, buf_reward, buf_mask, buf_value) # detach() buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5) del buf_noise, buffer[:] '''PPO: Surrogate objective of Trust Region''' obj_critic = obj_actor = None for _ in range(int(buf_len / batch_size * repeat_times)): indices = torch.randint(buf_len, size=(batch_size,), requires_grad=False, device=self.device) state = buf_state[indices] action = buf_action[indices] r_sum = buf_r_sum[indices] logprob = buf_logprob[indices] advantage = buf_advantage[indices] new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) # it's obj_actor ratio = (new_logprob - logprob.detach()).exp() surrogate1 = advantage * ratio surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip) obj_surrogate = -torch.min(surrogate1, surrogate2).mean() obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy self.optim_update(self.act_optim, obj_actor) value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state obj_critic = self.criterion(value, r_sum) / (r_sum.std() + 1e-6) self.optim_update(self.cri_optim, obj_critic) self.soft_update(self.cri_target, self.cri, soft_update_tau) if self.cri_target is not self.cri else None a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)) return obj_critic.item(), obj_actor.item(), a_std_log.mean().item() # logging_tuple def get_reward_sum_raw(self, buf_len, buf_reward, buf_mask, buf_value) -> (torch.Tensor, torch.Tensor): buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # reward sum pre_r_sum = 0 for i in range(buf_len - 1, -1, -1): buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage = buf_r_sum - (buf_mask * buf_value[:, 0]) return buf_r_sum, buf_advantage def get_reward_sum_gae(self, buf_len, ten_reward, ten_mask, ten_value): """tensor, tensor """ buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # old policy value buf_advantage = torch.empty(buf_len, dtype=torch.float32, device=self.device) # advantage value pre_r_sum = 0 pre_advantage = 0 # advantage value of previous step for i in range(buf_len - 1, -1, -1): buf_r_sum[i] = ten_reward[i] + ten_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage[i] = ten_reward[i] + ten_mask[i] * (pre_advantage - ten_value[i]) pre_advantage = ten_value[i] + buf_advantage[i] * self.lambda_gae_adv return buf_r_sum, buf_advantage