edit the layer normalization

This commit is contained in:
chenxiaodong 2024-06-19 09:56:11 +08:00
parent ceff6e0ffe
commit 53d3ac9ca8
5 changed files with 57 additions and 34 deletions

View File

@ -2,7 +2,7 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="rl-microgrid" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="Remote Python 3.9.18 (sftp://chenxd@124.16.151.196:22121/home/chenxd/miniconda3/envs/grid/bin/python3.9)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">

22
.idea/deployment.xml Normal file
View File

@ -0,0 +1,22 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PublishConfigData" autoUpload="Always" serverName="chenxd@124.16.151.196:22121 password" remoteFilesAllowedToDisappearOnAutoupload="false">
<serverData>
<paths name="chenxd@124.16.151.196:22121 password">
<serverdata>
<mappings>
<mapping deploy="/tmp/pycharm_project_78" local="$PROJECT_DIR$" />
</mappings>
</serverdata>
</paths>
<paths name="root@124.16.151.196:10531 password">
<serverdata>
<mappings>
<mapping deploy="/mnt/chenxd/DRL-for-Energy-Systems" local="$PROJECT_DIR$" />
</mappings>
</serverdata>
</paths>
</serverData>
<option name="myAutoUpload" value="ALWAYS" />
</component>
</project>

View File

@ -3,5 +3,5 @@
<component name="Black">
<option name="sdkName" value="rl-microgrid" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="rl-microgrid" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.9.18 (sftp://chenxd@124.16.151.196:22121/home/chenxd/miniconda3/envs/grid/bin/python3.9)" project-jdk-type="Python SDK" />
</project>

64
PPO.py
View File

@ -12,33 +12,34 @@ os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
script_name = os.path.basename(__file__)
# after adding layer normalization, it doesn't work
class ActorPPO(nn.Module):
def __init__(self, mid_dim, state_dim, action_dim, layer_norm=False):
super().__init__()
self.layer_norm = layer_norm
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
nn.Linear(mid_dim, action_dim), )
nn.Linear(mid_dim, action_dim))
# the logarithm (log) of standard deviation (std) of action, it is a trainable parameter
self.a_logstd = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True)
self.sqrt_2pi_log = np.log(np.sqrt(2 * np.pi))
if layer_norm:
self.layer_norm(self.net)
@staticmethod
def layer_norm(layer, std=1.0, bias_const=0.0):
for i in layer:
if hasattr(i, 'weight'):
torch.nn.init.orthogonal_(i.weight, std)
torch.nn.init.constant_(i.bias, bias_const)
if self.layer_norm:
self.apply_layer_norm()
def apply_layer_norm(self):
def init_weights(layer):
if isinstance(layer, nn.Linear):
nn.init.orthogonal_(layer.weight, 1.0)
nn.init.constant_(layer.bias, 0.0)
self.net.apply(init_weights)
def forward(self, state):
return self.net(state).tanh() # action.tanh() # in this way limit the data output of action
return self.net(state).tanh() # action.tanh() limit the data output of action
def get_action(self, state):
a_avg = self.net(state) # too big for the action
a_avg = self.forward(state) # too big for the action
a_std = self.a_logstd.exp()
noise = torch.randn_like(a_avg)
@ -46,7 +47,7 @@ class ActorPPO(nn.Module):
return action, noise
def get_logprob_entropy(self, state, action):
a_avg = self.net(state)
a_avg = self.forward(state)
a_std = self.a_logstd.exp()
delta = ((a_avg - action) / a_std).pow(2) * 0.5
@ -63,19 +64,21 @@ class ActorPPO(nn.Module):
class CriticAdv(nn.Module):
def __init__(self, mid_dim, state_dim, _action_dim, layer_norm=False):
super().__init__()
self.layer_norm = layer_norm
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
nn.Linear(mid_dim, 1))
if layer_norm:
self.layer_norm(self.net, std=1.0)
if self.layer_norm:
self.apply_layer_norm()
@staticmethod
def layer_norm(layer, std=1.0, bias_const=0.0):
for i in layer:
if hasattr(i, 'weight'):
torch.nn.init.orthogonal_(i.weight, std)
torch.nn.init.constant_(i.bias, bias_const)
def apply_layer_norm(self):
def init_weights(layer):
if isinstance(layer, nn.Linear):
nn.init.orthogonal_(layer.weight, 1.0)
nn.init.constant_(layer.bias, 0.0)
self.net.apply(init_weights)
def forward(self, state):
return self.net(state) # Advantage value
@ -116,7 +119,6 @@ class AgentPPO:
self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate)
self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) if self.ClassAct else self.cri
del self.ClassCri, self.ClassAct # why del self.ClassCri and self.ClassAct here, to save memory?
def select_action(self, state):
states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
@ -129,8 +131,8 @@ class AgentPPO:
last_done = 0
for i in range(target_step):
action, noise = self.select_action(state)
state, next_state, reward, done, = env.step(
np.tanh(action)) # the step of cut action is finally organized into the environment.
# the step of cut action is finally organized into the environment
state, next_state, reward, done, = env.step(np.tanh(action))
trajectory_temp.append((state, reward, done, action, noise))
if done:
state = env.reset()
@ -140,8 +142,8 @@ class AgentPPO:
self.state = state
'''splice list'''
trajectory_list = self.trajectory_list + trajectory_temp[
:last_done + 1] # store 0 trajectory information to the list
# store 0 trajectory information to list
trajectory_list = self.trajectory_list + trajectory_temp[:last_done + 1]
self.trajectory_list = trajectory_temp[last_done:]
return trajectory_list
@ -149,12 +151,12 @@ class AgentPPO:
"""put data extract and update network together"""
with torch.no_grad():
buf_len = buffer[0].shape[0]
buf_state, buf_action, buf_noise, buf_reward, buf_mask = [ten.to(self.device) for ten in
buffer] # decompose buffer data
# decompose buffer data
buf_state, buf_action, buf_noise, buf_reward, buf_mask = [ten.to(self.device) for ten in buffer]
'''get buf_r_sum, buf_logprob'''
bs = 4096 # set a smaller 'BatchSize' when out of GPU memory: 1024, could change to 4096
buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)] #
buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)]
buf_value = torch.cat(buf_value, dim=0)
buf_logprob = self.act.get_old_logprob(buf_action, buf_noise)
@ -317,7 +319,7 @@ if __name__ == '__main__':
agent = args.agent
env = args.env
agent.init(args.net_dim, env.state_space.shape[0], env.action_space.shape[0], args.learning_rate,
args.if_per_or_gae)
args.if_per_or_gae, layer_norm=True)
cwd = args.cwd
gamma = args.gamma

View File

@ -49,7 +49,6 @@ def optimization_base_result(env, month, day, initial_soc):
# 设置系统变量
on_off = m.addVars(NUM_GEN, period, vtype=GRB.BINARY, name='on_off')
gen_output = m.addVars(NUM_GEN, period, vtype=GRB.CONTINUOUS, name='output')
pv = m.addVars(period, vtype=GRB.CONTINUOUS, lb=0, name='pv')
# 设置充放电约束
battery_energy_change = m.addVars(period, vtype=GRB.CONTINUOUS, lb=env.battery.max_discharge,
ub=env.battery.max_charge, name='battery_action')