# -*-coding:utf-8-*- import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import json from flask import Flask, request, make_response from logzero import logger current_path = os.path.dirname(os.path.abspath(__file__)) # for local # current_path = "/app" # for docker logger.info(f"{current_path}") from models.lgb_predict import load_config, load_history_data, load_lgb_model, predict lgb_model = load_lgb_model(model_path=f"{current_path}/model_files/hour_best_model.txt") object_cols = load_config(f"{current_path}/config/object_cols.json") history_data = load_history_data(data_path=f"{current_path}/data/data_sample.csv") emission_factors = load_config(f"{current_path}/config/emission_factor.json") app = Flask(__name__) @app.route('/emission/', methods=["POST"]) def run_case_check(): resp_info = dict() if request.method == "POST": data = request.json.get('data') logger.info(data) if data is not None and len(data) != 0: rst = predict(history_data, data, lgb_model, object_cols, emission_factors) resp_info["code"] = 200 resp_info["data"] = rst else: resp_info["msg"] = "Input is None, please check !" resp_info["code"] = 406 resp = make_response(json.dumps(resp_info)) resp.status_code = 200 return resp if __name__ == '__main__': app.run(host='0.0.0.0', port=8788, debug=False)