235 lines
11 KiB
Python
235 lines
11 KiB
Python
# Loss functions
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
|
||
from utils.general import bbox_iou
|
||
from utils.torch_utils import is_parallel
|
||
|
||
|
||
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||
# return positive, negative label smoothing BCE targets
|
||
return 1.0 - 0.5 * eps, 0.5 * eps
|
||
|
||
|
||
class BCEBlurWithLogitsLoss(nn.Module):
|
||
# BCEwithLogitLoss() with reduced missing label effects.
|
||
def __init__(self, alpha=0.05):
|
||
super(BCEBlurWithLogitsLoss, self).__init__()
|
||
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||
self.alpha = alpha
|
||
|
||
def forward(self, pred, true):
|
||
loss = self.loss_fcn(pred, true)
|
||
pred = torch.sigmoid(pred) # prob from logits
|
||
dx = pred - true # reduce only missing label effects
|
||
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||
loss *= alpha_factor
|
||
return loss.mean()
|
||
|
||
|
||
class FocalLoss(nn.Module):
|
||
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||
super(FocalLoss, self).__init__()
|
||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||
self.gamma = gamma
|
||
self.alpha = alpha
|
||
self.reduction = loss_fcn.reduction
|
||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||
|
||
def forward(self, pred, true):
|
||
loss = self.loss_fcn(pred, true)
|
||
# p_t = torch.exp(-loss)
|
||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||
|
||
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||
modulating_factor = (1.0 - p_t) ** self.gamma
|
||
loss *= alpha_factor * modulating_factor
|
||
|
||
if self.reduction == 'mean':
|
||
return loss.mean()
|
||
elif self.reduction == 'sum':
|
||
return loss.sum()
|
||
else: # 'none'
|
||
return loss
|
||
|
||
|
||
class QFocalLoss(nn.Module):
|
||
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||
super(QFocalLoss, self).__init__()
|
||
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||
self.gamma = gamma
|
||
self.alpha = alpha
|
||
self.reduction = loss_fcn.reduction
|
||
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||
|
||
def forward(self, pred, true):
|
||
loss = self.loss_fcn(pred, true)
|
||
|
||
pred_prob = torch.sigmoid(pred) # prob from logits
|
||
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||
loss *= alpha_factor * modulating_factor
|
||
|
||
if self.reduction == 'mean':
|
||
return loss.mean()
|
||
elif self.reduction == 'sum':
|
||
return loss.sum()
|
||
else: # 'none'
|
||
return loss
|
||
|
||
|
||
class ComputeLoss:
|
||
# Compute losses
|
||
def __init__(self, model, autobalance=False):
|
||
super(ComputeLoss, self).__init__()
|
||
device = next(model.parameters()).device # get model device
|
||
h = model.hyp # hyperparameters
|
||
|
||
# Define criteria 定义标准
|
||
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||
|
||
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||
|
||
# Focal loss
|
||
g = h['fl_gamma'] # focal loss gamma
|
||
if g > 0:
|
||
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||
|
||
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
||
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
||
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
||
for k in 'na', 'nc', 'nl', 'anchors':
|
||
setattr(self, k, getattr(det, k))
|
||
|
||
def __call__(self, p, targets): # predictions, targets, model
|
||
device = targets.device
|
||
#lcls分类损失,lbox边界框回归损失,lobj目标置信度损失
|
||
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||
|
||
#tcls:目标的类别标签。tbox:目标的边界框坐标。
|
||
# indices:与预测匹配的目标索引(包括图像索引、网格坐标、锚点索引等)。
|
||
# anchors:与目标匹配的锚框。
|
||
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
||
|
||
# Losses
|
||
for i, pi in enumerate(p): # layer index, layer predictions
|
||
b, a, gj, gi = indices[i] #目标的批次索引 锚点索引 真实的的纵/纵坐标 # image, anchor, gridy, gridx
|
||
|
||
#pi 的形状为 (batch_size, num_anchors, grid_y, grid_x, num_features)
|
||
#pi[..., 0] 的形状为 (batch_size, num_anchors, grid_y, grid_x),它只保留置信度(confidence)的值。
|
||
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||
|
||
n = b.shape[0] # number of targets 看还有没有需要继续操作的
|
||
if n:
|
||
#ps维度:(n_targets, num_features) 5维度 4个参数 相当于 2维度 给一个变化的参数 出来是2维度 #b, a, gj, gi 是索引张量,形状都是 (n_targets,)。
|
||
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets 与目标对应的预测子集
|
||
|
||
# Regression 回归(边界框损失)ps维度:(n_targets, num_features)
|
||
pxy = ps[:, :2].sigmoid() * 2. - 0.5 #维度(n_targets, 2)
|
||
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] #维度(n_targets, 2)
|
||
pbox = torch.cat((pxy, pwh), 1) # predicted box #按照列
|
||
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||
lbox += (1.0 - iou).mean() # iou loss #计算边界框的回归损失,公式为 1 - IoU 的均值,并累加到 lbox 中
|
||
|
||
# Objectness 置信度损失
|
||
# #tobj 的形状是 (batch_size, num_anchors, grid_y, grid_x)
|
||
# b, a, gj, gi 是索引张量,形状都是 (n_targets,)。
|
||
#tobj[b, a, gj, gi] 最终形状是 (n_targets,)。
|
||
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||
#(1.0 - self.gr):固定偏移值,用于平滑。+ self.gr * iou:根据 IoU 为正样本分配置信度权重。
|
||
#detach():阻止 IoU 的梯度回传。.clamp(0):限制置信度值为非负数。
|
||
#.type(tobj.dtype):确保 tobj 的数据类型与当前设备一致。
|
||
#self.gr 是 IoU 对置信度贡献的权重因子。1.0 - self.gr 确保置信度不会完全依赖 IoU,有助于稳定学习。
|
||
|
||
|
||
|
||
# Classification
|
||
if self.nc > 1: # cls loss (only if multiple classes)
|
||
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
||
t[range(n), tcls[i]] = self.cp
|
||
lcls += self.BCEcls(ps[:, 5:], t) # BCE
|
||
|
||
# Append targets to text file
|
||
# with open('targets.txt', 'a') as file:
|
||
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||
|
||
obji = self.BCEobj(pi[..., 4], tobj)
|
||
lobj += obji * self.balance[i] # obj loss
|
||
if self.autobalance:
|
||
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||
|
||
if self.autobalance:
|
||
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||
lbox *= self.hyp['box']
|
||
lobj *= self.hyp['obj']
|
||
lcls *= self.hyp['cls']
|
||
bs = tobj.shape[0] # batch size
|
||
|
||
loss = lbox + lobj + lcls
|
||
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||
|
||
def build_targets(self, p, targets):
|
||
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||
tcls, tbox, indices, anch = [], [], [], []
|
||
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||
|
||
g = 0.5 # bias
|
||
off = torch.tensor([[0, 0],
|
||
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||
], device=targets.device).float() * g # offsets
|
||
|
||
for i in range(self.nl):
|
||
anchors = self.anchors[i]
|
||
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||
|
||
# Match targets to anchors
|
||
t = targets * gain
|
||
if nt:
|
||
# Matches
|
||
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||
t = t[j] # filter
|
||
|
||
# Offsets
|
||
gxy = t[:, 2:4] # grid xy
|
||
gxi = gain[[2, 3]] - gxy # inverse
|
||
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||
t = t.repeat((5, 1, 1))[j]
|
||
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||
else:
|
||
t = targets[0]
|
||
offsets = 0
|
||
|
||
# Define
|
||
b, c = t[:, :2].long().T # image, class
|
||
gxy = t[:, 2:4] # grid xy
|
||
gwh = t[:, 4:6] # grid wh
|
||
gij = (gxy - offsets).long()
|
||
gi, gj = gij.T # grid xy indices
|
||
|
||
# Append
|
||
a = t[:, 6].long() # anchor indices
|
||
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||
anch.append(anchors[a]) # anchors
|
||
tcls.append(c) # class
|
||
|
||
return tcls, tbox, indices, anch
|