import torch import torchvision.datasets from matplotlib import pyplot as plt from torch import nn from torch.utils.data import DataLoader batch_size=10 train_data=torchvision.datasets.MNIST(root="./data",train=True,download=True,transform=torchvision.transforms.ToTensor()) test_data=torchvision.datasets.MNIST(root="./data",train=False,download=True,transform=torchvision.transforms.ToTensor()) train_dataloader=DataLoader(dataset=train_data,batch_size=batch_size) test_dataloader=DataLoader(dataset=test_data,batch_size=batch_size) # #输出数据集中的第一个图片 # plt.imshow(train_data.data[0].numpy(),cmap='gray') # plt.title('%i' % train_data.targets[0]) # plt.show() class AlexNet(nn.Module): def __init__(self): super().__init__() self.conv1=nn.Sequential( nn.Conv2d(in_channels=1,out_channels=96,kernel_size=3,stride=1,padding=1),#28*28 nn.ReLU(), #2.改 3通道 #3. 写net 传函数 和 新模型写类区别 #4.用batch nn.MaxPool2d(kernel_size=3,stride=1)#26*26 ) self.conv2=nn.Sequential( nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,padding=2),#26*26 nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=1)#24*24 ) self.conv3=nn.Sequential( nn.Conv2d(in_channels=256,out_channels=384,kernel_size=3,padding=1), nn.ReLU(), nn.Conv2d(in_channels=384,out_channels=384,kernel_size=3,padding=1), nn.ReLU(), nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3,stride=1)#22*22 ) self.flatten=nn.Flatten() self.end=nn.Sequential( nn.Linear(in_features=256*22*22,out_features=256), nn.ReLU(), nn.Linear(in_features=256,out_features=10) ) def forward(self,x): x=self.conv1(x) x=self.conv2(x) x=self.conv3(x) x=self.flatten(x) x=self.end(x) return x net=AlexNet() loss_cross=nn.CrossEntropyLoss() optim=torch.optim.Adam(net.parameters(),lr=0.001) def train(net,train_data): for data,targets in train_data: #print("targets:",targets) #print("data.shape:",data.shape) #print("targets.shape:",targets.shape) #print("targets.dty24ALexNet.pype",targets.dtype) #data=data.reshape(10,1,28,28) #1,28,28->1,1,28,28 ? data=net(data) #计算每次训练的准确率 acc=(data.argmax(1)==targets).sum() #用sum() 和 sum(0)都可以 || 加()的是函数 不加()的是属性 #print(acc.dtype) accury=acc/batch_size #print("正确数:",acc,"正确率",accury) print("正确数:{},正确率:{}".format(acc,accury))#跑的时候,除10 有 0.0000几的误差???? loss= loss_cross(data,targets) #print("loss:",loss) #loss值代表??? print("loss:{}".format(loss)) loss.backward() optim.step() optim.zero_grad() return net def yanzheng(net,test_data): net.eval() acc=0 sum=batch_size with torch.no_grad(): for data,targets in test_data: data=net(data) acc=(data.argmax(1)==targets).sum() accury = acc / batch_size print("正确数:",acc," ","正确率",accury) #训练数据 #net=train(net,train_dataloader) #不返回也没事 训练之后的参数会保留,(只要是在这一次程序中运行的) #保存模型 此方法需要保证可以找到自己定义的class AlexNet模型 (直接加载模型应该也可以吧 eg:VGG) ||我认为小土堆的第二种方法 也需要保证运行的程序中有模型,无论是加载别人定义好的 还是 自己引入(from P26_model_save import *)/加上代码 class 模型 #torch.save(net,"ALexNet_02.path") #加载模型 net_loading=torch.load("ALexNet_02.path") #测试数据 yanzheng(net_loading,test_dataloader)