209 lines
10 KiB
Python
209 lines
10 KiB
Python
import argparse
|
||
import time
|
||
from pathlib import Path
|
||
|
||
import cv2
|
||
import torch
|
||
import torch.backends.cudnn as cudnn
|
||
from numpy import random
|
||
|
||
from models.experimental import attempt_load
|
||
from utils.datasets import LoadStreams, LoadImages
|
||
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
||
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
||
from utils.plots import plot_one_box
|
||
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||
|
||
|
||
def detect(save_img=False):
|
||
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
||
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
||
|
||
# Directories
|
||
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||
|
||
# Initialize
|
||
set_logging()
|
||
device = select_device(opt.device)
|
||
half = device.type != 'cpu' # half precision only supported on CUDA
|
||
|
||
# Load model
|
||
model = attempt_load(weights, map_location=device) # load FP32 model
|
||
stride = int(model.stride.max()) # model stride
|
||
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
||
if half:
|
||
model.half() # to FP16
|
||
|
||
# Second-stage classifier
|
||
classify = False
|
||
if classify:
|
||
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
||
|
||
# Set Dataloader
|
||
vid_path, vid_writer = None, None
|
||
if webcam:
|
||
view_img = check_imshow()
|
||
cudnn.benchmark = True # set True to speed up constant image size inference
|
||
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
||
else:
|
||
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
||
|
||
# Get names and colors
|
||
names = model.module.names if hasattr(model, 'module') else model.names
|
||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
||
|
||
# Run inference
|
||
if device.type != 'cpu':
|
||
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||
t0 = time.time()
|
||
for path, img, im0s, vid_cap in dataset:
|
||
img = torch.from_numpy(img).to(device)
|
||
img = img.half() if half else img.float() # uint8 to fp16/32
|
||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||
if img.ndimension() == 3:
|
||
img = img.unsqueeze(0)
|
||
|
||
# Inference
|
||
t1 = time_synchronized()
|
||
pred = model(img, augment=opt.augment)[0]
|
||
|
||
# Apply NMS
|
||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
||
t2 = time_synchronized()
|
||
|
||
# Apply Classifier
|
||
if classify:
|
||
pred = apply_classifier(pred, modelc, img, im0s)
|
||
#----------------------------------------
|
||
import shutil
|
||
import os
|
||
|
||
# 假设风机类别ID为0(你需要根据你的数据集更新这个ID)
|
||
wind_turbine_class_id = 0 # 更新为你风机类别的 ID
|
||
# 目标文件夹路径,假设为 "moved_images"
|
||
#moved_images_folder = r"C:\Users\Dell\Desktop\moved_images"
|
||
moved_images_folder = r"C:\Users\Dell\Desktop\PY!\Wind\YOLO5\yolov5-5.0\yolov5-5.0\data\task-Annotion-wind\filter"
|
||
# 确保目标文件夹存在
|
||
if not os.path.exists(moved_images_folder):
|
||
os.makedirs(moved_images_folder)
|
||
#------------------------------------------
|
||
# Process detections
|
||
for i, det in enumerate(pred): # detections per image
|
||
if webcam: # batch_size >= 1
|
||
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
||
else:
|
||
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
||
print(p)
|
||
p = Path(p) # to Path
|
||
print(p)
|
||
save_path = str(save_dir / p.name) # img.jpg
|
||
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
||
s += '%gx%g ' % img.shape[2:] # print string
|
||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||
flag = 0 #在if里面定义,对下面if判断属于局部变量
|
||
if len(det):
|
||
#-------------------------------------------------
|
||
|
||
for c in det[:, -1].unique(): # 遍历所有检测到的类别
|
||
if int(c) == wind_turbine_class_id: # 检测到风机
|
||
# 将原图像移动到目标文件夹
|
||
original_image_path = str(p) # 获取原图像的路径
|
||
destination_path = os.path.join(moved_images_folder, p.name) # 目标路径
|
||
try:
|
||
flag=1 # # 只打印有检测到的
|
||
shutil.move(original_image_path, destination_path) # 移动文件
|
||
print(f"风机检测到!已将 {p.name} 移动到 {moved_images_folder}")
|
||
except Exception as e:
|
||
print(f"移动文件 {p.name} 时出错: {e}")
|
||
#-----------------------------------------
|
||
# Rescale boxes from img_size to im0 size
|
||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
||
|
||
# Print results
|
||
for c in det[:, -1].unique():
|
||
n = (det[:, -1] == c).sum() # detections per class
|
||
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||
|
||
# Write results
|
||
for *xyxy, conf, cls in reversed(det):
|
||
if save_txt: # Write to file
|
||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
||
with open(txt_path + '.txt', 'a') as f:
|
||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||
|
||
if save_img or view_img: # Add bbox to image
|
||
label = f'{names[int(cls)]} {conf:.2f}'
|
||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
||
|
||
# Print time (inference + NMS)
|
||
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
||
|
||
# Stream results
|
||
if view_img:
|
||
cv2.imshow(str(p), im0)
|
||
cv2.waitKey(1) # 1 millisecond
|
||
|
||
# Save results (image with detections)
|
||
if save_img:
|
||
if dataset.mode == 'image':
|
||
if flag == 1: # 只打印有检测到的
|
||
cv2.imwrite(save_path, im0)
|
||
flag = 0
|
||
else: # 'video' or 'stream'
|
||
if vid_path != save_path: # new video
|
||
vid_path = save_path
|
||
if isinstance(vid_writer, cv2.VideoWriter):
|
||
vid_writer.release() # release previous video writer
|
||
if vid_cap: # video
|
||
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||
else: # stream
|
||
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||
save_path += '.mp4'
|
||
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||
vid_writer.write(im0)
|
||
|
||
if save_txt or save_img:
|
||
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||
print(f"Results saved to {save_dir}{s}")
|
||
|
||
print(f'Done. ({time.time() - t0:.3f}s)')
|
||
|
||
|
||
if __name__ == '__main__':
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--weights', nargs='+', type=str, default='runs/autodl/exp92/weights/best.pt', help='model.pt path(s)')
|
||
parser.add_argument('--source', type=str, default='data/task-Annotion-wind/wait', help='source') # file/folder, 0 for webcam
|
||
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
parser.add_argument('--view-img', action='store_true', help='display results')
|
||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||
parser.add_argument('--update', action='store_true', help='update all models')
|
||
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||
opt = parser.parse_args()
|
||
print(opt)
|
||
check_requirements(exclude=('pycocotools', 'thop'))
|
||
|
||
with torch.no_grad():
|
||
if opt.update: # update all models (to fix SourceChangeWarning)
|
||
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||
detect()
|
||
strip_optimizer(opt.weights)
|
||
else:
|
||
detect()
|