删除 24ALexNet_02.py

This commit is contained in:
chengzhiwei 2025-03-12 17:25:13 +08:00
parent 6306a90ec0
commit 4420fe3ff2
1 changed files with 0 additions and 115 deletions

View File

@ -1,115 +0,0 @@
import torch
import torchvision.datasets
from matplotlib import pyplot as plt
from torch import nn
from torch.utils.data import DataLoader
batch_size=10
train_data=torchvision.datasets.MNIST(root="./data",train=True,download=True,transform=torchvision.transforms.ToTensor())
test_data=torchvision.datasets.MNIST(root="./data",train=False,download=True,transform=torchvision.transforms.ToTensor())
train_dataloader=DataLoader(dataset=train_data,batch_size=batch_size)
test_dataloader=DataLoader(dataset=test_data,batch_size=batch_size)
# #输出数据集中的第一个图片
# plt.imshow(train_data.data[0].numpy(),cmap='gray')
# plt.title('%i' % train_data.targets[0])
# plt.show()
class AlexNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Sequential(
nn.Conv2d(in_channels=1,out_channels=96,kernel_size=3,stride=1,padding=1),#28*28
nn.ReLU(),
#2.改 3通道
#3. 写net 传函数 和 新模型写类区别
#4.用batch
nn.MaxPool2d(kernel_size=3,stride=1)#26*26
)
self.conv2=nn.Sequential(
nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,padding=2),#26*26
nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=1)#24*24
)
self.conv3=nn.Sequential(
nn.Conv2d(in_channels=256,out_channels=384,kernel_size=3,padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=384,out_channels=384,kernel_size=3,padding=1),
nn.ReLU(),
nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=1)#22*22
)
self.flatten=nn.Flatten()
self.end=nn.Sequential(
nn.Linear(in_features=256*22*22,out_features=256),
nn.ReLU(),
nn.Linear(in_features=256,out_features=10)
)
def forward(self,x):
x=self.conv1(x)
x=self.conv2(x)
x=self.conv3(x)
x=self.flatten(x)
x=self.end(x)
return x
net=AlexNet()
loss_cross=nn.CrossEntropyLoss()
optim=torch.optim.Adam(net.parameters(),lr=0.001)
def train(net,train_data):
for data,targets in train_data:
#print("targets:",targets)
#print("data.shape:",data.shape)
#print("targets.shape:",targets.shape)
#print("targets.dty24ALexNet.pype",targets.dtype)
#data=data.reshape(10,1,28,28) #1,28,28->1,1,28,28 ?
data=net(data)
#计算每次训练的准确率
acc=(data.argmax(1)==targets).sum() #用sum() 和 sum(0)都可以 || 加()的是函数 不加()的是属性
#print(acc.dtype)
accury=acc/batch_size
#print("正确数:",acc,"正确率",accury)
print("正确数:{},正确率:{}".format(acc,accury))#跑的时候除10 有 0.0000几的误差????
loss= loss_cross(data,targets)
#print("loss:",loss) #loss值代表??
print("loss:{}".format(loss))
loss.backward()
optim.step()
optim.zero_grad()
return net
def yanzheng(net,test_data):
net.eval()
acc=0
sum=batch_size
with torch.no_grad():
for data,targets in test_data:
data=net(data)
acc=(data.argmax(1)==targets).sum()
accury = acc / batch_size
print("正确数:",acc," ","正确率",accury)
#训练数据
#net=train(net,train_dataloader) #不返回也没事 训练之后的参数会保留,(只要是在这一次程序中运行的)
#保存模型 此方法需要保证可以找到自己定义的class AlexNet模型 (直接加载模型应该也可以吧 eg:VGG ||我认为小土堆的第二种方法 也需要保证运行的程序中有模型,无论是加载别人定义好的 还是 自己引入from P26_model_save import */加上代码 class 模型
#torch.save(net,"ALexNet_02.path")
#加载模型
net_loading=torch.load("ALexNet_02.path")
#测试数据
yanzheng(net_loading,test_dataloader)