import xgboost as xgb # 导入XGBoost import pandas as pd from sklearn import preprocessing import numpy as np from sklearn.model_selection import train_test_split # 移除了 torch 和 torch.nn 相关导入 import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix, accuracy_score, classification_report # 增加评估指标 from sklearn.feature_selection import SelectKBest, chi2 from sklearn.utils.class_weight import compute_sample_weight # 用于计算样本权重 # 检查GPU可用性(XGBoost 可配置使用GPU,但方式不同,这里简化为CPU) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # print(f"Using device: {device}") print("Using CPU for XGBoost (GPU can be configured if needed and available)") # 1. 加载数据集 df = pd.read_csv('sensor.csv', index_col=0) print("Dataset loaded.") # 2. 数据预处理 df.drop(columns=['sensor_50', 'sensor_51', 'sensor_15'], inplace=True) x = df.iloc[:, 1:50].fillna(method='ffill') scaler = preprocessing.MinMaxScaler() x_scaled = scaler.fit_transform(x) x_scaled = pd.DataFrame(x_scaled, columns=df.iloc[:, 1:50].columns) print("Data scaled and NaNs filled.") # 目标变量编码 conditions = [(df['machine_status'] =='NORMAL'), (df['machine_status'] =='BROKEN'), (df['machine_status'] =='RECOVERING')] choices = [1, 0, 2] # BROKEN: 0, NORMAL: 1, RECOVERING: 2 df['Operation'] = np.select(conditions, choices, default=0) # 保持原始编码 # df.drop(['machine_status'],axis=1, inplace=True) # 保留原始列以便检查 y = df['Operation'].values # 直接获取numpy数组 print("Target variable encoded.") print("Class distribution in y:", np.bincount(y)) # 4. 特征选择 (在缩放后的数据上进行) selector = SelectKBest(score_func=chi2, k=20) # chi2要求非负特征,MinMaxScaler保证了这一点 x_new = selector.fit_transform(x_scaled, y) selected_features_indices = selector.get_support(indices=True) selected_features_names = x_scaled.columns[selected_features_indices] print(f"Selected {len(selected_features_names)} features:", selected_features_names.tolist()) # 3. 构建时序输入数据 (仍需要创建窗口) def create_sequences(data, target, time_steps=24): X, y_seq = [], [] print(f"Creating sequences with time_steps={time_steps}...") for i in range(len(data) - time_steps): X.append(data[i:i + time_steps, :]) # 目标是预测 time_steps 之后的那个点的状态 y_seq.append(target[i + time_steps]) print(f"Finished creating sequences. X shape: {np.array(X).shape}, y shape: {np.array(y_seq).shape}") return np.array(X), np.array(y_seq) time_steps = 24 # 定义时间窗口大小 X_seq, y_seq = create_sequences(x_new, y, time_steps=time_steps) # *** 重要:为XGBoost重塑数据 *** # 将 (n_samples, time_steps, n_features) 转换为 (n_samples, time_steps * n_features) n_samples, _, n_features = X_seq.shape X_reshaped = X_seq.reshape(n_samples, time_steps * n_features) print(f"Reshaped X for XGBoost. New shape: {X_reshaped.shape}") # 4. 划分数据集 (使用重塑后的X和对应的y) X_train, X_test, y_train, y_test = train_test_split( X_reshaped, y_seq, test_size=0.2, random_state=42, stratify=y_seq # 使用stratify保持类别比例 ) print(f"Dataset split. Train shape: {X_train.shape}, Test shape: {X_test.shape}") print("Class distribution in y_train:", np.bincount(y_train)) print("Class distribution in y_test:", np.bincount(y_test)) # 计算样本权重以处理类别不平衡 (可选但推荐) # 使用 scikit-learn 的工具函数计算权重 sample_weights = compute_sample_weight(class_weight='balanced', y=y_train) print("Sample weights computed for training.") # 初始化 XGBoost 模型 print("Initializing XGBoost Classifier...") # 如果需要GPU加速,且已安装GPU支持的XGBoost,可添加 tree_method='gpu_hist' model = xgb.XGBClassifier( objective='multi:softprob', # 输出每个类别的概率 num_class=len(np.unique(y_seq)), # 类别数量 eval_metric='mlogloss', # 多分类对数损失 use_label_encoder=False, # 推荐设置,避免警告 random_state=42, n_estimators=100, # 树的数量 (可调) learning_rate=0.1, # 学习率 (可调) max_depth=5, # 树的最大深度 (可调) # tree_method='gpu_hist' # 取消注释以尝试GPU加速 # 其他超参数可根据需要调整... ) # --- 移除了 PyTorch 损失函数和优化器 --- # --- 移除了 PyTorch 训练循环 --- # 训练 XGBoost 模型 print("Training XGBoost model...") # 使用 eval_set 进行早停可以防止过拟合,这里简化训练过程 # eval_set = [(X_test, y_test)] # model.fit(X_train, y_train, sample_weight=sample_weights, eval_set=eval_set, early_stopping_rounds=10, verbose=True) model.fit(X_train, y_train, sample_weight=sample_weights, verbose=True) # 使用样本权重 print("XGBoost training finished.") # 评估模型 print("Evaluating XGBoost model...") y_pred = model.predict(X_test) # 直接预测类别标签 # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print(f"Test Accuracy: {accuracy * 100:.2f}%") # 输出详细分类报告 print("\nClassification Report:") print(classification_report(y_test, y_pred, target_names=['BROKEN', 'NORMAL', 'RECOVERING'])) # 确保标签顺序正确 # 输出混淆矩阵 print("\nConfusion Matrix:") cm = confusion_matrix(y_test, y_pred) print(cm) # 可视化混淆矩阵 plt.figure(figsize=(8, 6)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['BROKEN', 'NORMAL', 'RECOVERING'], # 与 choices 对应 yticklabels=['BROKEN', 'NORMAL', 'RECOVERING']) plt.title("XGBoost Confusion Matrix") plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.show()