import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import pandas as pd import numpy as np def time_series_to_supervised(data, n_in=10, n_out=1,dropnan=True): """ :param data:作为列表或2D NumPy数组的观察序列。需要。 :param n_in:作为输入的滞后观察数(X)。值可以在[1..len(数据)]之间可选。默认为1。 :param n_out:作为输出的观测数量(y)。值可以在[0..len(数据)]之间。可选的。默认为1。 :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。 :return: """ n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) origNames = df.columns cols, names = list(), list() cols.append(df.shift(0)) names += [('%s' % origNames[j]) for j in range(n_vars)] n_in = max(1, n_in) for i in range(n_in-1, 0, -1): time = '(t-%d)' % i cols.append(df.shift(i)) names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)] n_out = max(n_out, 0) for i in range(1, n_out+1): time = '(t+%d)' % i cols.append(df.shift(-i)) names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)] agg = pd.concat(cols, axis=1) agg.columns = names if dropnan: agg.dropna(inplace=True) return agg