initial code
This commit is contained in:
commit
770ce7fff9
|
@ -0,0 +1,10 @@
|
|||
FROM python:3.7
|
||||
|
||||
WORKDIR /app
|
||||
ADD ./ /app/
|
||||
|
||||
RUN pip install --upgrade pip -i https://pypi.douban.com/simple/ --no-cache-dir
|
||||
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
|
||||
|
||||
|
||||
CMD ["python3", "run.py"]
|
|
@ -0,0 +1,30 @@
|
|||
{
|
||||
"CO":{
|
||||
"煤粉": 2,
|
||||
"循环流化床": 2,
|
||||
"自动炉排层燃炉": 15,
|
||||
"手动炉排层燃炉 ": 124.3,
|
||||
"default": 2
|
||||
},
|
||||
"VOCs":{
|
||||
"煤粉": 2.16,
|
||||
"循环流化床": 2.16,
|
||||
"自动炉排层燃炉": 2.16,
|
||||
"手动炉排层燃炉 ": 4.53,
|
||||
"default": 2.16
|
||||
},
|
||||
"PM25":{
|
||||
"煤粉": 0.06,
|
||||
"循环流化床": 0.07,
|
||||
"自动炉排层燃炉": 0.1,
|
||||
"手动炉排层燃炉 ": 0.07,
|
||||
"default": 0.06
|
||||
},
|
||||
"PM10":{
|
||||
"煤粉": 0.23,
|
||||
"循环流化床": 0.29,
|
||||
"自动炉排层燃炉": 0.3,
|
||||
"手动炉排层燃炉 ": 0.2,
|
||||
"default": 0.23
|
||||
}
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
["\u751f\u4ea7\u8bbe\u5907\u7c7b\u578b", "\u6c7d\u8f6e\u673a\u7c7b\u578b", "\u51b7\u5374\u65b9\u5f0f", "\u538b\u529b\u53c2\u6570", "day_of_week", "month", "hour"]
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
Binary file not shown.
|
@ -0,0 +1,108 @@
|
|||
# -*-coding:utf-8 -*-
|
||||
import lightgbm as lgb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import json
|
||||
import datetime as dt
|
||||
|
||||
|
||||
def load_history_data(data_path:str):
|
||||
data = pd.read_csv(data_path)
|
||||
return data
|
||||
|
||||
def load_config(cfg_path:str):
|
||||
with open(cfg_path, 'r', encoding='utf-8') as fr:
|
||||
config = json.load(fr)
|
||||
return config
|
||||
|
||||
def load_lgb_model(model_path:str):
|
||||
return lgb.Booster(model_file=model_path)
|
||||
|
||||
def cal_CO2(coal_cost, ncv):
|
||||
return coal_cost * ncv * 26.37e-3 * 0.94 * 44 / 12
|
||||
|
||||
def cal_coal_cost_emission(coal_cost, boiler, emission_factors):
|
||||
factor = emission_factors.get(boiler)
|
||||
if factor is not None:
|
||||
return coal_cost * factor
|
||||
else:
|
||||
return emission_factors.get("default") * coal_cost
|
||||
|
||||
def cal_PM(r_smoke, boiler, emission_factors):
|
||||
factor = emission_factors.get(boiler)
|
||||
if factor is not None:
|
||||
return r_smoke * factor
|
||||
else:
|
||||
return emission_factors.get("default") * r_smoke
|
||||
|
||||
def predict(his_data, input_data, model:lgb.Booster, object_cols, emission_factors):
|
||||
feature_names = model.feature_name()
|
||||
date = dt.datetime.strptime(input_data.get('time'), '%Y-%m-%d %H:%M:%S')
|
||||
r_NOx = float(input_data.get('NOx'))
|
||||
r_SO2 = float(input_data.get('SO2'))
|
||||
r_smoke = float(input_data.get('smoke'))
|
||||
flow = float(input_data.get('flow'))
|
||||
c_NOx, c_SO2, c_smoke = flow * np.asarray([r_NOx, r_SO2, r_smoke])
|
||||
caloric = float(input_data.get("caloric"))
|
||||
if caloric > 1000:
|
||||
caloric = caloric / 1000
|
||||
inputs = {
|
||||
"生产设备类型": input_data.get('boiler'),
|
||||
"汽轮机类型": input_data.get('steam'),
|
||||
"冷却方式": input_data.get('cold'),
|
||||
"压力参数": input_data.get('pressure'),
|
||||
"day_of_week": date.weekday(),
|
||||
"month": date.month,
|
||||
"hour": date.hour,
|
||||
"0_r_NOx":np.log1p(float(r_NOx)),
|
||||
"0_r_SO2":np.log1p(float(r_SO2)),
|
||||
"0_r_smoke":np.log1p(float(r_smoke)),
|
||||
"0_c_NOx": np.log1p(float(c_NOx)),
|
||||
"0_c_SO2": np.log1p(float(c_SO2)),
|
||||
"0_c_smoke": np.log1p(float(c_smoke)),
|
||||
"0_flow": np.log1p(float(flow)),
|
||||
"0_O2": np.log1p(float(input_data.get("O2"))),
|
||||
"0_temp": np.log1p(float(input_data.get("temp"))),
|
||||
"额定蒸发量_t/h": np.log1p(float(input_data.get("evaporation"))),
|
||||
"低位发热量": np.log1p(caloric),
|
||||
"单机容量(MW)": np.log1p(float(input_data.get("capacity"))),
|
||||
"lon": np.log1p(float(input_data.get("lon"))),
|
||||
"lat": np.log1p(float(input_data.get("lat"))),
|
||||
}
|
||||
new_df = pd.DataFrame.from_dict(inputs, orient='index').T
|
||||
total_data = pd.concat([his_data, new_df])
|
||||
new_inputs = pd.get_dummies(total_data, columns=object_cols)
|
||||
new_inputs = new_inputs[feature_names].iloc[-1].values
|
||||
coal_cost = np.expm1(model.predict([new_inputs])[0])
|
||||
co = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('CO'))
|
||||
vocs = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('VOCs'))
|
||||
pm25 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM25'))
|
||||
pm10 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM10'))
|
||||
co2 = cal_CO2(coal_cost, caloric)
|
||||
return {'coal': coal_cost, 'co':co, 'vocs':vocs, 'pm25':pm25, 'pm10':pm10, 'co2':co2}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
history = load_history_data('../data/data_sample.csv')
|
||||
object_cols = load_config('../config/object_cols.json')
|
||||
model = load_lgb_model('../model_files/hour_best_model.txt')
|
||||
emission_factors = load_config('../config/emission_factor.json')
|
||||
inputs = {
|
||||
"time": "2023-01-02 03:04:05",
|
||||
"boiler": "循环流化床锅炉",
|
||||
"steam": "凝气式",
|
||||
"cold": "水冷-开式循环",
|
||||
"pressure": "超超临界",
|
||||
"NOx": "12",
|
||||
"SO2":"0.15",
|
||||
"smoke":"12",
|
||||
"flow":"5000000",
|
||||
"O2": "23",
|
||||
"temp": "55",
|
||||
"evaporation": "123",
|
||||
"caloric": "23",
|
||||
"capacity": "234",
|
||||
"lon": "122",
|
||||
"lat":"33",
|
||||
}
|
||||
print(predict(history, inputs, model, object_cols, emission_factors))
|
|
@ -0,0 +1,5 @@
|
|||
lightgbm==3.2.1
|
||||
numpy==1.19.5
|
||||
pandas==1.3.5
|
||||
logzero==1.7.0
|
||||
Flask==2.1.0
|
|
@ -0,0 +1,43 @@
|
|||
# -*-coding:utf-8-*-
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
||||
import json
|
||||
from flask import Flask, request, make_response
|
||||
from logzero import logger
|
||||
|
||||
current_path = os.path.dirname(os.path.abspath(__file__)) # for local
|
||||
# current_path = "/app" # for docker
|
||||
logger.info(f"{current_path}")
|
||||
|
||||
from models.lgb_predict import load_config, load_history_data, load_lgb_model, predict
|
||||
|
||||
lgb_model = load_lgb_model(model_path=f"{current_path}/model_files/hour_best_model.txt")
|
||||
object_cols = load_config(f"{current_path}/config/object_cols.json")
|
||||
history_data = load_history_data(data_path=f"{current_path}/data/data_sample.csv")
|
||||
emission_factors = load_config(f"{current_path}/config/emission_factor.json")
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
|
||||
@app.route('/emission/', methods=["POST"])
|
||||
def run_case_check():
|
||||
resp_info = dict()
|
||||
if request.method == "POST":
|
||||
data = request.json.get('data')
|
||||
logger.info(data)
|
||||
if data is not None and len(data) != 0:
|
||||
rst = predict(history_data, data, lgb_model, object_cols, emission_factors)
|
||||
resp_info["code"] = 200
|
||||
resp_info["data"] = rst
|
||||
else:
|
||||
resp_info["msg"] = "Input is None, please check !"
|
||||
resp_info["code"] = 406
|
||||
resp = make_response(json.dumps(resp_info))
|
||||
resp.status_code = 200
|
||||
return resp
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host='0.0.0.0', port=8788, debug=False)
|
Loading…
Reference in New Issue