building-agents/llma/main.py

125 lines
4.1 KiB
Python

import argparse
import os
import time
import json
from constraint import get_constraints
from constraint_model import get_constraint_formulations
from execute_code import execute_and_debug
from generate_code import generate_code
from target_code import get_codes
from objective import get_objective
from objective_model import get_objective_formulation
from rag.rag_utils import RAGMode
from utils import create_state, load_state, save_state, Logger
parser = argparse.ArgumentParser(description="Run the optimization problem")
parser.add_argument("--dir", type=str, default=".", help="Directory of the problem")
parser.add_argument("--devmode", type=int, default=1)
parser.add_argument("--rag-mode", type=RAGMode, choices=list(RAGMode), default=None, help="RAG mode")
args = parser.parse_args()
if __name__ == "__main__":
# #### SET BEFORE RUNNING! ####
DIR = args.dir
DEV_MODE = args.devmode
RAG_MODE = args.rag_mode
ERROR_CORRECTION = True
MODEL = "glm-4-0520"
# MODEL = "gpt-4o"
# MODEL = "llama3-70b-8192"
# #############################
run_dir = os.path.join(DIR, "data")
if not os.path.exists(run_dir):
os.makedirs(run_dir)
state = create_state(DIR, run_dir)
with open(os.path.join(run_dir, "labels.json"), "r") as f:
labels = json.load(f)
save_state(state, os.path.join(run_dir, "state_1_params.json"))
logger = Logger(f"{run_dir}/log.txt")
logger.reset()
# ###### Get objective
state = load_state(os.path.join(run_dir, "state_1_params.json"))
objective = get_objective(
state["description"],
state["parameters"],
check=ERROR_CORRECTION,
logger=logger,
model=MODEL,
rag_mode=RAG_MODE,
labels=labels,
)
print(objective)
state["objective"] = objective
save_state(state, os.path.join(run_dir, "state_2_objective.json"))
# # #######
# ####### Get constraints
state = load_state(os.path.join(run_dir, "state_2_objective.json"))
constraints = get_constraints(
state["description"],
state["parameters"],
check=ERROR_CORRECTION,
logger=logger,
model=MODEL,
rag_mode=RAG_MODE,
labels=labels,
)
print(constraints)
state["constraints"] = constraints
save_state(state, os.path.join(run_dir, "state_3_constraints.json"))
# # #######
# ####### Get constraint formulations
state = load_state(os.path.join(run_dir, "state_3_constraints.json"))
constraints, variables = get_constraint_formulations(
state["description"],
state["parameters"],
state["constraints"],
check=ERROR_CORRECTION,
logger=logger,
model=MODEL,
rag_mode=RAG_MODE,
labels=labels,
)
state["constraints"] = constraints
state["variables"] = variables
save_state(state, os.path.join(run_dir, "state_4_constraints_modeled.json"))
#######
# ####### Get objective formulation
state = load_state(os.path.join(run_dir, "state_4_constraints_modeled.json"))
objective = get_objective_formulation(
state["description"],
state["parameters"],
state["variables"],
state["objective"],
model=MODEL,
check=ERROR_CORRECTION,
rag_mode=RAG_MODE,
labels=labels,
)
state["objective"] = objective
print("DONE OBJECTIVE FORMULATION")
save_state(state, os.path.join(run_dir, "state_5_objective_modeled.json"))
# #######
# # ####### Get codes
state = load_state(os.path.join(run_dir, "state_5_objective_modeled.json"))
constraints, objective = get_codes(
state["description"],
state["parameters"],
state["variables"],
state["constraints"],
state["objective"],
model=MODEL,
check=ERROR_CORRECTION,
)
state["constraints"] = constraints
state["objective"] = objective
save_state(state, os.path.join(run_dir, "state_6_code.json"))
# #######
# # ####### Run codes
state = load_state(os.path.join(run_dir, "state_6_code.json"))
generate_code(state, run_dir)
execute_and_debug(state, model=MODEL, dir=run_dir, logger=logger)