llm
This commit is contained in:
parent
a413b3ee0f
commit
d990687099
|
@ -2,7 +2,7 @@
|
|||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="jdk" jdkName="Remote Python 3.9.18 (sftp://chenxd@124.16.151.196:22121/home/chenxd/miniconda3/envs/grid/bin/python3.9)" jdkType="Python SDK" />
|
||||
<orderEntry type="jdk" jdkName="rl-microgrid" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
|
|
|
@ -24,13 +24,6 @@
|
|||
</Attribute>
|
||||
</value>
|
||||
</entry>
|
||||
<entry key="\data\prices_m.csv">
|
||||
<value>
|
||||
<Attribute>
|
||||
<option name="separator" value="," />
|
||||
</Attribute>
|
||||
</value>
|
||||
</entry>
|
||||
<entry key="\data\station.csv">
|
||||
<value>
|
||||
<Attribute>
|
||||
|
|
|
@ -3,5 +3,5 @@
|
|||
<component name="Black">
|
||||
<option name="sdkName" value="rl-microgrid" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.9.18 (sftp://chenxd@124.16.151.196:22121/home/chenxd/miniconda3/envs/grid/bin/python3.9)" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="rl-microgrid" project-jdk-type="Python SDK" />
|
||||
</project>
|
|
@ -0,0 +1,410 @@
|
|||
import os
|
||||
import pickle
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from environment import ESSEnv
|
||||
from tools import get_episode_return, test_one_episode, optimization_base_result
|
||||
|
||||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
||||
script_name = os.path.basename(__file__)
|
||||
|
||||
|
||||
class ActorPPO(nn.Module):
|
||||
def __init__(self, mid_dim, state_dim, action_dim, layer_norm=False):
|
||||
super().__init__()
|
||||
self.layer_norm = layer_norm
|
||||
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
|
||||
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
|
||||
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
|
||||
nn.Linear(mid_dim, action_dim))
|
||||
# the logarithm (log) of standard deviation (std) of action, it is a trainable parameter
|
||||
self.a_logstd = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True)
|
||||
self.sqrt_2pi_log = np.log(np.sqrt(2 * np.pi))
|
||||
|
||||
if self.layer_norm:
|
||||
self.apply_layer_norm()
|
||||
|
||||
def apply_layer_norm(self):
|
||||
def init_weights(layer):
|
||||
if isinstance(layer, nn.Linear):
|
||||
nn.init.orthogonal_(layer.weight, 1.0)
|
||||
nn.init.constant_(layer.bias, 0.0)
|
||||
|
||||
self.net.apply(init_weights)
|
||||
|
||||
def forward(self, state):
|
||||
return self.net(state).tanh() # action.tanh() limit the data output of action
|
||||
|
||||
def get_action(self, state):
|
||||
a_avg = self.forward(state) # too big for the action
|
||||
a_std = self.a_logstd.exp()
|
||||
|
||||
noise = torch.randn_like(a_avg)
|
||||
action = a_avg + noise * a_std
|
||||
return action, noise
|
||||
|
||||
def get_logprob_entropy(self, state, action):
|
||||
a_avg = self.forward(state)
|
||||
a_std = self.a_logstd.exp()
|
||||
|
||||
delta = ((a_avg - action) / a_std).pow(2) * 0.5
|
||||
logprob = -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) # new_logprob
|
||||
|
||||
dist_entropy = (logprob.exp() * logprob).mean() # policy entropy
|
||||
return logprob, dist_entropy
|
||||
|
||||
def get_old_logprob(self, _action, noise): # noise = action - a_noise
|
||||
delta = noise.pow(2) * 0.5
|
||||
return -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) # old_logprob
|
||||
|
||||
|
||||
class CriticAdv(nn.Module):
|
||||
def __init__(self, mid_dim, state_dim, _action_dim, layer_norm=False):
|
||||
super().__init__()
|
||||
self.layer_norm = layer_norm
|
||||
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
|
||||
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
|
||||
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
|
||||
nn.Linear(mid_dim, 1))
|
||||
if self.layer_norm:
|
||||
self.apply_layer_norm()
|
||||
|
||||
def apply_layer_norm(self):
|
||||
def init_weights(layer):
|
||||
if isinstance(layer, nn.Linear):
|
||||
nn.init.orthogonal_(layer.weight, 1.0)
|
||||
nn.init.constant_(layer.bias, 0.0)
|
||||
|
||||
self.net.apply(init_weights)
|
||||
|
||||
def forward(self, state):
|
||||
return self.net(state) # Advantage value
|
||||
|
||||
|
||||
class AgentPPO:
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.state = None
|
||||
self.device = None
|
||||
self.action_dim = None
|
||||
self.get_obj_critic = None
|
||||
|
||||
self.criterion = torch.nn.SmoothL1Loss()
|
||||
self.cri = self.cri_target = self.if_use_cri_target = self.cri_optim = self.ClassCri = None
|
||||
self.act = self.act_target = self.if_use_act_target = self.act_optim = self.ClassAct = None
|
||||
|
||||
'''init modify'''
|
||||
self.ClassCri = CriticAdv
|
||||
self.ClassAct = ActorPPO
|
||||
|
||||
self.ratio_clip = 0.2 # ratio.clamp(1 - clip, 1 + clip)
|
||||
self.lambda_entropy = 0.02 # could be 0.01~0.05
|
||||
self.lambda_gae_adv = 0.98 # could be 0.95~0.99, GAE (Generalized Advantage Estimation. ICLR.2016.)
|
||||
self.get_reward_sum = None # self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw
|
||||
self.trajectory_list = None
|
||||
|
||||
def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, if_use_gae=False, gpu_id=0, layer_norm=False):
|
||||
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
|
||||
self.trajectory_list = list()
|
||||
# choose whether to use gae or not
|
||||
self.get_reward_sum = self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw
|
||||
|
||||
self.cri = self.ClassCri(net_dim, state_dim, action_dim, layer_norm).to(self.device)
|
||||
self.act = self.ClassAct(net_dim, state_dim, action_dim, layer_norm).to(
|
||||
self.device) if self.ClassAct else self.cri
|
||||
self.cri_target = deepcopy(self.cri) if self.if_use_cri_target else self.cri
|
||||
self.act_target = deepcopy(self.act) if self.if_use_act_target else self.act
|
||||
|
||||
self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate)
|
||||
self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) if self.ClassAct else self.cri
|
||||
|
||||
def select_action(self, state):
|
||||
states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
|
||||
actions, noises = self.act.get_action(states)
|
||||
return actions[0].detach().cpu().numpy(), noises[0].detach().cpu().numpy()
|
||||
|
||||
@staticmethod
|
||||
def get_llm_action(index):
|
||||
with open('data/llm_action.json', 'r') as file:
|
||||
data = json.load(file)
|
||||
normalized_index = index % len(data)
|
||||
return data[normalized_index]
|
||||
|
||||
def explore_env(self, env, target_step):
|
||||
state = self.state # sent state to agent and then agent sent state to method
|
||||
trajectory_temp = list()
|
||||
last_done = 0
|
||||
for i in range(target_step):
|
||||
action = self.get_llm_action(i)
|
||||
noise = 0
|
||||
# action, noise = self.select_action(state)
|
||||
state, next_state, reward, done, = env.step(np.tanh(action)) # make action between -1 & 1
|
||||
trajectory_temp.append((state, reward, done, action, noise))
|
||||
if done:
|
||||
state = env.reset()
|
||||
last_done = i
|
||||
else:
|
||||
state = next_state
|
||||
self.state = state
|
||||
|
||||
'''splice list'''
|
||||
# store 0 trajectory information to list
|
||||
trajectory_list = self.trajectory_list + trajectory_temp[:last_done + 1]
|
||||
self.trajectory_list = trajectory_temp[last_done:]
|
||||
return trajectory_list
|
||||
|
||||
def update_net(self, buffer, batch_size, repeat_times, soft_update_tau):
|
||||
"""put data extract and update network together"""
|
||||
with torch.no_grad():
|
||||
buf_len = buffer[0].shape[0]
|
||||
# decompose buffer data
|
||||
buf_state, buf_action, buf_noise, buf_reward, buf_mask = [ten.to(self.device) for ten in buffer]
|
||||
|
||||
'''get buf_r_sum, buf_logprob'''
|
||||
bs = 4096 # set a smaller 'BatchSize' when out of GPU memory: 1024, could change to 4096
|
||||
buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)]
|
||||
buf_value = torch.cat(buf_value, dim=0)
|
||||
buf_logprob = self.act.get_old_logprob(buf_action, buf_noise)
|
||||
|
||||
buf_r_sum, buf_advantage = self.get_reward_sum(buf_len, buf_reward, buf_mask, buf_value) # detach()
|
||||
# normalize advantage
|
||||
buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5)
|
||||
del buf_noise, buffer[:]
|
||||
|
||||
'''PPO: Surrogate objective of Trust Region'''
|
||||
obj_critic = obj_actor = None
|
||||
for _ in range(int(buf_len / batch_size * repeat_times)):
|
||||
indices = torch.randint(buf_len, size=(batch_size,), requires_grad=False, device=self.device)
|
||||
|
||||
state = buf_state[indices]
|
||||
action = buf_action[indices]
|
||||
r_sum = buf_r_sum[indices]
|
||||
logprob = buf_logprob[indices]
|
||||
advantage = buf_advantage[indices]
|
||||
|
||||
new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) # it is obj_actor
|
||||
ratio = (new_logprob - logprob.detach()).exp()
|
||||
surrogate1 = advantage * ratio
|
||||
surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip)
|
||||
obj_surrogate = -torch.min(surrogate1, surrogate2).mean()
|
||||
obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy
|
||||
self.optim_update(self.act_optim, obj_actor) # update actor
|
||||
|
||||
value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state
|
||||
# use smoothloss L1 to evaluate the value loss
|
||||
# obj_critic = self.criterion(value, r_sum) / (r_sum.std() + 1e-6)
|
||||
obj_critic = self.criterion(value, r_sum)
|
||||
self.optim_update(self.cri_optim, obj_critic) # calculate and update the back propogation of value loss
|
||||
# choose whether to use soft update
|
||||
self.soft_update(self.cri_target, self.cri, soft_update_tau) if self.cri_target is not self.cri else None
|
||||
|
||||
a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1))
|
||||
return obj_critic.item(), obj_actor.item(), a_std_log.mean().item() # logging_tuple
|
||||
|
||||
def get_reward_sum_raw(self, buf_len, buf_reward, buf_mask, buf_value) -> (torch.Tensor, torch.Tensor):
|
||||
buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # reward sum
|
||||
|
||||
pre_r_sum = 0
|
||||
for i in range(buf_len - 1, -1, -1):
|
||||
buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum
|
||||
pre_r_sum = buf_r_sum[i]
|
||||
buf_advantage = buf_r_sum - (buf_mask * buf_value[:, 0])
|
||||
return buf_r_sum, buf_advantage
|
||||
|
||||
def get_reward_sum_gae(self, buf_len, ten_reward, ten_mask, ten_value) -> (torch.Tensor, torch.Tensor):
|
||||
buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # old policy value
|
||||
buf_advantage = torch.empty(buf_len, dtype=torch.float32, device=self.device) # advantage value
|
||||
|
||||
pre_r_sum = 0
|
||||
pre_advantage = 0 # advantage value of previous step
|
||||
for i in range(buf_len - 1, -1, -1):
|
||||
buf_r_sum[i] = ten_reward[i] + ten_mask[i] * pre_r_sum
|
||||
pre_r_sum = buf_r_sum[i]
|
||||
buf_advantage[i] = ten_reward[i] + ten_mask[i] * (pre_advantage - ten_value[i]) # fix a bug here
|
||||
pre_advantage = ten_value[i] + buf_advantage[i] * self.lambda_gae_adv
|
||||
return buf_r_sum, buf_advantage
|
||||
|
||||
@staticmethod
|
||||
def optim_update(optimizer, objective):
|
||||
optimizer.zero_grad()
|
||||
objective.backward()
|
||||
optimizer.step()
|
||||
|
||||
@staticmethod
|
||||
def soft_update(target_net, current_net, tau):
|
||||
for tar, cur in zip(target_net.parameters(), current_net.parameters()):
|
||||
tar.data.copy_(cur.data.__mul__(tau) + tar.data.__mul__(1.0 - tau))
|
||||
|
||||
|
||||
class Arguments:
|
||||
def __init__(self, agent=None, env=None):
|
||||
self.agent = agent # Deep Reinforcement Learning algorithm
|
||||
self.env = env # the environment for training
|
||||
self.cwd = None # current work directory. None means set automatically
|
||||
self.if_remove = False # remove the cwd folder? (True, False, None:ask me)
|
||||
self.visible_gpu = '0' # for example: os.environ['CUDA_VISIBLE_DEVICES'] = '0, 2,'
|
||||
# self.worker_num = 2 # rollout workers number pre GPU (adjust it to get high GPU usage)
|
||||
self.num_threads = 32 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads)
|
||||
|
||||
'''Arguments for training'''
|
||||
self.num_episode = 1000 # to control the train episodes for PPO
|
||||
self.gamma = 0.995 # discount factor of future rewards
|
||||
self.learning_rate = 2 ** -14 # 2e-4
|
||||
self.soft_update_tau = 2 ** -8 # 2 ** -8 ~= 5e-3
|
||||
|
||||
self.net_dim = 256 # the network width
|
||||
self.batch_size = 4096 # num of transitions sampled from replay buffer.
|
||||
self.repeat_times = 2 ** 3 # collect target_step, then update network
|
||||
self.target_step = 4096 # repeatedly update network to keep critic's loss small
|
||||
self.max_memo = self.target_step # capacity of replay buffer
|
||||
self.if_per_or_gae = False # GAE for on-policy sparse reward: Generalized Advantage Estimation.
|
||||
|
||||
'''Arguments for evaluate'''
|
||||
self.random_seed = 0 # initialize random seed in self.init_before_training()
|
||||
# self.random_seed_list = [1234, 2234, 3234, 4234, 5234]
|
||||
self.random_seed_list = [1234]
|
||||
self.train = True
|
||||
self.save_network = True
|
||||
self.test_network = True
|
||||
self.save_test_data = True
|
||||
self.compare_with_gurobi = True
|
||||
self.plot_on = True
|
||||
|
||||
def init_before_training(self, if_main):
|
||||
if self.cwd is None:
|
||||
agent_name = self.agent.__class__.__name__
|
||||
self.cwd = f'./{agent_name}'
|
||||
|
||||
if if_main:
|
||||
import shutil # remove history according to bool(if_remove)
|
||||
if self.if_remove is None:
|
||||
self.if_remove = bool(input(f"| PRESS 'y' to REMOVE: {self.cwd}? ") == 'y')
|
||||
elif self.if_remove:
|
||||
shutil.rmtree(self.cwd, ignore_errors=True)
|
||||
print(f"| Remove cwd: {self.cwd}")
|
||||
os.makedirs(self.cwd, exist_ok=True)
|
||||
|
||||
np.random.seed(self.random_seed)
|
||||
torch.manual_seed(self.random_seed)
|
||||
torch.set_num_threads(self.num_threads)
|
||||
torch.set_default_dtype(torch.float32)
|
||||
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(self.visible_gpu)
|
||||
|
||||
|
||||
def update_buffer(_trajectory):
|
||||
_trajectory = list(map(list, zip(*_trajectory))) # 2D-list transpose, here cut the trajectory into 5 parts
|
||||
ten_state = torch.as_tensor(_trajectory[0]) # tensor state here
|
||||
ten_reward = torch.as_tensor(_trajectory[1], dtype=torch.float32)
|
||||
# _trajectory[2] = done, replace done by mask, save memory
|
||||
ten_mask = (1.0 - torch.as_tensor(_trajectory[2], dtype=torch.float32)) * gamma
|
||||
ten_action = torch.as_tensor(_trajectory[3])
|
||||
ten_noise = torch.as_tensor(_trajectory[4], dtype=torch.float32)
|
||||
|
||||
buffer[:] = (ten_state, ten_action, ten_noise, ten_reward, ten_mask) # list store tensors
|
||||
|
||||
_steps = ten_reward.shape[0] # how many steps are collected in all trajectories
|
||||
_r_exp = ten_reward.mean() # the mean reward
|
||||
return _steps, _r_exp
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = Arguments()
|
||||
reward_record = {'episode': [], 'steps': [], 'mean_episode_reward': [], 'unbalance': []}
|
||||
loss_record = {'episode': [], 'steps': [], 'critic_loss': [], 'actor_loss': [], 'entropy_loss': []}
|
||||
args.visible_gpu = '0'
|
||||
for seed in args.random_seed_list:
|
||||
args.random_seed = seed
|
||||
args.agent = AgentPPO()
|
||||
|
||||
agent_name = f'{args.agent.__class__.__name__}' + '_llm'
|
||||
args.agent.cri_target = True
|
||||
args.env = ESSEnv()
|
||||
args.init_before_training(if_main=True)
|
||||
'''init agent and environment'''
|
||||
agent = args.agent
|
||||
env = args.env
|
||||
agent.init(args.net_dim, env.state_space.shape[0], env.action_space.shape[0], args.learning_rate,
|
||||
args.if_per_or_gae, layer_norm=True)
|
||||
|
||||
cwd = args.cwd
|
||||
gamma = args.gamma
|
||||
batch_size = args.batch_size # how much data should be used to update net
|
||||
target_step = args.target_step # how manysteps of one episode should stop
|
||||
repeat_times = args.repeat_times # how many times should update for one batch size data
|
||||
soft_update_tau = args.soft_update_tau
|
||||
agent.state = env.reset()
|
||||
'''init buffer'''
|
||||
buffer = list()
|
||||
'''init training parameters'''
|
||||
num_episode = args.num_episode
|
||||
# args.train=False
|
||||
# args.save_network=False
|
||||
# args.test_network=False
|
||||
# args.save_test_data=False
|
||||
# args.compare_with_gurobi=False
|
||||
if args.train:
|
||||
for i_episode in range(num_episode):
|
||||
with torch.no_grad():
|
||||
trajectory_list = agent.explore_env(env, target_step)
|
||||
steps, r_exp = update_buffer(trajectory_list)
|
||||
critic_loss, actor_loss, entropy_loss = agent.update_net(buffer, batch_size, repeat_times,
|
||||
soft_update_tau)
|
||||
loss_record['critic_loss'].append(critic_loss)
|
||||
loss_record['actor_loss'].append(actor_loss)
|
||||
loss_record['entropy_loss'].append(entropy_loss)
|
||||
|
||||
with torch.no_grad():
|
||||
episode_reward, episode_unbalance = get_episode_return(env, agent.act, agent.device)
|
||||
reward_record['mean_episode_reward'].append(episode_reward)
|
||||
reward_record['unbalance'].append(episode_unbalance)
|
||||
print(f'current epsiode is {i_episode}, reward:{episode_reward},unbalance:{episode_unbalance}')
|
||||
act_save_path = f'{args.cwd}/actor.pth'
|
||||
loss_record_path = f'{args.cwd}/loss_data.pkl'
|
||||
reward_record_path = f'{args.cwd}/reward_data.pkl'
|
||||
|
||||
with open(loss_record_path, 'wb') as tf:
|
||||
pickle.dump(loss_record, tf)
|
||||
with open(reward_record_path, 'wb') as tf:
|
||||
pickle.dump(reward_record, tf)
|
||||
|
||||
if args.save_network:
|
||||
torch.save(agent.act.state_dict(), act_save_path)
|
||||
print('actor parameters have been saved')
|
||||
|
||||
if args.test_network:
|
||||
args.cwd = agent_name
|
||||
agent.act.load_state_dict(torch.load(act_save_path))
|
||||
print('parameters have been reload and test')
|
||||
record = test_one_episode(env, agent.act, agent.device)
|
||||
eval_data = pd.DataFrame(record['system_info'])
|
||||
eval_data.columns = ['time_step', 'price', 'netload', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2',
|
||||
'gen3', 'temperature', 'irradiance', 'unbalance', 'operation_cost']
|
||||
if args.save_test_data:
|
||||
test_data_save_path = f'{args.cwd}/test_data.pkl'
|
||||
with open(test_data_save_path, 'wb') as tf:
|
||||
pickle.dump(record, tf)
|
||||
|
||||
'''compare with gurobi data and results'''
|
||||
if args.compare_with_gurobi:
|
||||
month = record['init_info'][0][0]
|
||||
day = record['init_info'][0][1]
|
||||
initial_soc = record['init_info'][0][3]
|
||||
base_result = optimization_base_result(env, month, day, initial_soc)
|
||||
if args.plot_on:
|
||||
from plotDRL import PlotArgs, make_dir, plot_evaluation_information, plot_optimization_result
|
||||
|
||||
plot_args = PlotArgs()
|
||||
plot_args.feature_change = ''
|
||||
args.cwd = agent_name
|
||||
plot_dir = make_dir(args.cwd, plot_args.feature_change)
|
||||
plot_optimization_result(base_result, plot_dir)
|
||||
plot_evaluation_information(args.cwd + '/' + 'test_data.pkl', plot_dir)
|
||||
'''compare the different cost get from gurobi and PPO'''
|
||||
ration = sum(eval_data['operation_cost']) / sum(base_result['step_cost'])
|
||||
print('operation_cost_sum:', sum(eval_data['operation_cost']))
|
||||
print('step_cost_sum:', sum(base_result['step_cost']))
|
||||
print('ration:', ration)
|
15
agent.py
15
agent.py
|
@ -1,5 +1,6 @@
|
|||
import numpy.random as rd
|
||||
import os
|
||||
import json
|
||||
from copy import deepcopy
|
||||
from net import *
|
||||
|
||||
|
@ -37,12 +38,20 @@ class AgentBase:
|
|||
action = (action + torch.randn_like(action) * self.explore_noise).clamp(-1, 1)
|
||||
return action.detach().cpu().numpy()
|
||||
|
||||
def explore_env(self, env, target_step):
|
||||
trajectory = list()
|
||||
@staticmethod
|
||||
def get_llm_action(index) -> np.ndarray:
|
||||
with open('data/llm_action.json', 'r') as file:
|
||||
data = json.load(file)
|
||||
normalized_index = index % len(data)
|
||||
action = np.array(data[normalized_index])
|
||||
return action
|
||||
|
||||
def explore_env(self, env, target_step):
|
||||
state = self.state
|
||||
trajectory = list()
|
||||
for _ in range(target_step):
|
||||
action = self.select_action(state)
|
||||
# action = self.get_llm_action(_)
|
||||
state, next_state, reward, done, = env.step(action)
|
||||
trajectory.append((state, (reward, done, *action)))
|
||||
state = env.reset() if done else next_state
|
||||
|
@ -174,7 +183,6 @@ class AgentSAC(AgentBase):
|
|||
|
||||
def update_net(self, buffer, batch_size, repeat_times, soft_update_tau):
|
||||
buffer.update_now_len()
|
||||
|
||||
alpha = self.alpha_log.exp().detach()
|
||||
obj_critic = obj_actor = None
|
||||
for _ in range(int(buffer.now_len * repeat_times / batch_size)):
|
||||
|
@ -202,7 +210,6 @@ class AgentSAC(AgentBase):
|
|||
self.optim_update(self.act_optim, obj_actor)
|
||||
|
||||
self.soft_update(self.act_target, self.act, soft_update_tau)
|
||||
|
||||
return obj_critic.item(), obj_actor.item(), alpha.item()
|
||||
|
||||
|
||||
|
|
|
@ -97,7 +97,6 @@ class ESSEnv(gym.Env):
|
|||
actual_production = sum(self.current_output)
|
||||
price = current_obs[1]
|
||||
netload = current_obs[3]
|
||||
# print('actual_production:', actual_production, 'netload:', netload)
|
||||
unbalance = actual_production - netload
|
||||
|
||||
reward = 0
|
||||
|
|
14
test.py
14
test.py
|
@ -39,13 +39,17 @@
|
|||
# data = pickle.load(f)
|
||||
#
|
||||
# print(data)
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
with open('data/action.json', 'r') as file:
|
||||
|
||||
def get_llm_action(index) -> np.ndarray:
|
||||
with open('data/llm_action.json', 'r') as file:
|
||||
data = json.load(file)
|
||||
normalized_index = index % len(data)
|
||||
action = np.array(data[normalized_index])
|
||||
return action
|
||||
|
||||
# 遍历每组数据
|
||||
for group in data:
|
||||
print(group)
|
||||
|
||||
data = get_llm_action(2)
|
||||
print(data)
|
||||
|
|
Loading…
Reference in New Issue