2024-08-12 07:42:30 +08:00
|
|
|
|
{
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 9,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"outputs": [],
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"source": [
|
|
|
|
|
"from math import sqrt\n",
|
|
|
|
|
"from numpy import concatenate\n",
|
|
|
|
|
"from matplotlib import pyplot\n",
|
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
|
|
|
"from sklearn.preprocessing import LabelEncoder\n",
|
|
|
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
|
|
|
"from tensorflow.keras import Sequential\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"from tensorflow.keras.layers import Dense\n",
|
|
|
|
|
"from tensorflow.keras.layers import LSTM\n",
|
|
|
|
|
"from tensorflow.keras.layers import Dropout\n",
|
|
|
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
|
|
|
"import matplotlib.pyplot as plt"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 10,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# 加载数据\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\单多步可视化\\icial模型\\t+1\\xin9999低频_forecast(T+1).csv\"#数据所在路径\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|
|
|
|
"f_low= pd.DataFrame(pd.read_csv(path1))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 11,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# 加载数据\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"path2 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\单多步可视化\\icial模型\\t+1\\xin99939高频re_forecast(t+1).csv\"#数据所在路径\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|
|
|
|
"f_high= pd.DataFrame(pd.read_csv(path2))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 12,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"path3= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\单多步可视化\\icial模型\\t+1\\xin9999低频_test(T+1).csv\"#数据所在路径\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|
|
|
|
"true_low= pd.DataFrame(pd.read_csv(path3))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 13,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"path4= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\单多步可视化\\icial模型\\t+1\\xin99939高频re_test(t+1).csv\"#数据所在路径\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|
|
|
|
"true_high= pd.DataFrame(pd.read_csv(path4))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 14,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"path5= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\单多步可视化\\icial模型\\t+1\\test.csv\"#数据所在路径\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|
|
|
|
"true_2= pd.DataFrame(pd.read_csv(path5))"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 50,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>column_name</th>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>0</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>4.679599</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>4.675801</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>2</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>4.636000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>3</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>4.572200</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>4</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>4.525266</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1557</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1558</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1559</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1560</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1561</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
|
|
|
|
"<p>1562 rows × 1 columns</p>\n",
|
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" column_name\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"0 4.679599\n",
|
|
|
|
|
"1 4.675801\n",
|
|
|
|
|
"2 4.636000\n",
|
|
|
|
|
"3 4.572200\n",
|
|
|
|
|
"4 4.525266\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"... ...\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"1557 0.000000\n",
|
|
|
|
|
"1558 0.000000\n",
|
|
|
|
|
"1559 0.000000\n",
|
|
|
|
|
"1560 0.000000\n",
|
|
|
|
|
"1561 0.000000\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"\n",
|
|
|
|
|
"[1562 rows x 1 columns]"
|
|
|
|
|
]
|
|
|
|
|
},
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 50,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"true_2"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 15,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>column_name</th>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>0</th>\n",
|
|
|
|
|
" <td>1.681645</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1</th>\n",
|
|
|
|
|
" <td>1.683139</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>2</th>\n",
|
|
|
|
|
" <td>1.684575</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>3</th>\n",
|
|
|
|
|
" <td>1.685911</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>4</th>\n",
|
|
|
|
|
" <td>1.687193</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1557</th>\n",
|
|
|
|
|
" <td>1.545752</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1558</th>\n",
|
|
|
|
|
" <td>1.545890</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1559</th>\n",
|
|
|
|
|
" <td>1.546023</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1560</th>\n",
|
|
|
|
|
" <td>1.546150</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1561</th>\n",
|
|
|
|
|
" <td>1.546288</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
|
|
|
|
"<p>1562 rows × 1 columns</p>\n",
|
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" column_name\n",
|
|
|
|
|
"0 1.681645\n",
|
|
|
|
|
"1 1.683139\n",
|
|
|
|
|
"2 1.684575\n",
|
|
|
|
|
"3 1.685911\n",
|
|
|
|
|
"4 1.687193\n",
|
|
|
|
|
"... ...\n",
|
|
|
|
|
"1557 1.545752\n",
|
|
|
|
|
"1558 1.545890\n",
|
|
|
|
|
"1559 1.546023\n",
|
|
|
|
|
"1560 1.546150\n",
|
|
|
|
|
"1561 1.546288\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[1562 rows x 1 columns]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 15,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"f_low"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 16,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>column_name</th>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>0</th>\n",
|
|
|
|
|
" <td>4.679599e+00</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1</th>\n",
|
|
|
|
|
" <td>4.675801e+00</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>2</th>\n",
|
|
|
|
|
" <td>4.636000e+00</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>3</th>\n",
|
|
|
|
|
" <td>4.572200e+00</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>4</th>\n",
|
|
|
|
|
" <td>4.525266e+00</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1557</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>2.220446e-16</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1558</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>-4.440892e-16</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1559</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000e+00</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1560</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>0.000000e+00</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1561</th>\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
" <td>-4.440892e-16</td>\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
|
|
|
|
"<p>1562 rows × 1 columns</p>\n",
|
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" column_name\n",
|
|
|
|
|
"0 4.679599e+00\n",
|
|
|
|
|
"1 4.675801e+00\n",
|
|
|
|
|
"2 4.636000e+00\n",
|
|
|
|
|
"3 4.572200e+00\n",
|
|
|
|
|
"4 4.525266e+00\n",
|
|
|
|
|
"... ...\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"1557 2.220446e-16\n",
|
|
|
|
|
"1558 -4.440892e-16\n",
|
|
|
|
|
"1559 0.000000e+00\n",
|
|
|
|
|
"1560 0.000000e+00\n",
|
|
|
|
|
"1561 -4.440892e-16\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"\n",
|
|
|
|
|
"[1562 rows x 1 columns]"
|
|
|
|
|
]
|
|
|
|
|
},
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 16,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"pre_data=f_low+f_high\n",
|
|
|
|
|
"pre_data\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"true=true_low+true_high\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"true\n",
|
|
|
|
|
"# df1 = pd.DataFrame(pre_data, columns=['column_name'])\n",
|
|
|
|
|
"# 指定文件路径和文件名,保存DataFrame到CSV文件中\n",
|
|
|
|
|
"# df1.to_csv('(t+3)经过ICEEMDAN分解预测的预测集.csv', index=False)"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 18,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"[[4.6702959]\n",
|
|
|
|
|
" [4.6353927]\n",
|
|
|
|
|
" [4.6446364]\n",
|
|
|
|
|
" ...\n",
|
|
|
|
|
" [0. ]\n",
|
|
|
|
|
" [0. ]\n",
|
|
|
|
|
" [0. ]]\n"
|
|
|
|
|
]
|
2024-08-12 07:42:30 +08:00
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"def update_pre_based_on_true(true, pre):\n",
|
|
|
|
|
" # 确保 true 和 pre 是 NumPy 数组\n",
|
|
|
|
|
" true = np.array(true)\n",
|
|
|
|
|
" pre = np.array(pre)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # 使用布尔索引将 pre 中对应位置的值设为0\n",
|
|
|
|
|
" pre[true == 0] = 0\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" return pre\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"updated_pre = update_pre_based_on_true(true_2, pre_data)\n",
|
|
|
|
|
"print(updated_pre)\n",
|
|
|
|
|
"df1 = pd.DataFrame(updated_pre, columns=['column_name'])\n",
|
|
|
|
|
"# 指定文件路径和文件名,保存DataFrame到CSV文件中\n",
|
|
|
|
|
"df1.to_csv('(t+1)经过ICEEMDAN分解预测的预测集.csv', index=False)"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 33,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAKTCAYAAACJusZ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRkeV3n/z/vjX2PyKUqa+2q6r0buhtolgZZZFFcQR0dkRlwXJkDI6iMir+DozLazugooPPFDQcRFRV11BEFUQEbaLamofel9iWrco19j3t/f3xuZFV1LV2VGRH3RsTrcU6f6szOjPuuPhl5733dz+f9tlzXdREREREREREREZGJYvtdgIiIiIiIiIiIiAyegj8REREREREREZEJpOBPRERERERERERkAin4ExERERERERERmUAK/kRERERERERERCaQgj8REREREREREZEJpOBPRERERERERERkAoVHfUDHcTh16hSZTAbLskZ9eBERERERERERkbHmui6VSoWdO3di25de1zfy4O/UqVPs2bNn1IcVERERERERERGZKMePH2f37t2X/O8jD/4ymQxgCstms6M+vIiIiIiIiIiIyFgrl8vs2bNnI2e7lJEHf/3tvdlsVsGfiIiIiIiIiIjIJj1dGz0N9xAREREREREREZlACv5EREREREREREQmkII/ERERERERERGRCTTyHn8iIiIiIiIiIjJ9er0enU7H7zLGQiQSIRQKbfl1FPyJiIiIiIiIiMjQuK7L6dOnKRaLfpcyVvL5PAsLC087wONyrir4+/mf/3l+4Rd+4bzP3XjjjTz66KObLkBERERERERERCZXP/Tbtm0byWRyS0HWNHBdl3q9ztLSEgA7duzY9Gtd9Yq/W2+9lU984hNnXyCsRYMiIiIiIiIiInKhXq+3EfrNzs76Xc7YSCQSACwtLbFt27ZNb/u96tQuHA6zsLCwqYOJiIiIiIiIiMj06Pf0SyaTPlcyfvr/zzqdzqaDv6ue6vvEE0+wc+dODhw4wOtf/3qOHTt22a9vtVqUy+Xz/hERERERERERkemh7b1XbxD/z64q+Hv+85/PBz7wAf7xH/+R973vfRw+fJgXv/jFVCqVS37P3XffTS6X2/hnz549Wy5aRERERERERERELs9yXdfd7DcXi0WuueYafv3Xf50f/MEfvOjXtFotWq3Wxsflcpk9e/ZQKpXIZrObPbSIiIiIiIiIiARcs9nk8OHD7N+/n3g87nc5Y+Vy/+/K5TK5XO5p87UtTebI5/PccMMNPPnkk5f8mlgsRiwW28phRERERERERERE5CpddY+/c1WrVQ4ePLilscIiIiIiIiIiIiJB87KXvYy3ve1tfpexJVcV/L397W/nU5/6FEeOHOGzn/0s3/Ed30EoFOJ1r3vdsOoTEREREREREREJHNd16Xa7fpdxWVcV/J04cYLXve513HjjjXzP93wPs7Oz3HvvvczPzw+rPhERERERERERmSCu61Jvd0f+z9WMufj+7/9+PvWpT/Ge97wHy7KwLIsPfOADWJbFP/zDP/Cc5zyHWCzGPffcw/d///fz2te+9rzvf9vb3sbLXvayjY8dx+Huu+9m//79JBIJbr/9dj7ykY8M6P/opV1Vj78Pf/jDw6pDRERERERERESmQKPT45af+9jIj/vwL34jyeiVRWHvec97ePzxx3nGM57BL/7iLwLw0EMPAfAzP/Mz/Nqv/RoHDhygUChc0evdfffdfOhDH+K3f/u3uf766/n0pz/Nf/gP/4H5+Xle+tKXbu4vdAW2NNxDRERERERERERk0uRyOaLRKMlkkoWFBQAeffRRAH7xF3+RV73qVVf8Wq1Wi1/+5V/mE5/4BHfddRcABw4c4J577uF3fud3FPyJiIiIiIiIiMhkSERCPPyL3+jLcQfhzjvvvKqvf/LJJ6nX6xeEhe12m2c961kDqelSFPyJiIiIiIiIiMjIWJZ1xVtugyiVSp33sW3bF/QP7HQ6G/9erVYB+Pu//3t27dp13tfFYrEhVWmM7/9lERERERERERGRIYlGo/R6vaf9uvn5eR588MHzPnf//fcTiUQAuOWWW4jFYhw7dmyo23ovRsGfiIiIiIiIiIjIU+zbt4/Pf/7zHDlyhHQ6jeM4F/26l7/85fzqr/4qH/zgB7nrrrv40Ic+xIMPPrixjTeTyfD2t7+dH//xH8dxHL7u676OUqnEZz7zGbLZLG984xuH9newh/bKIiIiIiIiIiIiY+rtb387oVCIW265hfn5eY4dO3bRr/vGb/xG3vnOd/JTP/VTPPe5z6VSqfCGN7zhvK9517vexTvf+U7uvvtubr75Zl796lfz93//9+zfv3+ofwfLfeom5CErl8vkcjlKpRLZbHaUhxYRERERERERkRFqNpscPnyY/fv3E4/H/S5nrFzu/92V5mta8SciIiIiIiIiIjKBFPyJiIiIiIiIiGyR47jUWl0APvLlE7z9L75Kqd55mu8SGS4N9xARERERERER2aKf+9sH+fMvneCPfuB5/PRffo2e4/LQqTIf/bGvw7Isv8uTKaUVfyIiIiIiIiIiW7BWa/Ohe4/R7jr8+9+9l55jxik8sljmYw+d8bk6mWYK/kREREREREREtuDvH1i85H/766+cGGElIudT8CciIiIiIiLUWl3+978+yXs+8QStbs/vckTGyteOFy/43J6ZBACnis0RVyNylnr8iYiIiIiICH9071F+9WOPAZBNhPlPL9rvc0Ui4+OR02UAfv17buf+40VWa22+7bYdvOlD97FYavhcnUwzBX8iIiIiIiLCvz2xvPHv7/3nJ/h3z9mN48Dv33OIu66d5YXXzvlYnUhwdXsOj5+pAvDsvQW+89m7AdP3D2Cl2qbV7RELh3yrUaaXgj8REREREZEp1+z0+NKR9Y2P1+sdnvnzH9/4+Df/5Uk+8qa7uHPfjB/liQTWw6fKvOVP76PddUhGQ+ydSW78t0IyQixs0+o6nCm12DubvMwriQyHevyJiIiIiIhMuX97YoVdvRP838S7+MtnP0A24lzwNZ96fPki3ykyvZqdHj/6oS9xaLkGwGuftQsbB7pmpZ9lWezIxQE4VWqod6b4QsGfiIiIiIjIFOv0HH7/3w7x70P/yh3uIzzn4bv5Uu6n+a5bsrztldfz2jt2AnB4pcbDp8r8n88cptu7MBgUmTZ/+oVjHF8z/fueu6/AT7/qWnjfi+A3nwPrRwHYkTMDPv7gnsPc+nMf4yNf1oTfSdZut/0u4QIK/kRERERERKbYuz/xOKtHvsaPhv9+43PR6kn+1/F/z9ueHeabn7kDgCOrNf7TB77AL/zdw/z2pw76Va5IIDiOywc+ewSAd73mVv7iTS8kd/RjsPwIlI7BR/8rwMbW348/fIau4/L2v/iqXyXLJrzsZS/jLW95C295y1vI5XLMzc3xzne+E9d1Adi3bx/vete7eMMb3kA2m+VHfuRHALjnnnt48YtfTCKRYM+ePfzYj/0YtVrNl7+Dgj8RGarPPLnCX92np1oiIiIiQdRzXP76i4f5cPS/n/3ki99u/uzU4DPvZf9cCoAHT5Y5U24B8P998iA9xx11uSKBcWK9wdHVOtGwzXc9xwzz4L4/OvsFp+4D4Lpt6Qu+tx8aTTXXhXZt9P9s4v/9H/7hHxIOh/nCF77Ae97zHn7913+d3//939/477/2a7/G7bffzle+8hXe+c53cvDgQV796lfzXd/1XXzta1/jz/7sz7jnnnt4y1veMsj/g1dMwz1EZOBOl5r8wWcOc+18ip/+ywcAuGkhyy07s1SaHZLRMCHb8rlKEREREfny0XWeVf8sc9Gy+UQ0DV//s7B2EB76azh2L/u2/TnviXyEX+m8jkVmAai3ezx0qsRtu/P+FS/io0MrZorv/tkUydYq/OZLobJ49gtqy/DeZ/HtqRv5Jf7jed97fK2hQR+dOvzyztEf92dPQTR1Vd+yZ88efuM3fgPLsrjxxht54IEH+I3f+A1++Id/GICXv/zl/ORP/uTG1//QD/0Qr3/963nb294GwPXXX8973/teXvr
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 1600x800 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"plt.figure(figsize=(16,8))\n",
|
|
|
|
|
"plt.plot(true_2, label='true')\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"plt.plot(updated_pre, label='pre')\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"plt.legend()\n",
|
|
|
|
|
"plt.show()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"找论文 引用 峰值达不到 偏低 情况 通过分解之后 提高了 加在分析 结论\n",
|
|
|
|
|
"两个数据集篇幅一样 附录 图 未来数据引入 文章对比 3个亮点"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 24,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"mean_squared_error: 0.0018723911403168718\n",
|
|
|
|
|
"mean_absolute_error: 0.015867955050384196\n",
|
|
|
|
|
"rmse: 0.04488873526226243\n",
|
|
|
|
|
"r2 score: 0.9994400158090125\n"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n",
|
|
|
|
|
"# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n",
|
|
|
|
|
"from math import sqrt\n",
|
|
|
|
|
"from sklearn.metrics import mean_absolute_error\n",
|
|
|
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
|
|
|
"from sklearn.metrics import r2_score\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"print('mean_squared_error:', mean_squared_error(updated_pre, true)) # mse)\n",
|
|
|
|
|
"print(\"mean_absolute_error:\", mean_absolute_error(updated_pre, true)) # mae\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"print(\"rmse:\", sqrt(mean_squared_error(pre_data, true)))\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"print(\"r2 score:\", r2_score(updated_pre, true))#"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 45,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"true3=true_2[150:400]\n",
|
|
|
|
|
"pre_data3=updated_pre[150:400]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 48,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# 假设true_2和updated_pre是你的NumPy数组\n",
|
|
|
|
|
"true3 = true_2[150:400]\n",
|
|
|
|
|
"pre_data3 = updated_pre[150:400]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 51,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"array([[ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0.0163369 ],\n",
|
|
|
|
|
" [ 0.0251948 ],\n",
|
|
|
|
|
" [ 0.041127 ],\n",
|
|
|
|
|
" [ 0.0720103 ],\n",
|
|
|
|
|
" [ 0.1019873 ],\n",
|
|
|
|
|
" [ 0.1241176 ],\n",
|
|
|
|
|
" [ 0.1625308 ],\n",
|
|
|
|
|
" [ 0.2392393 ],\n",
|
|
|
|
|
" [ 0.3379075 ],\n",
|
|
|
|
|
" [ 0.3366777 ],\n",
|
|
|
|
|
" [ 0.3438205 ],\n",
|
|
|
|
|
" [ 0.453801 ],\n",
|
|
|
|
|
" [ 0.733962 ],\n",
|
|
|
|
|
" [ 1.10062312],\n",
|
|
|
|
|
" [ 1.1571449 ],\n",
|
|
|
|
|
" [ 1.10106503],\n",
|
|
|
|
|
" [ 1.1546293 ],\n",
|
|
|
|
|
" [ 0.94037127],\n",
|
|
|
|
|
" [ 1.06687378],\n",
|
|
|
|
|
" [ 1.01553673],\n",
|
|
|
|
|
" [ 1.68440343],\n",
|
|
|
|
|
" [ 1.83468444],\n",
|
|
|
|
|
" [ 1.47566818],\n",
|
|
|
|
|
" [ 1.78731345],\n",
|
|
|
|
|
" [ 1.71659963],\n",
|
|
|
|
|
" [ 2.22625894],\n",
|
|
|
|
|
" [ 1.64490715],\n",
|
|
|
|
|
" [ 2.2160093 ],\n",
|
|
|
|
|
" [ 2.7114284 ],\n",
|
|
|
|
|
" [ 2.5523071 ],\n",
|
|
|
|
|
" [ 2.5810688 ],\n",
|
|
|
|
|
" [ 2.9307843 ],\n",
|
|
|
|
|
" [ 2.941154 ],\n",
|
|
|
|
|
" [ 3.1618417 ],\n",
|
|
|
|
|
" [ 3.3204204 ],\n",
|
|
|
|
|
" [ 3.358411 ],\n",
|
|
|
|
|
" [ 3.4240855 ],\n",
|
|
|
|
|
" [ 3.5163293 ],\n",
|
|
|
|
|
" [ 3.6084709 ],\n",
|
|
|
|
|
" [ 3.6867704 ],\n",
|
|
|
|
|
" [ 3.752888 ],\n",
|
|
|
|
|
" [ 3.8386279 ],\n",
|
|
|
|
|
" [ 3.9089437 ],\n",
|
|
|
|
|
" [ 3.9630318 ],\n",
|
|
|
|
|
" [ 4.0262716 ],\n",
|
|
|
|
|
" [ 4.0721401 ],\n",
|
|
|
|
|
" [ 4.1171014 ],\n",
|
|
|
|
|
" [ 4.1841362 ],\n",
|
|
|
|
|
" [ 4.238177 ],\n",
|
|
|
|
|
" [ 4.2544167 ],\n",
|
|
|
|
|
" [ 4.3330357 ],\n",
|
|
|
|
|
" [ 4.3175416 ],\n",
|
|
|
|
|
" [ 4.4193332 ],\n",
|
|
|
|
|
" [ 4.4418901 ],\n",
|
|
|
|
|
" [ 4.3219046 ],\n",
|
|
|
|
|
" [ 4.4783611 ],\n",
|
|
|
|
|
" [ 4.4945666 ],\n",
|
|
|
|
|
" [ 4.5501185 ],\n",
|
|
|
|
|
" [ 4.5723112 ],\n",
|
|
|
|
|
" [ 4.6125982 ],\n",
|
|
|
|
|
" [ 4.6380826 ],\n",
|
|
|
|
|
" [ 4.6540792 ],\n",
|
|
|
|
|
" [ 4.6313653 ],\n",
|
|
|
|
|
" [ 4.6655451 ],\n",
|
|
|
|
|
" [ 4.6778368 ],\n",
|
|
|
|
|
" [ 4.7202235 ],\n",
|
|
|
|
|
" [ 4.730606 ],\n",
|
|
|
|
|
" [ 4.7420423 ],\n",
|
|
|
|
|
" [ 4.6920747 ],\n",
|
|
|
|
|
" [ 4.7461967 ],\n",
|
|
|
|
|
" [ 4.720302 ],\n",
|
|
|
|
|
" [ 4.7038498 ],\n",
|
|
|
|
|
" [ 4.6931526 ],\n",
|
|
|
|
|
" [ 4.6983388 ],\n",
|
|
|
|
|
" [ 4.7022051 ],\n",
|
|
|
|
|
" [ 4.7118301 ],\n",
|
|
|
|
|
" [ 4.7128725 ],\n",
|
|
|
|
|
" [ 4.6984447 ],\n",
|
|
|
|
|
" [ 4.7051 ],\n",
|
|
|
|
|
" [ 4.6634191 ],\n",
|
|
|
|
|
" [ 4.6624637 ],\n",
|
|
|
|
|
" [ 4.660742 ],\n",
|
|
|
|
|
" [ 4.6593221 ],\n",
|
|
|
|
|
" [ 4.6186729 ],\n",
|
|
|
|
|
" [ 4.548237 ],\n",
|
|
|
|
|
" [ 4.5489672 ],\n",
|
|
|
|
|
" [ 4.5194306 ],\n",
|
|
|
|
|
" [ 4.47022 ],\n",
|
|
|
|
|
" [ 4.490508 ],\n",
|
|
|
|
|
" [ 4.4213457 ],\n",
|
|
|
|
|
" [ 4.4191448 ],\n",
|
|
|
|
|
" [ 4.3844216 ],\n",
|
|
|
|
|
" [ 4.3697215 ],\n",
|
|
|
|
|
" [ 4.2856085 ],\n",
|
|
|
|
|
" [ 4.2563456 ],\n",
|
|
|
|
|
" [ 4.1913535 ],\n",
|
|
|
|
|
" [ 4.1107695 ],\n",
|
|
|
|
|
" [ 4.0634076 ],\n",
|
|
|
|
|
" [ 4.0212931 ],\n",
|
|
|
|
|
" [ 3.9695915 ],\n",
|
|
|
|
|
" [ 3.8896301 ],\n",
|
|
|
|
|
" [ 3.8627817 ],\n",
|
|
|
|
|
" [ 3.7772458 ],\n",
|
|
|
|
|
" [ 3.6876558 ],\n",
|
|
|
|
|
" [ 3.6219018 ],\n",
|
|
|
|
|
" [ 3.5707506 ],\n",
|
|
|
|
|
" [ 3.4685108 ],\n",
|
|
|
|
|
" [ 3.3918019 ],\n",
|
|
|
|
|
" [ 3.3126507 ],\n",
|
|
|
|
|
" [ 3.2466422 ],\n",
|
|
|
|
|
" [ 3.1425753 ],\n",
|
|
|
|
|
" [ 3.0552442 ],\n",
|
|
|
|
|
" [ 2.9830179 ],\n",
|
|
|
|
|
" [ 2.8893795 ],\n",
|
|
|
|
|
" [ 2.7793767 ],\n",
|
|
|
|
|
" [ 2.6845963 ],\n",
|
|
|
|
|
" [ 2.6033527 ],\n",
|
|
|
|
|
" [ 2.4811151 ],\n",
|
|
|
|
|
" [ 2.396697 ],\n",
|
|
|
|
|
" [ 2.28874156],\n",
|
|
|
|
|
" [ 2.1929247 ],\n",
|
|
|
|
|
" [ 2.097524 ],\n",
|
|
|
|
|
" [ 1.97145515],\n",
|
|
|
|
|
" [ 1.8743583 ],\n",
|
|
|
|
|
" [ 1.7611796 ],\n",
|
|
|
|
|
" [ 1.6390783 ],\n",
|
|
|
|
|
" [ 1.50743994],\n",
|
|
|
|
|
" [ 1.39524042],\n",
|
|
|
|
|
" [ 1.25902684],\n",
|
|
|
|
|
" [ 1.1469124 ],\n",
|
|
|
|
|
" [ 1.02292133],\n",
|
|
|
|
|
" [ 0.91121595],\n",
|
|
|
|
|
" [ 0.79405735],\n",
|
|
|
|
|
" [ 0.68875556],\n",
|
|
|
|
|
" [ 0.56993494],\n",
|
|
|
|
|
" [ 0.4554422 ],\n",
|
|
|
|
|
" [ 0.3385904 ],\n",
|
|
|
|
|
" [ 0.2156578 ],\n",
|
|
|
|
|
" [ 0.0804994 ],\n",
|
|
|
|
|
" [ 0.0229209 ],\n",
|
|
|
|
|
" [ 0.0284618 ],\n",
|
|
|
|
|
" [ 0.0292833 ],\n",
|
|
|
|
|
" [ 0.0188559 ],\n",
|
|
|
|
|
" [ 0.0067573 ],\n",
|
|
|
|
|
" [-0.0049999 ],\n",
|
|
|
|
|
" [-0.0103893 ],\n",
|
|
|
|
|
" [-0.0064329 ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ],\n",
|
|
|
|
|
" [ 0. ]])"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 51,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"pre_data3"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 56,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 7.06666700e-03, 2.01333300e-02,\n",
|
|
|
|
|
" 3.87333260e-02, 5.92666570e-02, 7.54666780e-02, 1.03399977e-01,\n",
|
|
|
|
|
" 1.54066697e-01, 2.47066677e-01, 2.42999941e-01, 2.61666685e-01,\n",
|
|
|
|
|
" 3.75400007e-01, 6.25133395e-01, 1.01493323e+00, 1.13400018e+00,\n",
|
|
|
|
|
" 9.97799873e-01, 9.71266568e-01, 8.37799966e-01, 9.07066643e-01,\n",
|
|
|
|
|
" 9.70266700e-01, 1.55040002e+00, 1.84593356e+00, 1.38419986e+00,\n",
|
|
|
|
|
" 1.50386667e+00, 1.67359996e+00, 2.15926647e+00, 1.63333345e+00,\n",
|
|
|
|
|
" 2.23159981e+00, 2.48473311e+00, 2.52906680e+00, 2.43453336e+00,\n",
|
|
|
|
|
" 3.03593326e+00, 2.84746695e+00, 3.17600060e+00, 3.19239974e+00,\n",
|
|
|
|
|
" 3.26446676e+00, 3.35959959e+00, 3.45073366e+00, 3.53786659e+00,\n",
|
|
|
|
|
" 3.60366631e+00, 3.66599941e+00, 3.75313353e+00, 3.82739925e+00,\n",
|
|
|
|
|
" 3.88766718e+00, 3.95066643e+00, 4.00006676e+00, 4.04713345e+00,\n",
|
|
|
|
|
" 4.10600042e+00, 4.18293333e+00, 4.21853399e+00, 4.25460005e+00,\n",
|
|
|
|
|
" 4.23586655e+00, 4.33613300e+00, 4.38013363e+00, 4.21306658e+00,\n",
|
|
|
|
|
" 4.37960052e+00, 4.39233303e+00, 4.51066637e+00, 4.54153299e+00,\n",
|
|
|
|
|
" 4.62066650e+00, 4.63080025e+00, 4.67740011e+00, 4.64033365e+00,\n",
|
|
|
|
|
" 4.65366697e+00, 4.68333292e+00, 4.72733355e+00, 4.75113344e+00,\n",
|
|
|
|
|
" 4.75366688e+00, 4.70033312e+00, 4.73833370e+00, 4.76153374e+00,\n",
|
|
|
|
|
" 4.72873306e+00, 4.71820068e+00, 4.72226620e+00, 4.73426676e+00,\n",
|
|
|
|
|
" 4.74899960e+00, 4.73766708e+00, 4.69826698e+00, 4.72093391e+00,\n",
|
|
|
|
|
" 4.67413330e+00, 4.65986633e+00, 4.65800047e+00, 4.63566637e+00,\n",
|
|
|
|
|
" 4.60559940e+00, 4.53426600e+00, 4.50513315e+00, 4.49013329e+00,\n",
|
|
|
|
|
" 4.41386700e+00, 4.45499992e+00, 4.37726641e+00, 4.41346645e+00,\n",
|
|
|
|
|
" 4.34786653e+00, 4.34599972e+00, 4.29546642e+00, 4.27073288e+00,\n",
|
|
|
|
|
" 4.22719955e+00, 4.16773415e+00, 4.10826588e+00, 4.07379961e+00,\n",
|
|
|
|
|
" 4.01966667e+00, 3.95240021e+00, 3.91913366e+00, 3.82226634e+00,\n",
|
|
|
|
|
" 3.74139977e+00, 3.67379951e+00, 3.63913369e+00, 3.54620004e+00,\n",
|
|
|
|
|
" 3.46993303e+00, 3.41440010e+00, 3.34759975e+00, 3.23346663e+00,\n",
|
|
|
|
|
" 3.16666675e+00, 3.09766650e+00, 3.01139998e+00, 2.92106676e+00,\n",
|
|
|
|
|
" 2.82239986e+00, 2.73320007e+00, 2.61460018e+00, 2.51999998e+00,\n",
|
|
|
|
|
" 2.42013359e+00, 2.31419992e+00, 2.20986652e+00, 2.09686661e+00,\n",
|
|
|
|
|
" 1.99059999e+00, 1.88639998e+00, 1.77793360e+00, 1.64793324e+00,\n",
|
|
|
|
|
" 1.54139996e+00, 1.42546666e+00, 1.30626667e+00, 1.19073319e+00,\n",
|
|
|
|
|
" 1.07273352e+00, 9.58733380e-01, 8.42133343e-01, 7.15199947e-01,\n",
|
|
|
|
|
" 5.81333339e-01, 4.45266664e-01, 3.14866692e-01, 2.03333318e-01,\n",
|
|
|
|
|
" 1.25466660e-01, 8.83999990e-02, 6.87333350e-02, 4.97333260e-02,\n",
|
|
|
|
|
" 3.25333250e-02, 1.56666660e-02, 2.40000000e-03, 1.33333000e-04,\n",
|
|
|
|
|
" 6.67000000e-05, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
|
|
|
|
|
" 0.00000000e+00, 0.00000000e+00])"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 56,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# 假设df是你的DataFrame\n",
|
|
|
|
|
"true31 = true3['column_name'].to_numpy()\n",
|
|
|
|
|
"true31"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 60,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfcAAAH/CAYAAABKJpRKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZFElEQVR4nO3deXxddYH//9e59+be7HvSJG3aJt33DSiVrUKhIIPgOKMiM+CMuzCKiAt+BxD9aR11HNFhlFkc3BBFB1EUkK3FQlva0kIXujdN2mZps+cmuev5/XGyNKVL9s9d3s/HIw+ae2+Sdw5J3/2c8zmfj2Xbto2IiIgkDJfpACIiIjK6VO4iIiIJRuUuIiKSYFTuIiIiCUblLiIikmBU7iIiIglG5S4iIpJgVO4iIiIJRuUuIiKSYFTuIiIiCWZI5f6Vr3wFy7IGvM2ePXussomIiMgweIb6AfPmzeP555/v/wSeIX8KERERGUNDbmaPx0NJSclYZBEREZFRMORy379/P2VlZaSmprJixQrWrFnD5MmTz/r6QCBAIBDoez8ajdLU1ERBQQGWZQ0vtYiISBKybZv29nbKyspwuc5+Zd0aypavTz/9NB0dHcyaNYva2loeeOABjh07xs6dO8nKyjrjx3zlK1/hgQceGPp3ICIiImdUU1PDpEmTzvr8kMr9dC0tLUyZMoXvfve7fPjDHz7ja04fube2tjJ58mRqamrIzs4e7pcWERFJOm1tbZSXl9PS0kJOTs5ZXzei2XC5ubnMnDmTAwcOnPU1Pp8Pn8/3tsezs7NV7iIiIsNwvsvaI7rPvaOjg4MHD1JaWjqSTyMiIiKjaEjlfvfdd7Nu3Tqqqqp49dVXec973oPb7ebmm28eq3wiIiIyREM6LX/06FFuvvlmGhsbKSoq4tJLL2Xjxo0UFRWNVT4REREZoiGV+2OPPTZWOUREJEFFIhFCoZDpGHEhJSUFt9s94s+j5eVERGRM2LZNXV0dLS0tpqPEldzcXEpKSka0FozKXURExkRvsRcXF5Oenq6Fy87Dtm06OztpaGgAGNFkdZW7iIiMukgk0lfsBQUFpuPEjbS0NAAaGhooLi4e9il6bfkqIiKjrvcae3p6uuEk8af3mI1knoLKXURExoxOxQ/daBwzlbuIiEiCUbmLiIgkGJW7iIjIKVauXMmdd95pOsaIqNxFRESGwLZtwuGw6RjnpHIXERHp8aEPfYh169bx4IMPYlkWlmXxyCOPYFkWTz/9NMuWLcPn87F+/Xo+9KEPcdNNNw34+DvvvJOVK1f2vR+NRlmzZg0VFRWkpaWxaNEifvOb34z596H73EVEZFzYtk1XKDLuXzctxT3oGegPPvgg+/btY/78+Xz1q18FYNeuXQB86Utf4jvf+Q6VlZXk5eUN6vOtWbOGn//85/zoRz9ixowZvPzyy/zd3/0dRUVFXHHFFcP7hgZB5S4iIuOiKxRh7n3PjvvX3f3V1aR7B1d3OTk5eL1e0tPTKSkpAWDPnj0AfPWrX+Xqq68e9NcNBAJ84xvf4Pnnn2fFihUAVFZWsn79eh5++GGVu4iIiGkXXHDBkF5/4MABOjs73/YPgmAwyJIlS0Yz2tuo3EWSiG3bhCI2Xk//dJu3atv47nP7+MQV01g2ZXCnGkWGIy3Fze6vrjbydUdDRkbGgPddLhe2bQ947NRV5To6OgD44x//yMSJEwe8zufzjUqms1G5iySB4y1dfO7Xb7C9poVgJMp/3LKU1fNKqG/r5iM/foVF/lf5cu0KnrxrNamn/UUYjkT531eqaA+E+chlFWSnphj6LiTeWZY16NPjJnm9XiKR888NKCoqYufOnQMe2759Oykpzu/I3Llz8fl8VFdXj+kp+DOJ/aMsIiPSHYrwsZ9tYeexNgAuc73JjCf+Gfu5CJ93fZ33dj7BXd7fsKHjeX78l2l86spZfR/b0NbNpx/bxsZDTQA8uukI3/7bRbxzVrGR70VkPEydOpVNmzZRVVVFZmYm0Wj0jK+78sor+fa3v81Pf/pTVqxYwc9//nN27tzZd8o9KyuLu+++m89+9rNEo1EuvfRSWltbeeWVV8jOzua2224bs+9Bt8KJJLj/98ROdh5rY2laPVsrH+Zn3m9SGT6I1VLFvPo/8L6UlwFY4d5NZO23+P0bx2lo6+anG6q46rvr2HioiQyvm4rCDE52BLn712/QGQzTFYzQ7A8a/u5ERt/dd9+N2+1m7ty5FBUVUV1dfcbXrV69mnvvvZcvfOELXHjhhbS3t3PrrbcOeM3XvvY17r33XtasWcOcOXO49tpr+eMf/0hFRcWYfg+WffoFgzHW1tZGTk4Ora2tZGdnj+eXFkk6e+vaWf29l5nrquap1PtwRYOEcbM5MosV7t202WlkW13YlhvLjhC1Lb4c/jCPRa7s+xwLJubwvQ8spjzbw9f+9V/x+Gt5x4wJ/ODEEg51pPDsZy9nYm6awe9SYlF3dzeHDx+moqKC1NRU03HiyrmO3WA7VKflRRLYj9cfBuCB/GdxdQShfDl/nnYvdz/TwGuuT5FtdQFgLfhbQikZpGz9H76Z8t/McVXzRN4/8DcXTOXmiQ249zwMW/6XrwVrIAWogjl2IT8NX03XT34AF98Ayz9u7hsVkQFU7iIJqrEjwBPbjzHJOsEFfufUO9f/K5flziby/PM8FbmYD3jWOo8v/FtSpl0FWRNg7Te4zf1nbgtshLVdEO2f/WtnTuCFzhnMCO9jiquBL6f8EprBfnYD1qx3QW75+H+jIvI2uuYukgCa/EG2VDUNeOxnG48QDEf5Qs4LWHYEKt8JJQvISk3hW3+zkMCinmuDWWVQsRIsC1Z+EW75DRTOhECbU+zZk2DujXD9v2J95g34mx/zuYJ/p77yveywZrI/OhErGoaN/zHu37eInJlG7iIJ4OM/28LmqmZ+cPMSblhURtVJPz9du4NveH7Ou7tfdF50yaf7Xn/j4omw+L1wQRFklYL7lL8KZlzt/EOgZqPzXH6lU/w9Vs1NY9Xc1cBqHnt+P1tffJyfev+F6NZHcK243fnHgkvjBhGTVO4icW7H0VY2VzUD8ItnXmZ1+aV88bc1fMv6Aavc25wXLf+EU9inq7j8zJ/U7YGpl573a39w+WR+tuFCdoemMDd0BP5tHlFcWGm5WGl5kFEIV3wRpl813G9PRIZB/7wWiXM/33gEgA+6X+BnnZ8i/P0LWFj9U1a5t2G7PHDr7+G6fxkw+h4tRVk+nvr0Zfyu8KM025kAuIhidTVB00Go2QRPfRYisb09pkii0chdJI61doZ48o1j3OX5NZ/2/A6AFLr4fymPAmBd9DGoHNuVsUpyUvniHXewpeqDHKht5KGnt5IRaePvF2Zya8190HIEdv0fLHzfmOYQkX4auYvEqZf3neB9D2/gsshrfcX+m8xbOOrumbGemguXf35csrhdFssrC7jlkpl8+X1XsN+exH1v5HJkZs8KXOv/Dc6yypeIjD6Vu0gcqm7s5MM/2Yy/4RD/6v2R8+CKO/ibu/+DSbf/AWb/Fdz0Q0jPH/dsf7WwjL+/eAoAn9q3BNubCQ274dCL455FJFmp3EXi0PoDJwlFbL6W9QTZdMKkC2HVV5wn8yvgA7+A2e8ylu8L186iJDuVXU0uduT37AK2b/z38RZJVip3kTi06XAj5VY9VwR7Fqd517fBHTu7tWWlpvCFa50NaH7b2rMRzUGN3EXGi8pdJM7Yts2mQ0180v0HXERh+iooW2I61ttcObsYy4L/a67EttzQeACaj5iOJTLqgsHY20BJ5S4SZ442d5Hfvoe/cfeM2i/7nNlAZ5Gb7mXhpFzaSacxd6Hz4KGXzIYSGYSVK1dyxx13cMcdd5CTk0NhYSH33nsvvfusTZ06la997WvceuutZGdn87GPfQyA9evXc9lll5GWlkZ5eTmf/vSn8fv9Rr4HlbtInHlj1y5+7P02XisM06+GKe8wHemsLpteCMAmd8+ZhQPPQ7DTYCIxyrYh6B//t2FsfvqTn/wEj8fDa6+9xoMPPsh3v/td/vu//7vv+e985zssWrSIbdu2ce+993L
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 600x600 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"plt.figure(figsize=(6,6))\n",
|
|
|
|
|
"plt.plot(true31, label='true')\n",
|
|
|
|
|
"plt.plot(pre_data3, label='pre')\n",
|
|
|
|
|
"plt.legend()\n",
|
|
|
|
|
"plt.show()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 61,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"df1 = pd.DataFrame(updated_pre[150:400], columns=['column_name'])\n",
|
|
|
|
|
"# 指定文件路径和文件名,保存DataFrame到CSV文件中\n",
|
|
|
|
|
"df1.to_csv('1天的经过ICEEMDAN分解预测的预测集1.csv', index=False)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 62,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"df2 = pd.DataFrame(true[150:400], columns=['column_name'])\n",
|
|
|
|
|
"# 指定文件路径和文件名,保存DataFrame到CSV文件中\n",
|
|
|
|
|
"df2.to_csv('1天的经过ICEEMDAN分解预测的真实集.csv', index=False)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 36,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"(10415, 1)\n"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# 使用MinMaxScaler进行归一化\n",
|
|
|
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
|
|
|
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"pre = scaler.fit_transform(updated_pre)\n",
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"print(pre.shape)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 37,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"(10415, 1)\n"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
|
|
|
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
|
|
|
|
"true_data = scaler.fit_transform(true)\n",
|
|
|
|
|
"print(true_data.shape)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"execution_count": 38,
|
2024-08-12 07:42:30 +08:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"mean_squared_error: 0.04675641413227651\n",
|
|
|
|
|
"mean_absolute_error: 0.0798491015148862\n",
|
|
|
|
|
"rmse: 0.21689357303163628\n",
|
|
|
|
|
"r2 score: 0.9912435196234671\n"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n",
|
|
|
|
|
"# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n",
|
|
|
|
|
"from math import sqrt\n",
|
|
|
|
|
"from sklearn.metrics import mean_absolute_error\n",
|
|
|
|
|
"from sklearn.metrics import mean_squared_error\n",
|
|
|
|
|
"from sklearn.metrics import r2_score\n",
|
2024-11-21 13:54:50 +08:00
|
|
|
|
"print('mean_squared_error:', mean_squared_error(updated_pre, true)) # mse)\n",
|
|
|
|
|
"print(\"mean_absolute_error:\", mean_absolute_error(updated_pre, true)) # mae\n",
|
|
|
|
|
"print(\"rmse:\", sqrt(mean_squared_error(pre_data, true)))\n",
|
|
|
|
|
"print(\"r2 score:\", r2_score(pre[900:2100], true_data[900:2100]))#"
|
2024-08-12 07:42:30 +08:00
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "base",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.9.13"
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 2
|
|
|
|
|
}
|