# from joblib import load # # model = load('AgentPPO/reward_data.pkl') # # data = model['mean_episode_reward'] # print(data) # import torch # # model_path = 'AgentDDPG/actor.pth' # # checkpoint = torch.load(model_path, map_location=torch.device('cuda')) # # # 如果.pth文件保存的是整个模型(包含模型结构和参数) # model = checkpoint # 这里假设checkpoint直接就是模型实例,有时候可能需要model.load_state_dict(checkpoint['state_dict']) # 如果.pth文件仅保存了state_dict(模型参数) # model = YourModelClass() # 实例化你的模型 # model.load_state_dict(checkpoint) # print(model) # import pickle # # a = 'DDPG' # b = 'PPO' # c = 'SAC' # d = 'TD3' # # a1 = '/reward_data.pkl' # a2 = '/loss_data.pkl' # a3 = '/test_data.pkl' # # filename = './Agent' + a + a3 # # # 使用 'rb' 模式打开文件,读取二进制数据 # with open(filename, 'rb') as f: # data = pickle.load(f) # # print(data) # import json # import numpy as np # # # def get_llm_action(index) -> np.ndarray: # with open('data/llm_action.json', 'r') as file: # data = json.load(file) # normalized_index = index % len(data) # action = np.array(data[normalized_index]) # return action # # data = get_llm_action(2) # print(data) import torch def get_available_gpus(): if torch.cuda.is_available(): num_gpus = torch.cuda.device_count() print(f"Number of available GPUs: {num_gpus}") for i in range(num_gpus): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") else: print("No GPUs are available.") get_available_gpus()