building-agents/plotDRL.py

151 lines
7.0 KiB
Python

import os
import pickle
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
matplotlib.rc('text', usetex=True)
pd.options.display.notebook_repr_html = False
def plot_optimization_result(datasource, directory): # data source is dataframe
sns.set_theme(style='whitegrid') # "white", "dark", "whitegrid", "darkgrid", "ticks"
plt.rcParams["figure.figsize"] = (16, 9)
fig, axs = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.7, hspace=0.3)
plt.autoscale(tight=True)
T = np.array([i for i in range(24)])
# plot step cost in ax[0]
axs[0, 0].cla()
axs[0, 0].set_ylabel('Costs')
axs[0, 0].set_xlabel('Time(h)')
axs[0, 0].bar(T, datasource['step_cost'])
# axs[0,0].set_xticks([i for i in range(24)],[i for i in range(1,25)])
# plot soc and price in ax[1]
axs[0, 1].cla()
axs[0, 1].set_ylabel('Price')
axs[0, 1].set_xlabel('Time(h)')
axs[0, 1].plot(T, datasource['price'], drawstyle='steps-mid', label='Price', color='pink')
axs[0, 1] = axs[0, 1].twinx()
axs[0, 1].set_ylabel('SOC')
axs[0, 1].plot(T, datasource['soc'], drawstyle='steps-mid', label='SOC', color='grey')
# axs[0,1].set_xticks([i for i in range(24)],[i for i in range(1,25)])
axs[0, 1].legend(loc='upper right', fontsize=12, frameon=False, labelspacing=0.3)
# plot accumulated generation and consumption in ax[2]
axs[1, 0].cla()
axs[1, 0].set_ylabel('Outputs of DGs and Battery')
axs[1, 0].set_xlabel('Time(h)')
battery_positive = np.array(datasource['battery_energy_change'])
battery_negative = np.array(datasource['battery_energy_change'])
battery_negative = np.minimum(battery_negative, 0) # discharge
battery_positive = np.maximum(battery_positive, 0) # charge
# deal with power exchange within the figure
imported_from_grid = np.array(datasource['grid_import'])
exported_2_grid = np.array(datasource['grid_export'])
axs[1, 0].bar(T, datasource['gen1'], label='Gen1')
axs[1, 0].bar(T, datasource['gen2'], label='Gen2', bottom=datasource['gen1'])
axs[1, 0].bar(T, datasource['gen3'], label='Gen3', bottom=datasource['gen2'] + datasource['gen1'])
axs[1, 0].bar(T, -battery_positive, color='blue', hatch='/', label='ESS charge')
axs[1, 0].bar(T, -battery_negative, hatch='/', label='ESS discharge',
bottom=datasource['gen3'] + datasource['gen2'] + datasource['gen1'])
# import as generate
axs[1, 0].bar(T, imported_from_grid, label='Grid import',
bottom=-battery_negative + datasource['gen3'] + datasource['gen2'] + datasource['gen1'])
# export as load
axs[1, 0].bar(T, -exported_2_grid, label='Grid export', bottom=-battery_positive)
axs[1, 0].plot(T, datasource['netload'], label='Netload', drawstyle='steps-mid', alpha=0.7)
axs[1, 0].legend(loc='upper right', fontsize=12, frameon=False, labelspacing=0.3)
# axs[1,0].set_xticks([i for i in range(24)],[i for i in range(1,25)])
fig.savefig(f"{directory}/optimization_information.svg", format='svg', dpi=600, bbox_inches='tight')
print('optimization results have been ploted and saved')
def plot_evaluation_information(datasource, directory):
sns.set_theme(style='whitegrid')
with open(datasource, 'rb') as tf:
test_data = pickle.load(tf)
# plot unbalance, and reward of each step by bar figures
plt.rcParams["figure.figsize"] = (16, 9)
fig, axs = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.7, hspace=0.3)
plt.autoscale(tight=True)
# prepare data for evaluation the environment here
eval_data = pd.DataFrame(test_data['system_info'])
eval_data.columns = ['time_step', 'price', 'netload', 'action', 'real_action', 'soc', 'battery', 'gen1', 'gen2',
'gen3', 'temperature', 'irradiance', 'unbalance', 'operation_cost']
# plot unbalance in axs[0]
axs[0, 0].cla()
axs[0, 0].set_ylabel('Unbalance of Generation and Load')
axs[0, 0].bar(eval_data['time_step'], eval_data['unbalance'], label='Exchange with Grid', width=0.4)
axs[0, 0].bar(eval_data['time_step'] + 0.4, eval_data['netload'], label='Netload', width=0.4)
axs[0, 0].legend(loc='upper right', fontsize=12, frameon=False, labelspacing=0.5)
# axs[0,0].set_xticks([i for i in range(24)],[i for i in range(1,25)])
# plot energy charge/discharge with price in ax[1]
axs[0, 1].cla()
axs[0, 1].set_ylabel('Price')
axs[0, 1].set_xlabel('Time Steps')
axs[0, 1].plot(eval_data['time_step'], eval_data['price'], drawstyle='steps-mid', label='Price', color='pink')
axs[0, 1] = axs[0, 1].twinx()
axs[0, 1].set_ylabel('SOC')
# axs[0,1].set_xticks([i for i in range(24)], [i for i in range(1, 25)])
axs[0, 1].plot(eval_data['time_step'], eval_data['soc'], drawstyle='steps-mid', label='SOC', color='grey')
axs[0, 1].legend(loc='upper right', fontsize=12, frameon=False, labelspacing=0.3)
# plot generation and netload in ax[2]
axs[1, 0].cla()
axs[1, 0].set_ylabel('Outputs of Units and Netload (kWh)')
# axs[1,0].set_xticks([i for i in range(24)], [i for i in range(1, 25)])
battery_positive = np.array(eval_data['battery'])
battery_negative = np.array(eval_data['battery'])
battery_positive = np.maximum(battery_positive, 0) # charge
battery_negative = np.minimum(battery_negative, 0) # discharge
# deal with power exchange within the figure
imported_from_grid = np.minimum(np.array(eval_data['unbalance']), 0)
exported_2_grid = np.maximum(np.array(eval_data['unbalance']), 0)
x = eval_data['time_step']
axs[1, 0].bar(x, eval_data['gen1'], label='Gen1')
axs[1, 0].bar(x, eval_data['gen2'], label='Gen2', bottom=eval_data['gen1'])
axs[1, 0].bar(x, eval_data['gen3'], label='Gen3', bottom=eval_data['gen1'] + eval_data['gen2'])
axs[1, 0].bar(x, -battery_positive, color='blue', hatch='/', label='ESS charge')
axs[1, 0].bar(x, -battery_negative, label='ESS discharge', hatch='/',
bottom=eval_data['gen1'] + eval_data['gen2'] + eval_data['gen3'])
axs[1, 0].bar(x, -imported_from_grid, label='Grid import',
bottom=eval_data['gen1'] + eval_data['gen2'] + eval_data['gen3'] - battery_negative)
axs[1, 0].bar(x, -exported_2_grid, label='Grid export', bottom=-battery_positive)
axs[1, 0].plot(x, eval_data['netload'], drawstyle='steps-mid', label='Netload')
axs[1, 0].legend(loc='upper right', fontsize=12, frameon=False, labelspacing=0.3)
# plot reward in axs[3]
axs[1, 1].cla()
axs[1, 1].set_ylabel('Costs')
axs[1, 1].bar(eval_data['time_step'], eval_data['operation_cost'])
fig.savefig(f"{directory}/evaluation_information.svg", format='svg', dpi=600, bbox_inches='tight')
print('evaluation figure have been ploted and saved')
def make_dir(directory, feature_change):
cwd = f'{directory}/DRL_{feature_change}_plots'
os.makedirs(cwd, exist_ok=True)
return cwd
class PlotArgs:
def __init__(self) -> None:
self.cwd = None
self.feature_change = None
self.plot_on = None