108 lines
4.1 KiB
Python
108 lines
4.1 KiB
Python
# -*-coding:utf-8 -*-
|
||
import lightgbm as lgb
|
||
import numpy as np
|
||
import pandas as pd
|
||
import json
|
||
import datetime as dt
|
||
|
||
|
||
def load_history_data(data_path:str):
|
||
data = pd.read_csv(data_path)
|
||
return data
|
||
|
||
def load_config(cfg_path:str):
|
||
with open(cfg_path, 'r', encoding='utf-8') as fr:
|
||
config = json.load(fr)
|
||
return config
|
||
|
||
def load_lgb_model(model_path:str):
|
||
return lgb.Booster(model_file=model_path)
|
||
|
||
def cal_CO2(coal_cost, ncv):
|
||
return coal_cost * ncv * 26.37e-3 * 0.94 * 44 / 12
|
||
|
||
def cal_coal_cost_emission(coal_cost, boiler, emission_factors):
|
||
factor = emission_factors.get(boiler)
|
||
if factor is not None:
|
||
return coal_cost * factor
|
||
else:
|
||
return emission_factors.get("default") * coal_cost
|
||
|
||
def cal_PM(r_smoke, boiler, emission_factors):
|
||
factor = emission_factors.get(boiler)
|
||
if factor is not None:
|
||
return r_smoke * factor
|
||
else:
|
||
return emission_factors.get("default") * r_smoke
|
||
|
||
def predict(his_data, input_data, model:lgb.Booster, object_cols, emission_factors):
|
||
feature_names = model.feature_name()
|
||
date = dt.datetime.strptime(input_data.get('time'), '%Y-%m-%d %H:%M:%S')
|
||
r_NOx = float(input_data.get('NOx'))
|
||
r_SO2 = float(input_data.get('SO2'))
|
||
r_smoke = float(input_data.get('smoke'))
|
||
flow = float(input_data.get('flow'))
|
||
c_NOx, c_SO2, c_smoke = flow * np.asarray([r_NOx, r_SO2, r_smoke])
|
||
caloric = float(input_data.get("caloric"))
|
||
if caloric > 1000:
|
||
caloric = caloric / 1000
|
||
inputs = {
|
||
"生产设备类型": input_data.get('boiler'),
|
||
"汽轮机类型": input_data.get('steam'),
|
||
"冷却方式": input_data.get('cold'),
|
||
"压力参数": input_data.get('pressure'),
|
||
"day_of_week": date.weekday(),
|
||
"month": date.month,
|
||
"hour": date.hour,
|
||
"0_r_NOx":np.log1p(float(r_NOx)),
|
||
"0_r_SO2":np.log1p(float(r_SO2)),
|
||
"0_r_smoke":np.log1p(float(r_smoke)),
|
||
"0_c_NOx": np.log1p(float(c_NOx)),
|
||
"0_c_SO2": np.log1p(float(c_SO2)),
|
||
"0_c_smoke": np.log1p(float(c_smoke)),
|
||
"0_flow": np.log1p(float(flow)),
|
||
"0_O2": np.log1p(float(input_data.get("O2"))),
|
||
"0_temp": np.log1p(float(input_data.get("temp"))),
|
||
"额定蒸发量_t/h": np.log1p(float(input_data.get("evaporation"))),
|
||
"低位发热量": np.log1p(caloric),
|
||
"单机容量(MW)": np.log1p(float(input_data.get("capacity"))),
|
||
"lon": np.log1p(float(input_data.get("lon"))),
|
||
"lat": np.log1p(float(input_data.get("lat"))),
|
||
}
|
||
new_df = pd.DataFrame.from_dict(inputs, orient='index').T
|
||
total_data = pd.concat([his_data, new_df])
|
||
new_inputs = pd.get_dummies(total_data, columns=object_cols)
|
||
new_inputs = new_inputs[feature_names].iloc[-1].values
|
||
coal_cost = np.expm1(model.predict([new_inputs])[0])
|
||
co = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('CO'))
|
||
vocs = cal_coal_cost_emission(coal_cost, input_data.get('boiler'), emission_factors.get('VOCs'))
|
||
pm25 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM25'))
|
||
pm10 = cal_PM(r_smoke, input_data.get('boiler'), emission_factors.get('PM10'))
|
||
co2 = cal_CO2(coal_cost, caloric)
|
||
return {'coal': coal_cost, 'co':co, 'vocs':vocs, 'pm25':pm25, 'pm10':pm10, 'co2':co2}
|
||
|
||
|
||
if __name__ == '__main__':
|
||
history = load_history_data('../data/data_sample.csv')
|
||
object_cols = load_config('../config/object_cols.json')
|
||
model = load_lgb_model('../model_files/hour_best_model.txt')
|
||
emission_factors = load_config('../config/emission_factor.json')
|
||
inputs = {
|
||
"time": "2023-01-02 03:04:05",
|
||
"boiler": "循环流化床锅炉",
|
||
"steam": "凝气式",
|
||
"cold": "水冷-开式循环",
|
||
"pressure": "超超临界",
|
||
"NOx": "12",
|
||
"SO2":"0.15",
|
||
"smoke":"12",
|
||
"flow":"5000000",
|
||
"O2": "23",
|
||
"temp": "55",
|
||
"evaporation": "123",
|
||
"caloric": "23",
|
||
"capacity": "234",
|
||
"lon": "122",
|
||
"lat":"33",
|
||
}
|
||
print(predict(history, inputs, model, object_cols, emission_factors)) |