import torch def test_one_episode(env, act, device): """to get evaluate information, here record the unbalance of after taking action""" record_state = [] record_action = [] record_reward = [] record_unbalance = [] record_system_info = [] # [time,price,netload,action,real action,soc,output*4,unbalance(exchange+penalty),cost] record_init_info = [] # include month,day,time,intial soc env.TRAIN = False state = env.reset() record_init_info.append([env.month, env.day, env.current_time, env.battery.current_capacity]) print(f'current testing month is {env.month}, day is {env.day},initial_soc is {env.battery.current_capacity}') for i in range(24): s_tensor = torch.as_tensor((state,), device=device) a_tensor = act(s_tensor) action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside real_action = action state, next_state, reward, done = env.step(action) record_system_info.append([state[0], state[1], state[3] + env.wind.current_power, action, real_action, env.battery.SOC(), env.battery.energy_change, next_state[4], next_state[5], next_state[6], env.solar.current_power, env.wind.current_power, env.unbalance, env.operation_cost, reward]) record_state.append(state) record_action.append(real_action) record_reward.append(reward) record_unbalance.append(env.unbalance) state = next_state # add information of last step dg1, dh2, dg3, soc, tem, irr record_system_info[-1][7:12] = [env.final_step_outputs[0], env.final_step_outputs[1], env.final_step_outputs[2], env.final_step_outputs[4], env.final_step_outputs[5]] record_system_info[-1][5] = env.final_step_outputs[3] record = {'init_info': record_init_info, 'system_info': record_system_info, 'state': record_state, 'action': record_action, 'reward': record_reward, 'unbalance': record_unbalance} return record def get_episode_return(env, act, device): episode_reward = 0.0 # sum of rewards in an episode episode_unbalance = 0.0 state = env.reset() for i in range(24): s_tensor = torch.as_tensor((state,), device=device) a_tensor = act(s_tensor) action = a_tensor.detach().cpu().numpy()[0] # not need detach(), because with torch.no_grad() outside state, next_state, reward, done, = env.step(action) state = next_state episode_reward += reward episode_unbalance += env.real_unbalance if done: break return episode_reward, episode_unbalance