# from joblib import load # # model = load('AgentPPO/reward_data.pkl') # # data = model['mean_episode_reward'] # print(data) # import torch # # model_path = 'AgentDDPG/actor.pth' # # checkpoint = torch.load(model_path, map_location=torch.device('cuda')) # # # 如果.pth文件保存的是整个模型(包含模型结构和参数) # model = checkpoint # 这里假设checkpoint直接就是模型实例,有时候可能需要model.load_state_dict(checkpoint['state_dict']) # 如果.pth文件仅保存了state_dict(模型参数) # model = YourModelClass() # 实例化你的模型 # model.load_state_dict(checkpoint) # print(model) # import pickle # # a = 'DDPG' # b = 'PPO' # c = 'SAC' # d = 'TD3' # # a1 = '/reward_data.pkl' # a2 = '/loss_data.pkl' # a3 = '/test_data.pkl' # # filename = './Agent' + a + a3 # # # 使用 'rb' 模式打开文件,读取二进制数据 # with open(filename, 'rb') as f: # data = pickle.load(f) # # print(data) import pandas as pd # Load the CSV file file_path = 'data/prices_m.csv' price_df = pd.read_csv(file_path) # Check the columns print(price_df.columns)