# from joblib import load # # model = load('AgentPPO/reward_data.pkl') # # data = model['mean_episode_reward'] # print(data) # import torch # # model_path = 'AgentDDPG/actor.pth' # # checkpoint = torch.load(model_path, map_location=torch.device('cuda')) # # # 如果.pth文件保存的是整个模型(包含模型结构和参数) # model = checkpoint # 这里假设checkpoint直接就是模型实例,有时候可能需要model.load_state_dict(checkpoint['state_dict']) # 如果.pth文件仅保存了state_dict(模型参数) # model = YourModelClass() # 实例化你的模型 # model.load_state_dict(checkpoint) print(model) import pickle a = 'DDPG' b = 'PPO' c = 'SAC' d = 'TD3' a1 = '/reward_data.pkl' a2 = '/loss_data.pkl' a3 = '/test_data.pkl' filename = './Agent' + a + a3 # 使用 'rb' 模式打开文件,读取二进制数据 with open(filename, 'rb') as f: data = pickle.load(f) print(data)