add code
This commit is contained in:
parent
5163bf819c
commit
0c7fff1116
|
@ -0,0 +1,9 @@
|
||||||
|
FROM pytorch/pytorch:2.2.0-cuda11.8-cudnn8-runtime
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
COPY . /app/
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
|
||||||
|
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
|
||||||
|
|
||||||
|
CMD ["python3", "run.py"]
|
|
@ -0,0 +1,29 @@
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
import torch
|
||||||
|
|
||||||
|
def load_model(path):
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(path)
|
||||||
|
model = AutoModel.from_pretrained(path)
|
||||||
|
model.eval()
|
||||||
|
return tokenizer, model
|
||||||
|
|
||||||
|
def embedding(tokenizer,model , sentences):
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tokenizer (_type_): 分词器
|
||||||
|
model (_type_): 向量模型
|
||||||
|
sentences (_type_): 句子,list
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
_type_: 向量,长度为1024,list
|
||||||
|
"""
|
||||||
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
||||||
|
with torch.no_grad():
|
||||||
|
model_output = model(**encoded_input)
|
||||||
|
# Perform pooling. In this case, cls pooling.
|
||||||
|
sentence_embeddings = model_output[0][:, 0]
|
||||||
|
# normalize embeddings
|
||||||
|
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
||||||
|
return sentence_embeddings.cpu().numpy().tolist()
|
||||||
|
|
|
@ -0,0 +1,40 @@
|
||||||
|
{
|
||||||
|
"_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-large-zh/",
|
||||||
|
"architectures": [
|
||||||
|
"BertModel"
|
||||||
|
],
|
||||||
|
"attention_probs_dropout_prob": 0.1,
|
||||||
|
"bos_token_id": 0,
|
||||||
|
"classifier_dropout": null,
|
||||||
|
"directionality": "bidi",
|
||||||
|
"eos_token_id": 2,
|
||||||
|
"hidden_act": "gelu",
|
||||||
|
"hidden_dropout_prob": 0.1,
|
||||||
|
"hidden_size": 1024,
|
||||||
|
"id2label": {
|
||||||
|
"0": "LABEL_0"
|
||||||
|
},
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 4096,
|
||||||
|
"label2id": {
|
||||||
|
"LABEL_0": 0
|
||||||
|
},
|
||||||
|
"layer_norm_eps": 1e-12,
|
||||||
|
"max_position_embeddings": 512,
|
||||||
|
"model_type": "bert",
|
||||||
|
"num_attention_heads": 16,
|
||||||
|
"num_hidden_layers": 24,
|
||||||
|
"output_past": true,
|
||||||
|
"pad_token_id": 0,
|
||||||
|
"pooler_fc_size": 768,
|
||||||
|
"pooler_num_attention_heads": 12,
|
||||||
|
"pooler_num_fc_layers": 3,
|
||||||
|
"pooler_size_per_head": 128,
|
||||||
|
"pooler_type": "first_token_transform",
|
||||||
|
"position_embedding_type": "absolute",
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": "4.30.0",
|
||||||
|
"type_vocab_size": 2,
|
||||||
|
"use_cache": true,
|
||||||
|
"vocab_size": 21128
|
||||||
|
}
|
|
@ -0,0 +1,7 @@
|
||||||
|
{
|
||||||
|
"__version__": {
|
||||||
|
"sentence_transformers": "2.2.2",
|
||||||
|
"transformers": "4.28.1",
|
||||||
|
"pytorch": "1.13.0+cu117"
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,20 @@
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"idx": 0,
|
||||||
|
"name": "0",
|
||||||
|
"path": "",
|
||||||
|
"type": "sentence_transformers.models.Transformer"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"idx": 1,
|
||||||
|
"name": "1",
|
||||||
|
"path": "1_Pooling",
|
||||||
|
"type": "sentence_transformers.models.Pooling"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"idx": 2,
|
||||||
|
"name": "2",
|
||||||
|
"path": "2_Normalize",
|
||||||
|
"type": "sentence_transformers.models.Normalize"
|
||||||
|
}
|
||||||
|
]
|
|
@ -0,0 +1,4 @@
|
||||||
|
{
|
||||||
|
"max_seq_length": 512,
|
||||||
|
"do_lower_case": true
|
||||||
|
}
|
|
@ -0,0 +1,7 @@
|
||||||
|
{
|
||||||
|
"cls_token": "[CLS]",
|
||||||
|
"mask_token": "[MASK]",
|
||||||
|
"pad_token": "[PAD]",
|
||||||
|
"sep_token": "[SEP]",
|
||||||
|
"unk_token": "[UNK]"
|
||||||
|
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,15 @@
|
||||||
|
{
|
||||||
|
"clean_up_tokenization_spaces": true,
|
||||||
|
"cls_token": "[CLS]",
|
||||||
|
"do_basic_tokenize": true,
|
||||||
|
"do_lower_case": true,
|
||||||
|
"mask_token": "[MASK]",
|
||||||
|
"model_max_length": 1000000000000000019884624838656,
|
||||||
|
"never_split": null,
|
||||||
|
"pad_token": "[PAD]",
|
||||||
|
"sep_token": "[SEP]",
|
||||||
|
"strip_accents": null,
|
||||||
|
"tokenize_chinese_chars": true,
|
||||||
|
"tokenizer_class": "BertTokenizer",
|
||||||
|
"unk_token": "[UNK]"
|
||||||
|
}
|
|
@ -0,0 +1,4 @@
|
||||||
|
transformers==4.33.0
|
||||||
|
Flask==3.0.0
|
||||||
|
numpy==1.23.5
|
||||||
|
logzero==1.7.0
|
Loading…
Reference in New Issue