emission_detect_model/run.py

44 lines
1.4 KiB
Python
Raw Normal View History

2023-06-26 13:49:10 +08:00
# -*-coding:utf-8-*-
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import json
from flask import Flask, request, make_response
from logzero import logger
current_path = os.path.dirname(os.path.abspath(__file__)) # for local
# current_path = "/app" # for docker
logger.info(f"{current_path}")
from models.lgb_predict import load_config, load_history_data, load_lgb_model, predict
lgb_model = load_lgb_model(model_path=f"{current_path}/model_files/hour_best_model.txt")
object_cols = load_config(f"{current_path}/config/object_cols.json")
history_data = load_history_data(data_path=f"{current_path}/data/data_sample.csv")
emission_factors = load_config(f"{current_path}/config/emission_factor.json")
app = Flask(__name__)
@app.route('/emission/', methods=["POST"])
def run_case_check():
resp_info = dict()
if request.method == "POST":
data = request.json.get('data')
logger.info(data)
if data is not None and len(data) != 0:
rst = predict(history_data, data, lgb_model, object_cols, emission_factors)
resp_info["code"] = 200
resp_info["data"] = rst
else:
resp_info["msg"] = "Input is None, please check !"
resp_info["code"] = 406
resp = make_response(json.dumps(resp_info))
resp.status_code = 200
return resp
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8788, debug=False)