import joblib import numpy as np def load_model(path): gbm = joblib.load(path) return gbm def pv_forecast(inputs: np.ndarray, model): """_summary_ Args: inputs (np.ndarray): 输入序列 model (_type_): _description_ """ out = model.predict([inputs]) return out # if __name__ == '__main__': # model = load_model('models/pv_pred.joblib') # inputs = np.random.randn(24) # # print(inputs.shape) # out = pv_forecast(inputs, model) # print(out)