building-agents/genrtic_gpu_7.22.py

184 lines
7.2 KiB
Python
Raw Normal View History

2024-07-30 09:05:32 +08:00
import json
import os
import time
import numpy as np
import pandas as pd
import torch
from concurrent.futures import ThreadPoolExecutor
from deap import base, creator, tools, algorithms
def fitness_torch(individuals, price, load, temperature, irradiance, wind_speed, prev_soc, prev_Pg1, prev_Pg2, prev_Pg3,
device):
individuals_torch = torch.tensor(individuals, device=device)
num = individuals_torch.shape[0]
Ac, Ag1, Ag2, Ag3, Av = [individuals_torch[:, i * period:(i + 1) * period] for i in range(5)]
# soc = torch.zeros((num, period), device=device)
# Pg1, Pg2, Pg3 = [torch.zeros((num, period), device=device) for _ in range(3)]
# Cb, Cg1, Cg2, Cg3, Cs, Cw, Rs, Cp, Pe, Ps, Ee, Es = [torch.zeros((num, period), device=device) for _ in range(12)]
soc = torch.clamp(prev_soc + 0.2 * Ac * 0.9, 0.2, 0.8)
Pg1 = torch.clamp(prev_Pg1 + 100 * Ag1, min=0, max=150)
Pg2 = torch.clamp(prev_Pg2 + 100 * Ag2, min=0, max=375)
Pg3 = torch.clamp(prev_Pg3 + 200 * Ag3, min=0, max=500)
Pso = torch.clamp((0.2 * irradiance + 0.05 * temperature - 9.25) * (1 + Av), min=0)
Pw = torch.where(
(wind_speed >= 3) & (wind_speed < 8),
wind_speed ** 3 * 172.2625 / 1000,
torch.where(
(wind_speed >= 8) & (wind_speed < 12),
64 * 172.2625 / 125,
torch.zeros_like(wind_speed)
)
)
P = Ac + Pg1 + Pg2 + Pg3 + Pso + Pw
Ee = torch.where(P >= load, P - load, torch.zeros_like(P))
Es = torch.where(P < load, load - P, torch.zeros_like(P))
Cb = 0.01 * Ac + 0.1 * soc
Cg1 = 0.0034 * Pg1 ** 2 + 3 * Pg1 + 30
Cg2 = 0.001 * Pg2 ** 2 + 10 * Pg2 + 40
Cg3 = 0.001 * Pg3 ** 2 + 15 * Pg3 + 70
Cs = 0.01 * Pso
Cw = 0.01 * Pw
Rs = 0.5 * price * Ee
Cp = price * Es
Pe = torch.where(Ee > 100, (Ee - 100) * 50, torch.zeros_like(Ee))
Ps = torch.where(Es > 100, (Es - 100) * 50, torch.zeros_like(Es))
total_cost = torch.sum(Cb + Cg1 + Cg2 + Cg3 + Cs + Cw + Pe + Ps - Rs + Cp, dim=1)
reward = -total_cost / 1000
return reward.cpu().numpy(), soc.cpu().numpy(), Pg1.cpu().numpy(), Pg2.cpu().numpy(), Pg3.cpu().numpy()
def save_decision_values(best_ind, period, index):
decisions = {
'Ac': best_ind[0],
'Ag1': best_ind[1],
'Ag2': best_ind[2],
'Ag3': best_ind[3],
'Av': best_ind[4]
}
with open(f'decision_values_{period}_index_{index}.json', 'w') as f:
json.dump(decisions, f)
def save_progress(population, period):
population_data = [ind.tolist() for ind in population]
with open(f'population_{period}.json', 'w') as f:
json.dump({'period': period, 'population': population_data}, f)
def load_progress():
if os.path.exists('population_gen_499.json'):
with open('population_gen_499.json', 'r') as f:
data = json.load(f)
return data['population'], data['period']
return None, 0
def check_bounds(func):
def wrapper(*args, **kwargs):
offspring = func(*args, **kwargs)
if offspring[0] is None or offspring[1] is None:
print("Error: One of the offspring is None", offspring)
raise ValueError("Offspring cannot be None.")
for child in offspring:
for i in range(len(child)):
if child[i] < -1:
child[i] = -1
elif child[i] > 1:
child[i] = 1
return offspring
return wrapper
def main():
period = 8760
NGEN = 500
CXPB, MUTPB = 0.7, 0.2
batch_size = 500
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = pd.read_csv('./data.csv')
price, load, temperature, irradiance, wind_speed = [data[col].values for col in
['price', 'load', 'temperature', 'irradiance', 'wind_speed']]
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_float", np.random.uniform, -1, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, 5)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", check_bounds(tools.cxBlend), alpha=0.5)
toolbox.register("mutate", check_bounds(tools.mutGaussian), mu=0, sigma=0.1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("evaluate", fitness_torch)
population = load_progress()
if population is None:
population = toolbox.population(n=NGEN)
print("Initial population:", len(population), "and first individual:", population[0])
prev_soc = torch.tensor([0.4] * NGEN, device=device)
prev_Pg1 = torch.zeros(NGEN, device=device)
prev_Pg2 = torch.zeros(NGEN, device=device)
prev_Pg3 = torch.zeros(NGEN, device=device)
for index in range(period):
for gen in range(NGEN):
start_time = time.time()
offspring = algorithms.varAnd(population, toolbox, cxpb=CXPB, mutpb=MUTPB)
num_individuals = len(offspring)
with ThreadPoolExecutor() as executor:
futures = []
for i in range(0, num_individuals, batch_size):
batch = offspring[i:i + batch_size]
individuals = [ind[:] for ind in batch]
futures.append(
executor.submit(toolbox.evaluate, individuals, price[index], load[index], temperature[index],
irradiance[index], wind_speed[index], prev_soc, prev_Pg1, prev_Pg2, prev_Pg3,
device)
)
for future in futures:
fitnesses, socs, Pg1s, Pg2s, Pg3s = zip(*future.result())
for ind, fitness in zip(offspring, fitnesses):
ind.fitness.values = (fitness,)
prev_soc[:len(socs)] = torch.tensor(socs, device=device)
prev_Pg1[:len(Pg1s)] = torch.tensor(Pg1s, device=device)
prev_Pg2[:len(Pg2s)] = torch.tensor(Pg2s, device=device)
prev_Pg3[:len(Pg3s)] = torch.tensor(Pg3s, device=device)
population = toolbox.select(offspring, k=len(population))
print("Population after selection:", population[:5])
end_time = time.time()
print(f"{index + 1}小时完成花费 {end_time - start_time:.2f}")
best_ind = tools.selBest(population, 1)[0]
print('最佳个体:', best_ind)
print('适应度:', best_ind.fitness.values)
save_decision_values(best_ind, period, index)
save_progress(population, period)
prev_soc.fill_(0.4)
prev_Pg1.fill_(0)
prev_Pg2.fill_(0)
prev_Pg3.fill_(0)
prev_soc[:len(best_ind)] = torch.tensor(best_ind[:period], device=device)
prev_Pg1[:len(best_ind)] = torch.tensor(best_ind[period:2 * period], device=device)
prev_Pg2[:len(best_ind)] = torch.tensor(best_ind[2 * period:3 * period], device=device)
prev_Pg3[:len(best_ind)] = torch.tensor(best_ind[3 * period:4 * period], device=device)
if __name__ == "__main__":
main()