building-agents/7.24.py

148 lines
5.3 KiB
Python
Raw Normal View History

2024-07-30 09:05:32 +08:00
import numpy as np
import pandas as pd
import time
import os
import json
from concurrent.futures import ThreadPoolExecutor
from deap import base, creator, tools, algorithms
def fitness_numpy(individual, price, load, temperature, irradiance, wind_speed, prev_soc, prev_Pg1, prev_Pg2, prev_Pg3):
individual = np.array(individual)
price = np.array(price)
load = np.array(load)
temperature = np.array(temperature)
irradiance = np.array(irradiance)
wind_speed = np.array(wind_speed)
Ac, Ag1, Ag2, Ag3, Av = individual[:5]
soc = np.clip(prev_soc + 0.2 * Ac * 0.9, 0.2, 0.8)
Pg1 = np.clip(prev_Pg1 + 100 * Ag1, 0, 150)
Pg2 = np.clip(prev_Pg2 + 100 * Ag2, 0, 375)
Pg3 = np.clip(prev_Pg3 + 200 * Ag3, 0, 500)
Pso = np.clip((0.2 * irradiance + 0.05 * temperature - 9.25) * (1 + Av), 0, None)
Pw = np.where((wind_speed >= 3) & (wind_speed < 8), wind_speed ** 3 * 172.2625 / 1000,
np.where((wind_speed >= 8) & (wind_speed < 12), 64 * 172.2625 / 125, 0))
P = Ac + Pg1 + Pg2 + Pg3 + Pso + Pw
Ee = np.where(P >= load, P - load, 0)
Es = np.where(P < load, load - P, 0)
Cb = 0.01 * Ac + 0.1 * soc
Cg1 = 0.0034 * Pg1 ** 2 + 3 * Pg1 + 30
Cg2 = 0.001 * Pg2 ** 2 + 10 * Pg2 + 40
Cg3 = 0.001 * Pg3 ** 2 + 15 * Pg3 + 70
Cs = 0.01 * Pso
Cw = 0.01 * Pw
Rs = 0.5 * price * Ee
Cp = price * Es
Pe = np.where(Ee > 100, (Ee - 100) * 50, 0)
Ps = np.where(Es > 100, (Es - 100) * 50, 0)
total_cost = np.sum(Cb + Cg1 + Cg2 + Cg3 + Cs + Cw - Rs + Cp + Pe + Ps)
reward = -total_cost / 1000
return (reward,)
def check_bounds(func):
def wrapper(*args, **kwargs):
offspring = func(*args, **kwargs)
for individual in offspring:
for i in range(len(individual)):
individual[i] = np.clip(individual[i], -1, 1)
return offspring
return wrapper
def main():
data = pd.read_csv('./data.csv')
price = data['price'].values
load = data['load'].values
temperature = data['temperature'].values
irradiance = data['irradiance'].values
wind_speed = data['wind_speed'].values
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_float", np.random.uniform, -1, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=5)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", check_bounds(tools.cxBlend), alpha=0.5)
toolbox.register("mutate", check_bounds(tools.mutGaussian), mu=0, sigma=0.1, indpb=0.2)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("evaluate", fitness_numpy)
population = toolbox.population(n=500)
prev_soc, prev_Pg1, prev_Pg2, prev_Pg3 = 0.4, 0.0, 0.0, 0.0
decision_values = []
for hour in range(8760):
start = time.time()
current_price = price[hour]
current_load = load[hour]
current_temperature = temperature[hour]
current_irradiance = irradiance[hour]
current_wind_speed = wind_speed[hour]
for gen in range(500):
offspring = toolbox.select(population, len(population))
offspring = list(map(toolbox.clone, offspring))
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if np.random.rand() < 0.7:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if np.random.rand() < 0.2:
toolbox.mutate(mutant)
del mutant.fitness.values
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
with ThreadPoolExecutor() as executor:
futures = []
batch_size = 500
for i in range(0, len(invalid_ind), batch_size):
batch = invalid_ind[i:i + batch_size]
for ind in batch:
futures.append(
executor.submit(toolbox.evaluate, ind, current_price, current_load, current_temperature,
current_irradiance, current_wind_speed, prev_soc, prev_Pg1, prev_Pg2,
prev_Pg3))
for future in futures:
fitness = future.result()
for ind in invalid_ind:
if not ind.fitness.valid:
ind.fitness.values = fitness
population[:] = offspring
end = time.time()
best_ind = tools.selBest(population, 1)[0]
print(f'Best individual at hour {hour + 1}: {best_ind}')
print(f'Fitness: {best_ind.fitness.values}, using {end - start}s')
decision_values.append({
'Ac': best_ind[0],
'Ag1': best_ind[1],
'Ag2': best_ind[2],
'Ag3': best_ind[3],
'Av': best_ind[4]
})
prev_soc, prev_Pg1, prev_Pg2, prev_Pg3 = best_ind[0], best_ind[1], best_ind[2], best_ind[3]
with open('decision_values.json', 'w') as f:
json.dump(decision_values, f)
if __name__ == "__main__":
main()