import joblib import numpy as np def load_carbon_model(path): gbm = joblib.load(path) return gbm def carbon_forecast(inputs: np.ndarray, model): """_summary_ Args: inputs (np.ndarray): 输入序列 model (_type_): _description_ """ out = model.predict([inputs]) return out if __name__ == '__main__': model = load_carbon_model('./models/carbon_pred.joblib') inputs = np.random.randn(24) print(inputs.shape) out = carbon_forecast(inputs, model) print(out)