import os import pickle from copy import deepcopy import numpy as np import pandas as pd import torch import torch.nn as nn from environment import ESSEnv from tools import get_episode_return, test_one_episode, optimization_base_result os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' class ActorPPO(nn.Module): def __init__(self, mid_dim, state_dim, action_dim, layer_norm=False): super().__init__() self.layer_norm = layer_norm self.net = nn.Sequential( nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, action_dim) ) self.a_logstd = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True) self.sqrt_2pi_log = np.log(np.sqrt(2 * np.pi)) if self.layer_norm: self.apply_layer_norm() def apply_layer_norm(self): def init_weights(layer): if isinstance(layer, nn.Linear): nn.init.orthogonal_(layer.weight, 1.0) nn.init.constant_(layer.bias, 0.0) self.net.apply(init_weights) def forward(self, state): return self.net(state).tanh() def get_action(self, state): a_avg = self.forward(state) a_std = self.a_logstd.exp() noise = torch.randn_like(a_avg) action = a_avg + noise * a_std return action, noise def get_logprob_entropy(self, state, action): a_avg = self.forward(state) a_std = self.a_logstd.exp() delta = ((a_avg - action) / a_std).pow(2) * 0.5 logprob = -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) dist_entropy = (logprob.exp() * logprob).mean() return logprob, dist_entropy def get_old_logprob(self, _action, noise): delta = noise.pow(2) * 0.5 return -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) class CriticAdv(nn.Module): def __init__(self, mid_dim, state_dim, _action_dim, layer_norm=False): super().__init__() self.layer_norm = layer_norm self.net = nn.Sequential( nn.Linear(state_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.Hardswish(), nn.Linear(mid_dim, 1) ) if self.layer_norm: self.apply_layer_norm() def apply_layer_norm(self): def init_weights(layer): if isinstance(layer, nn.Linear): nn.init.orthogonal_(layer.weight, 1.0) nn.init.constant_(layer.bias, 0.0) self.net.apply(init_weights) def forward(self, state): return self.net(state) class AgentPrimalDualPPO: def __init__(self): self.state = None self.device = None self.action_dim = None self.get_obj_critic = None self.criterion = torch.nn.SmoothL1Loss() self.cri = self.cri_target = self.if_use_cri_target = self.cri_optim = self.ClassCri = None self.act = self.act_target = self.if_use_act_target = self.act_optim = self.ClassAct = None self.ClassCri = CriticAdv self.ClassAct = ActorPPO self.ratio_clip = 0.2 self.lambda_entropy = 0.02 self.lambda_gae_adv = 0.98 self.get_reward_sum = None self.trajectory_list = None self.lambda_cost = 1.0 # 初始对偶变量 self.constraint_value = 1.0 # 约束值,例如安全成本限制 def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, if_use_gae=False, gpu_id=0, layer_norm=False): self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu") self.trajectory_list = list() self.get_reward_sum = self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw self.cri = self.ClassCri(net_dim, state_dim, action_dim, layer_norm).to(self.device) self.act = self.ClassAct(net_dim, state_dim, action_dim, layer_norm).to( self.device) if self.ClassAct else self.cri self.cri_target = deepcopy(self.cri) if self.if_use_cri_target else self.cri self.act_target = deepcopy(self.act) if self.if_use_act_target else self.act self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate) self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) if self.ClassAct else self.cri def select_action(self, state): states = torch.as_tensor((state,), dtype=torch.float32, device=self.device) actions, noises = self.act.get_action(states) return actions[0].detach().cpu().numpy(), noises[0].detach().cpu().numpy() def explore_env(self, env, target_step): state = self.state trajectory_temp = list() last_done = 0 for i in range(target_step): action, noise = self.select_action(state) state, next_state, reward, done, cost = env.step(np.tanh(action)) trajectory_temp.append((state, reward, done, action, noise, cost)) if done: state = env.reset() last_done = i else: state = next_state self.state = state trajectory_list = self.trajectory_list + trajectory_temp[:last_done + 1] self.trajectory_list = trajectory_temp[last_done:] return trajectory_list def update_net(self, buffer, batch_size, repeat_times, soft_update_tau): with torch.no_grad(): buf_len = buffer[0].shape[0] buf_state, buf_action, buf_noise, buf_reward, buf_mask, buf_cost = [ten.to(self.device) for ten in buffer] buf_value = torch.cat([self.cri_target(buf_state[i:i + 4096]) for i in range(0, buf_len, 4096)], dim=0) buf_logprob = self.act.get_old_logprob(buf_action, buf_noise) buf_r_sum, buf_advantage = self.get_reward_sum(buf_len, buf_reward, buf_mask, buf_value) buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5) cost_sum = buf_cost.sum().item() if cost_sum > self.constraint_value: self.lambda_cost += 0.01 * (cost_sum - self.constraint_value) else: self.lambda_cost -= 0.01 * (self.constraint_value - cost_sum) self.lambda_cost = max(self.lambda_cost, 0) obj_critic = obj_actor = None for _ in range(int(buf_len / batch_size * repeat_times)): indices = torch.randint(buf_len, size=(batch_size,), requires_grad=False, device=self.device) state = buf_state[indices] action = buf_action[indices] r_sum = buf_r_sum[indices] logprob = buf_logprob[indices] advantage = buf_advantage[indices] new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) ratio = (new_logprob - logprob.detach()).exp() surrogate1 = advantage * ratio surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip) obj_surrogate = -torch.min(surrogate1, surrogate2).mean() obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy - self.lambda_cost * buf_cost[indices].mean() self.optim_update(self.act_optim, obj_actor) value = self.cri(state).squeeze(1) obj_critic = self.criterion(value, r_sum) self.optim_update(self.cri_optim, obj_critic) if self.cri_target is not self.cri: self.soft_update(self.cri_target, self.cri, soft_update_tau) a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)) return obj_critic.item(), obj_actor.item(), a_std_log.mean().item() def get_reward_sum_raw(self, buf_len, buf_reward, buf_mask, buf_value) -> (torch.Tensor, torch.Tensor): buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) pre_r_sum = 0 for i in range(buf_len - 1, -1, -1): buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage = buf_r_sum - (buf_mask * buf_value[:, 0]) return buf_r_sum, buf_advantage def get_reward_sum_gae(self, buf_len, ten_reward, ten_mask, ten_value) -> (torch.Tensor, torch.Tensor): buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) buf_advantage = torch.empty(buf_len, dtype=torch.float32, device=self.device) pre_r_sum = 0 pre_advantage = 0 for i in range(buf_len - 1, -1, -1): buf_r_sum[i] = ten_reward[i] + ten_mask[i] * pre_r_sum pre_r_sum = buf_r_sum[i] buf_advantage[i] = ten_reward[i] + ten_mask[i] * (pre_advantage - ten_value[i]) pre_advantage = ten_value[i] + buf_advantage[i] * self.lambda_gae_adv return buf_r_sum, buf_advantage @staticmethod def optim_update(optimizer, objective): optimizer.zero_grad() objective.backward() optimizer.step() @staticmethod def soft_update(target_net, current_net, tau): for tar, cur in zip(target_net.parameters(), current_net.parameters()): tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau)) class Arguments: def __init__(self, agent=None, env=None): self.agent = agent # Deep Reinforcement Learning algorithm self.env = env # the environment for training self.cwd = None # current work directory. None means set automatically self.if_remove = False # remove the cwd folder? (True, False, None:ask me) self.visible_gpu = '0' # for example: os.environ['CUDA_VISIBLE_DEVICES'] = '0, 2,' # self.worker_num = 2 # rollout workers number pre GPU (adjust it to get high GPU usage) self.num_threads = 32 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads) '''Arguments for training''' self.num_episode = 1000 # to control the train episodes for PPO self.gamma = 0.995 # discount factor of future rewards self.learning_rate = 2 ** -14 # 2e-4 self.soft_update_tau = 2 ** -8 # 2 ** -8 ~= 5e-3 self.net_dim = 256 # the network width self.batch_size = 4096 # num of transitions sampled from replay buffer. self.repeat_times = 2 ** 3 # collect target_step, then update network self.target_step = 4096 # repeatedly update network to keep critic's loss small self.max_memo = self.target_step # capacity of replay buffer self.if_per_or_gae = False # GAE for on-policy sparse reward: Generalized Advantage Estimation. '''Arguments for evaluate''' self.random_seed = 0 # initialize random seed in self.init_before_training() # self.random_seed_list = [1234, 2234, 3234, 4234, 5234] self.random_seed_list = [1234] self.train = True self.save_network = True self.test_network = True self.save_test_data = True self.compare_with_gurobi = True self.plot_on = True def init_before_training(self, if_main): if self.cwd is None: agent_name = self.agent.__class__.__name__ self.cwd = f'./{agent_name}' if if_main: import shutil # remove history according to bool(if_remove) if self.if_remove is None: self.if_remove = bool(input(f"| PRESS 'y' to REMOVE: {self.cwd}? ") == 'y') elif self.if_remove: shutil.rmtree(self.cwd, ignore_errors=True) print(f"| Remove cwd: {self.cwd}") os.makedirs(self.cwd, exist_ok=True) np.random.seed(self.random_seed) torch.manual_seed(self.random_seed) torch.set_num_threads(self.num_threads) torch.set_default_dtype(torch.float32) os.environ['CUDA_VISIBLE_DEVICES'] = str(self.visible_gpu) def update_buffer(_trajectory): _trajectory = list(map(list, zip(*_trajectory))) # 2D-list transpose, here cut the trajectory into 5 parts ten_state = torch.as_tensor(_trajectory[0]) # tensor state here ten_reward = torch.as_tensor(_trajectory[1], dtype=torch.float32) # _trajectory[2] = done, replace done by mask, save memory ten_mask = (1.0 - torch.as_tensor(_trajectory[2], dtype=torch.float32)) * gamma ten_action = torch.as_tensor(_trajectory[3]) ten_noise = torch.as_tensor(_trajectory[4], dtype=torch.float32) buffer[:] = (ten_state, ten_action, ten_noise, ten_reward, ten_mask) # list store tensors _steps = ten_reward.shape[0] # how many steps are collected in all trajectories _r_exp = ten_reward.mean() # the mean reward return _steps, _r_exp if __name__ == '__main__': args = Arguments() reward_record = {'episode': [], 'steps': [], 'mean_episode_reward': [], 'unbalance': []} loss_record = {'episode': [], 'steps': [], 'critic_loss': [], 'actor_loss': [], 'entropy_loss': []} args.visible_gpu = '0' for seed in args.random_seed_list: args.random_seed = seed args.agent = AgentPrimalDualPPO() agent_name = f'{args.agent.__class__.__name__}' args.agent.cri_target = True args.env = ESSEnv() args.init_before_training(if_main=True) agent = args.agent env = args.env agent.init(args.net_dim, env.state_space.shape[0], env.action_space.shape[0], args.learning_rate, args.if_per_or_gae, layer_norm=True) cwd = args.cwd gamma = args.gamma batch_size = args.batch_size # how much data should be used to update net target_step = args.target_step # how many steps of one episode should stop repeat_times = args.repeat_times # how many times should update for one batch size data soft_update_tau = args.soft_update_tau agent.state = env.reset() buffer = list() num_episode = args.num_episode if args.train: for i_episode in range(num_episode): with torch.no_grad(): trajectory_list = [] for _ in range(target_step): current_obs = agent.state action, noise = agent.select_action(current_obs) next_obs, reward, done, info, cost = env.step(action) trajectory_list.append((current_obs, reward, done, action, noise, cost)) agent.state = next_obs if done: break steps, r_exp = update_buffer(trajectory_list) critic_loss, actor_loss, entropy_loss = agent.update_net(buffer, batch_size, repeat_times, soft_update_tau) loss_record['critic_loss'].append(critic_loss) loss_record['actor_loss'].append(actor_loss) loss_record['entropy_loss'].append(entropy_loss) with torch.no_grad(): episode_reward, episode_unbalance = get_episode_return(env, agent.act, agent.device) reward_record['mean_episode_reward'].append(episode_reward) reward_record['unbalance'].append(episode_unbalance) print(f'current episode is {i_episode}, reward: {episode_reward}, unbalance: {episode_unbalance}') act_save_path = f'{args.cwd}/actor.pth' loss_record_path = f'{args.cwd}/loss_data.pkl' reward_record_path = f'{args.cwd}/reward_data.pkl' with open(loss_record_path, 'wb') as tf: pickle.dump(loss_record, tf) with open(reward_record_path, 'wb') as tf: pickle.dump(reward_record, tf) if args.save_network: torch.save(agent.act.state_dict(), act_save_path) print('actor parameters have been saved') if args.test_network: args.cwd = agent_name agent.act.load_stateDict(torch.load(act_save_path)) print('parameters have been reloaded and test') record = test_one_episode(env, agent.act, agent.device) eval_data = pd.DataFrame(record['system_info']) eval_data.columns = ['time_step', 'price', 'netload', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2', 'gen3', 'temperature', 'irradiance', 'unbalance', 'operation_cost'] if args.save_test_data: test_data_save_path = f'{args.cwd}/test_data.pkl' with open(test_data_save_path, 'wb') as tf: pickle.dump(record, tf) '''compare with gurobi data and results''' if args.compare_with_gurobi: month = record['init_info'][0][0] day = record['init_info'][0][1] initial_soc = record['init_info'][0][3] base_result = optimization_base_result(env, month, day, initial_soc) if args.plot_on: from plotDRL import PlotArgs, make_dir, plot_evaluation_information, plot_optimization_result plot_args = PlotArgs() plot_args.feature_change = 'primal_dual' args.cwd = agent_name plot_dir = make_dir(args.cwd, plot_args.feature_change) plot_optimization_result(base_result, plot_dir) plot_evaluation_information(args.cwd + '/' + 'test_data.pkl', plot_dir) '''compare the different cost get from gurobi and PPO''' ration = sum(eval_data['operation_cost']) / sum(base_result['step_cost']) print('operation_cost_sum:', sum(eval_data['operation_cost'])) print('step_cost_sum:', sum(base_result['step_cost'])) print('ration:', ration)