update reward function

This commit is contained in:
chenxiaodong 2025-02-13 15:05:12 +08:00
parent 406f86c7dd
commit d318e26e25
4 changed files with 39 additions and 36 deletions

View File

@ -25,6 +25,8 @@ class WgzGym(gym.Env):
self.a = 0.5
self.b = 0.3
self.c = 0.2
self.heat_a = 0.6
self.power_a = 0.4
self.EC_parameters = kwargs.get('EC_parameters', EC_parameters) # 电解水制氢器
self.HST_parameters = kwargs.get('dg_parameters', dg_parameters) # 储氢罐
@ -53,6 +55,7 @@ class WgzGym(gym.Env):
def _build_state(self):
hst_soc = self.HST.current_soc
ec_out = self.EC.get_hydrogen()
grid_ex = self.grid
time_step = self.current_time
price = self.data_manager.get_price_data(self.month, self.day, self.current_time)
@ -64,13 +67,13 @@ class WgzGym(gym.Env):
obs = np.concatenate((np.float32(time_step), np.float32(price), np.float32(temper),
np.float32(solar), np.float32(load), np.float32(heat),
np.float32(people), np.float32(ec_out), np.float32(hst_soc), np.float32(wind)), axis=None)
np.float32(people), np.float32(ec_out), np.float32(hst_soc), np.float32(grid_ex)), axis=None)
return obs
def step(self, action):
# 在每个组件中添加动作
# 每个组件执行动作 one step
current_obs = self._build_state()
self.EC.step(action[0]) # 执行状态转换,电池当前容量也改变
self.EC.step(action[0])
self.HST.step(action[1])
self.grid.step(action[2])
price = current_obs[1]
@ -78,26 +81,27 @@ class WgzGym(gym.Env):
solar = current_obs[3]
load = current_obs[4]
heat = current_obs[5]
gym_to_grid = solar + self.HST.get_power() - self.EC.current_power - load
heat_penalty = 0
# reward = 0.0
sell_benefit, buy_cost = 0, 0
excess_penalty, deficient_penalty = 0, 0
# power_penalty = 0
if gym_to_grid >= 0: # 过剩
sell_benefit = self.grid.get_cost(price, gym_to_grid) * self.sell_coefficient
excess_penalty = gym_to_grid * self.penalty_coefficient
else: # 缺少
buy_cost = self.grid.get_cost(price, abs(gym_to_grid))
deficient_penalty = abs(gym_to_grid) * self.penalty_coefficient
power_penalty = abs(gym_to_grid) * self.penalty_coefficient
hst_cost = self.HST.get_cost()
ec_cost = self.EC.get_cost(price)
solar_cost = solar # 待补充
economic_cost = hst_cost + ec_cost + solar_cost - sell_benefit + buy_cost
demand_cost = excess_penalty + deficient_penalty
demand_cost = self.heat_a * heat_penalty + self.power_a * power_penalty
eco_benifit = 0
reward = - self.a * economic_cost - self.b * demand_cost + self.c * eco_benifit
reward = - self.a * demand_cost - self.b * economic_cost + self.c * eco_benifit
self.unbalance = gym_to_grid
final_step_outputs = [self.HST.current_soc, self.EC.current_power, self.grid.current_power]

View File

@ -22,6 +22,9 @@ class EC:
def get_hydrogen(self):
return self.current_power * self.electricity_efficiency * self.hydrogen_produce
def get_heat(self):
return self.current_power * (1 - self.electricity_efficiency)
def get_carbon(self):
return self.current_power * self.carbon_reduce
@ -51,6 +54,7 @@ class HST:
储氢罐的放气速率 = 供电 电价低时多电解电价高时释放
'''
def step(self, action_hst):
energy = action_hst * self.ramp
updated_soc = max(self.min_soc, min(self.max_soc, (self.current_soc * self.capacity + energy) / self.capacity))
@ -59,7 +63,13 @@ class HST:
def get_power(self):
if self.hydrogen_charge > 0:
return self.hydrogen_charge * self.lower_heating_value * self.charge_efficiency * self.generate_efficiency
return self.hydrogen_charge * self.charge_efficiency * self.lower_heating_value * self.generate_efficiency
else:
return 0
def get_heat(self):
if self.hydrogen_charge < 0:
return self.hydrogen_charge * self.charge_efficiency * (1 - self.generate_efficiency)
else:
return 0

View File

@ -2,39 +2,30 @@ import torch
def test_one_episode(env, act, device):
"""to get evaluate information, here record the unbalance of after taking action"""
record_state = []
record_action = []
record_reward = []
record_unbalance = []
record_system_info = [] # [time,price,netload,action,real action,soc,output*4,unbalance(exchange+penalty),cost]
record_init_info = [] # include month,day,time,intial soc
"""get evaluate information, record the unbalance of after taking action"""
record_system_info = [] # same as observation
record_init_info = [] # include month,day,time
env.TRAIN = False
state = env.reset()
record_init_info.append([env.month, env.day, env.current_time, env.battery.current_soc])
print(f'current testing month is {env.month}, day is {env.day},initial_soc is {env.battery.current_soc}')
record_init_info.append([env.month, env.day, env.current_time])
print(f'current testing month is {env.month}, day is {env.day}')
for i in range(24):
s_tensor = torch.as_tensor((state,), device=device)
a_tensor = act(s_tensor)
action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside
real_action = action
action = a_tensor.detach().cpu().numpy()[0]
state, next_state, reward, done = env.step(action)
record_system_info.append([state[0], state[1], state[3] + env.wind.current_power, action, real_action,
env.battery.SOC(), env.battery.energy_change, next_state[4], next_state[5],
next_state[6], env.solar.current_power, env.wind.current_power, env.unbalance,
env.operation_cost, reward])
record_state.append(state)
record_action.append(real_action)
record_reward.append(reward)
record_unbalance.append(env.unbalance)
obs = np.concatenate((np.float32(time_step), np.float32(price), np.float32(temper),
np.float32(solar), np.float32(load), np.float32(heat),
np.float32(people), np.float32(ec_out), np.float32(hst_soc), np.float32(wind)), axis=None)
record_system_info.append([state[0], state[1], state[2], action, EC.current_power(),
env.HST.current_soc(), env.HST.get_power(), next_state[4], next_state[5],
next_state[6], env.solar.current_power, env.power_demand, env.heat_demand, reward])
state = next_state
# add information of last step dg1, dh2, dg3, soc, tem, irr
# add information of last step EC, HST.current_soc, HST.power, grid
record_system_info[-1][7:12] = [env.final_step_outputs[0], env.final_step_outputs[1], env.final_step_outputs[2],
env.final_step_outputs[4], env.final_step_outputs[5]]
record_system_info[-1][5] = env.final_step_outputs[3]
record = {'init_info': record_init_info, 'system_info': record_system_info, 'state': record_state,
'action': record_action, 'reward': record_reward, 'unbalance': record_unbalance}
record = {'init_info': record_init_info, 'system_info': record_system_info}
return record

View File

@ -270,12 +270,10 @@ if __name__ == '__main__':
if args.test_network:
args.cwd = agent_name
agent.act.load_state_dict(torch.load(act_save_path))
print('params have been reload and test')
record = test_one_episode(env, agent.act, agent.device)
eval_data = pd.DataFrame(record['system_info'])
eval_data.columns = ['time_step', 'price', 'load', 'action', 'real_action', 'soc', 'battery',
'gen1', 'gen2', 'gen3', 'pv', 'wind', 'unbalance', 'operation_cost', 'reward']
if args.save_test_data:
test_data_save_path = f'{args.cwd}/test.pkl'
with open(test_data_save_path, 'wb') as tf:
pickle.dump(record, tf)
print('test data have been saved')