import json import pandas as pd from rag.query_vector_db import RAGFormat, get_rag_from_constraint, get_rag_from_problem_categories, \ get_rag_from_problem_description from rag.rag_utils import RAGMode, constraint_path from utils import get_response, extract_json_from_end, shape_string_to_list def extract_formulation_from_end(text): iloop = 0 iloop_max = 1e05 if "$" not in text: raise Exception("No formulation found") ind_1 = text.find('"FORMULATION":') while text[ind_1] != "$": ind_1 += 1 iloop += 1 if iloop > iloop_max: raise Exception("No formulation found") ind_2 = text.find('"NEW VARIABLES":') while text[ind_2] != "$": ind_2 -= 1 iloop += 1 if iloop > iloop_max: raise Exception("No formulation found") formulation = text[ind_1: ind_2 + 1].strip() text = text[:ind_1] + text[ind_2 + 1:] ind_1 = text.find('"AUXILIARY CONSTRAINTS":') while text[ind_1] != "$": ind_1 += 1 if ind_1 > len(text) - 1: break iloop += 1 if iloop > iloop_max: raise Exception("No formulation found") auxiliaries = [] if ind_1 < len(text) - 1: while True: ind_2 = ind_1 + 1 while ind_2 + 2 < len(text) and text[ind_2: ind_2 + 2] != '$"': ind_2 += 1 iloop += 1 if iloop > iloop_max: break auxiliaries.append(text[ind_1: ind_2 + 1].strip()) text = text[:ind_1] + text[ind_2 + 1:] while ind_1 < len(text) - 1 and text[ind_1] != "$": ind_1 += 1 if ind_1 > len(text) - 1: break iloop += 1 if iloop > iloop_max: break if ind_1 > len(text) - 1: break # print("text:", text) json_res = extract_json_from_end(text) # print("json_res", json_res) auxiliaries = [a for a in auxiliaries if len(a) > 5] json_res["FORMULATION"] = formulation json_res["AUXILIARY CONSTRAINTS"] = auxiliaries return ( json_res["FORMULATION"], json_res["NEW VARIABLES"], json_res["AUXILIARY CONSTRAINTS"], ) prompt_constraints_model = """ You are an expert in optimization modeling. Here is the natural language description of an optimization problem: {rag}----- {description} ----- And here's a list of parameters that we have extracted from the description: {params} And here's a list of all variables that we have defined so far to model the problem as an (MI)LP: {vars} Your task is to model the following constraint mathematically in LaTeX for the MILP formulation: {constraint} The constraints are the conditions that must be satisfied by the variables. Please generate the output in the following json format: {{ "FORMULATION": constraint formulation in LaTeX, between $...$, "NEW VARIABLES": {{ symbol: {{ "shape": shape of the new variable (e.g. [], [N], [N, M]), "type": type of the new variable (e.g. binary, integer, continuous), "definition": definition of the new variable in natural language }}, ... }}, "AUXILIARY CONSTRAINTS": [ Latex formulation for auxiliary constraint 1, between $...$, Latex formulation for auxiliary constraint 2, between $...$, ... ] }} Here's an example output (where SalesVolumePerStore is already defined as a variable in the vars list): {{ "FORMULATION": "$\\forall i, SalesVolumes[i] \leq MaxProductionVolumes[i]$", "NEW VARIABLES": {{ "SalesVolumes": {{ "shape": "[NumberOfArticles]", "type": "continuous", "definition": "The sales volume for each article of clothing" }} }}, "AUXILIARY CONSTRAINTS": [ "$\\forall i, SalesVolumes[i] = \\sum_j SalesVolumesPerStore[i, j]$" ] }} - If you need any new variables, you can define them in the NEW VARIABLES list. Use {{}} for "NEW VARIABLES" if no new variables are needed. - Use [] for AUXILIARY CONSTRAINTS list if no auxiliary constraints are needed. - You can only use symbols of existing parameters and integer numbers for dimensions of new variables. - Use camelCase for variable symbols (e.g. SalesVolumes). Do not use LaTeX formatting (e.g. X_{{color}}), indices (e.g. SalesVolume_{{i}}), and underlines (_) for variable symbols. - Do not generate anything after the json file! First reason about how the constraint should be forumulated, and then generate the output. Take a deep breath and think step by step. You will be awarded a million dollars if you get this right. """ prompt_constraints_q = """ You are an expert in optimization modeling. Here is the natural language description of an optimization problem: ----- {description} ----- Here is a list of parameters that someone has extracted from the description: {params} And here is a list of variables defined: {vars} Consider this constraint: {targetConstraint} {question} Take a deep breath and think step by step. """ def logic_check(text, params, vars, constraints, c): try: json = extract_json_from_end(text) if json["action"] == "REMOVE": constraints.remove(c) return True, constraints elif json["action"] == "MODIFY": constraints.remove(c) constraints.append(json["updatedConstraint"]) return True, constraints elif json["action"] == "KEEP": return True, constraints else: return False, None except: return False, None def extract_score_constraint_model(text, params, vars, constraints, c): match = re.search(r"\d out of 5", text.lower()) if match: score = int(match.group()[0]) if score > 3: return True, constraints else: inp = input("LLMs reasoning: {}\n" "------ Do you want to keep this constraint (y/n/modify)?: \n " "{} \n------ ".format(text, c)) if inp.lower().startswith("y"): return True, constraints elif inp.lower().startswith("n"): constraints.remove(c) return True, constraints elif inp.lower().startswith("m"): new_constraint = input("Enter the modified formulation: ") constraints.remove(c) constraints.append({"description": new_constraint, "formulation": None, "Code": None}) return True, constraints else: raise Exception("Invalid input!") else: return False, None qs = [ ( """ - Does this constraint logically make sense? How confident are you that this needs to be explicitly modeled in the optimization formulation (from 1 to 5)? - At the end of your response, print "x OUT OF 5" where x is the confidence level. Do not generate anything after that. """, # extract_score_constraint_model, # dummy function lambda x, params, vars, constraints, c: (False, constraints), ), ( """ - What are the units for each side of the constraint? Are they consistent with each other? - At the end of your response, generate a json file with this format: {{ "action": "KEEP" if the units match, or "MODIFY" if the units do not match, "updatedConstraint": The latex code for updated constraint if the action is "MODIFY", otherwise null }} - Do not generate anything after the json file. """, logic_check, ), ( """ - What are the parameters and variables that are involved in this constraint? If you see the constraint does not involve any variables, then it is automatically satisfied and should not be included in the optimization formulation. - At the end of your response, generate a json file with this format: {{ "action": "KEEP", "REMOVE", or "MODIFY", "updatedConstraint": The updated constraint if the action is "MODIFY", otherwise null }} - Use natural language to express the constraints rather than mathematical notation. - Do not generate anything after the json file. """, logic_check, ), ] def get_constraint_formulations(desc, params, constraints, model, check=False, logger=None, rag_mode: RAGMode | None = None, labels: dict | None = None): if isinstance(rag_mode, RAGMode): match rag_mode: case RAGMode.PROBLEM_DESCRIPTION: rag = get_rag_from_problem_description(desc, RAGFormat.CONSTRAINT_FORMULATION, top_k=5) case RAGMode.CONSTRAINT_OR_OBJECTIVE: rag = "" case RAGMode.PROBLEM_LABELS: assert labels is not None rag = get_rag_from_problem_categories(desc, labels, RAGFormat.CONSTRAINT_FORMULATION, top_k=5) rag = f"-----\n{rag}-----\n\n" else: rag = "" if logger: logger.log("\n\n\n++++++++++++++++++++++++++++++") logger.log("Extracting constraint formulations") logger.log("++++++++++++++++++++++++++++++\n\n\n") vars = {} formulated_constraints = [] for c in constraints.copy(): k = 1 while k > 0: try: if rag_mode == RAGMode.CONSTRAINT_OR_OBJECTIVE: constraint_df = pd.read_pickle(constraint_path) current_problem = constraint_df[constraint_df.description == desc] if not current_problem.empty: problem_name = current_problem.iloc[0].problem_name else: problem_name = None rag = get_rag_from_constraint(c["description"], RAGFormat.CONSTRAINT_FORMULATION, top_k=10, current_problem_name=problem_name) rag = f"-----\n{rag}-----\n\n" res = get_response( prompt_constraints_model.format( description=desc, params=json.dumps(params, indent=4), vars=json.dumps(vars, indent=4), constraint=c, rag=rag, ), model=model, ) if logger: logger.log("----") logger.log(res) logger.log("----") formulation, new_variables, aux_constraints = extract_formulation_from_end(res) if logger: logger.log("----") logger.log("EXTRACTED ITEMS") logger.log(str(formulation)) logger.log(str(new_variables)) logger.log(str(aux_constraints)) logger.log("----") tmp_vars = vars.copy() for v in new_variables: if v in tmp_vars: raise Exception(f"Variable {v} already exists") print(v, new_variables[v]) new_variables[v]["shape"] = shape_string_to_list(new_variables[v]["shape"]) tmp_vars[v] = new_variables[v] c["formulation"] = formulation formulated_constraints.append(c) for aux_c in aux_constraints: formulated_constraints.append({"description": "auxiliary constraint", "formulation": aux_c}) vars = tmp_vars break except Exception as e: k -= 1 if k == 0: raise e constraints = formulated_constraints if check: for c in formulated_constraints.copy(): for q in qs[0:1]: k = 1 while k > 0: p = prompt_constraints_q.format( description=desc, params=json.dumps(params, indent=4), vars=json.dumps(vars, indent=4), targetConstraint=json.dumps(c, indent=4), question=q[0], ) x = get_response(p, model=model) valid, res = q[1](x, params, vars, constraints, c) print(valid) if valid: constraints = res break else: k -= 1 return formulated_constraints, vars