108 lines
4.1 KiB
Python
108 lines
4.1 KiB
Python
|
# -*-coding:utf-8 -*-
|
|||
|
import lightgbm as lgb
|
|||
|
import numpy as np
|
|||
|
import pandas as pd
|
|||
|
import json
|
|||
|
import datetime as dt
|
|||
|
|
|||
|
|
|||
|
def load_history_data(data_path:str):
|
|||
|
data = pd.read_csv(data_path)
|
|||
|
return data
|
|||
|
|
|||
|
def load_config(cfg_path:str):
|
|||
|
with open(cfg_path, 'r', encoding='utf-8') as fr:
|
|||
|
config = json.load(fr)
|
|||
|
return config
|
|||
|
|
|||
|
def load_lgb_model(model_path:str):
|
|||
|
return lgb.Booster(model_file=model_path)
|
|||
|
|
|||
|
def cal_CO2(coal_cost, ncv):
|
|||
|
return coal_cost * ncv * 26.37e-3 * 0.94 * 44 / 12
|
|||
|
|
|||
|
def cal_coal_cost_emission(coal_cost, boiler, emission_factors):
|
|||
|
factor = emission_factors.get(boiler)
|
|||
|
if factor is not None:
|
|||
|
return coal_cost * factor
|
|||
|
else:
|
|||
|
return emission_factors.get("default") * coal_cost
|
|||
|
|
|||
|
def cal_PM(r_smoke, boiler, emission_factors):
|
|||
|
factor = emission_factors.get(boiler)
|
|||
|
if factor is not None:
|
|||
|
return r_smoke * factor
|
|||
|
else:
|
|||
|
return emission_factors.get("default") * r_smoke
|
|||
|
|
|||
|
def predict(his_data, input_data, model:lgb.Booster, object_cols, emission_factors):
|
|||
|
feature_names = model.feature_name()
|
|||
|
date = dt.datetime.strptime(input_data.get('time'), '%Y-%m-%d %H:%M:%S')
|
|||
|
r_NOx = float(input_data.get('NOx'))
|
|||
|
r_SO2 = float(input_data.get('SO2'))
|
|||
|
r_smoke = float(input_data.get('smoke'))
|
|||
|
flow = float(input_data.get('flow'))
|
|||
|
c_NOx, c_SO2, c_smoke = flow * np.asarray([r_NOx, r_SO2, r_smoke])
|
|||
|
caloric = float(input_data.get("caloric"))
|
|||
|
if caloric > 1000:
|
|||
|
caloric = caloric / 1000
|
|||
|
inputs = {
|
|||
|
"生产设备类型": input_data.get('boiler'),
|
|||
|
"汽轮机类型": input_data.get('steam'),
|
|||
|
"冷却方式": input_data.get('cold'),
|
|||
|
"压力参数": input_data.get('pressure'),
|
|||
|
"day_of_week": date.weekday(),
|
|||
|
"month": date.month,
|
|||
|
"hour": date.hour,
|
|||
|
"0_r_NOx":np.log1p(float(r_NOx)),
|
|||
|
"0_r_SO2":np.log1p(float(r_SO2)),
|
|||
|
"0_r_smoke":np.log1p(float(r_smoke)),
|
|||
|
"0_c_NOx": np.log1p(float(c_NOx)),
|
|||
|
"0_c_SO2": np.log1p(float(c_SO2)),
|
|||
|
"0_c_smoke": np.log1p(float(c_smoke)),
|
|||
|
"0_flow": np.log1p(float(flow)),
|
|||
|
"0_O2": np.log1p(float(input_data.get("O2"))),
|
|||
|
"0_temp": np.log1p(float(input_data.get("temp"))),
|
|||
|
"额定蒸发量_t/h": np.log1p(float(input_data.get("evaporation"))),
|
|||
|
"低位发热量": np.log1p(caloric),
|
|||
|
"单机容量(MW)": np.log1p(float(input_data.get("capacity"))),
|
|||
|
"lon": np.log1p(float(input_data.get("lon"))),
|
|||
|
"lat": np.log1p(float(input_data.get("lat"))),
|
|||
|
}
|
|||
|
new_df = pd.DataFrame.from_dict(inputs, orient='index').T
|
|||
|
total_data = pd.concat([his_data, new_df])
|
|||
|
new_inputs = pd.get_dummies(total_data, columns=object_cols)
|
|||
|
new_inputs = new_inputs[feature_names].iloc[-1].values
|
|||
|
coal_cost = np.expm1(model.predict([new_inputs])[0])
|
|||
|
co = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('CO'))
|
|||
|
vocs = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('VOCs'))
|
|||
|
pm25 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM25'))
|
|||
|
pm10 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM10'))
|
|||
|
co2 = cal_CO2(coal_cost, caloric)
|
|||
|
return {'coal': coal_cost, 'co':co, 'vocs':vocs, 'pm25':pm25, 'pm10':pm10, 'co2':co2}
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
history = load_history_data('../data/data_sample.csv')
|
|||
|
object_cols = load_config('../config/object_cols.json')
|
|||
|
model = load_lgb_model('../model_files/hour_best_model.txt')
|
|||
|
emission_factors = load_config('../config/emission_factor.json')
|
|||
|
inputs = {
|
|||
|
"time": "2023-01-02 03:04:05",
|
|||
|
"boiler": "循环流化床锅炉",
|
|||
|
"steam": "凝气式",
|
|||
|
"cold": "水冷-开式循环",
|
|||
|
"pressure": "超超临界",
|
|||
|
"NOx": "12",
|
|||
|
"SO2":"0.15",
|
|||
|
"smoke":"12",
|
|||
|
"flow":"5000000",
|
|||
|
"O2": "23",
|
|||
|
"temp": "55",
|
|||
|
"evaporation": "123",
|
|||
|
"caloric": "23",
|
|||
|
"capacity": "234",
|
|||
|
"lon": "122",
|
|||
|
"lat":"33",
|
|||
|
}
|
|||
|
print(predict(history, inputs, model, object_cols, emission_factors))
|