498 lines
217 KiB
Plaintext
498 lines
217 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\computation\\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed).\n",
|
|||
|
" from pandas.core.computation.check import NUMEXPR_INSTALLED\n",
|
|||
|
"C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\arrays\\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).\n",
|
|||
|
" from pandas.core import (\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from math import sqrt\n",
|
|||
|
"from numpy import concatenate\n",
|
|||
|
"from matplotlib import pyplot\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"import numpy as np\n",
|
|||
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|||
|
"from sklearn.preprocessing import LabelEncoder\n",
|
|||
|
"from sklearn.metrics import mean_squared_error\n",
|
|||
|
"from tensorflow.keras import Sequential\n",
|
|||
|
"\n",
|
|||
|
"from tensorflow.keras.layers import Dense\n",
|
|||
|
"from tensorflow.keras.layers import LSTM\n",
|
|||
|
"from tensorflow.keras.layers import Dropout\n",
|
|||
|
"from sklearn.model_selection import train_test_split\n",
|
|||
|
"import matplotlib.pyplot as plt"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 67,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# 加载数据\n",
|
|||
|
"path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\9996低频_forecast.csv\"#数据所在路径\n",
|
|||
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|||
|
"f_low= pd.DataFrame(pd.read_csv(path1))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 68,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# 加载数据\n",
|
|||
|
"path2 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\99939高频re_forecast.csv\"#数据所在路径\n",
|
|||
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|||
|
"f_high= pd.DataFrame(pd.read_csv(path2))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 69,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"path3= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\9996低频_test.csv\"#数据所在路径\n",
|
|||
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|||
|
"true_low= pd.DataFrame(pd.read_csv(path3))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 70,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"path4= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\99939高频re_test.csv\"#数据所在路径\n",
|
|||
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|||
|
"true_high= pd.DataFrame(pd.read_csv(path4))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 71,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"path5= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\test.csv\"#数据所在路径\n",
|
|||
|
"#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n",
|
|||
|
"true_2= pd.DataFrame(pd.read_csv(path5))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 72,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>column_name</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.607052</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>4.585928</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>4.574285</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.546298</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>4.497329</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1557</th>\n",
|
|||
|
" <td>0.022011</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1558</th>\n",
|
|||
|
" <td>0.020204</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1559</th>\n",
|
|||
|
" <td>0.019515</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1560</th>\n",
|
|||
|
" <td>0.022857</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1561</th>\n",
|
|||
|
" <td>0.018875</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1562 rows × 1 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" column_name\n",
|
|||
|
"0 4.607052\n",
|
|||
|
"1 4.585928\n",
|
|||
|
"2 4.574285\n",
|
|||
|
"3 4.546298\n",
|
|||
|
"4 4.497329\n",
|
|||
|
"... ...\n",
|
|||
|
"1557 0.022011\n",
|
|||
|
"1558 0.020204\n",
|
|||
|
"1559 0.019515\n",
|
|||
|
"1560 0.022857\n",
|
|||
|
"1561 0.018875\n",
|
|||
|
"\n",
|
|||
|
"[1562 rows x 1 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 72,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"pre_data=f_low+f_high\n",
|
|||
|
"pre_data"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 73,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>column_name</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>4.679599e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>4.675801e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>4.636000e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>4.572200e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>4.525266e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1557</th>\n",
|
|||
|
" <td>6.661338e-16</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1558</th>\n",
|
|||
|
" <td>0.000000e+00</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1559</th>\n",
|
|||
|
" <td>2.220446e-16</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1560</th>\n",
|
|||
|
" <td>2.220446e-16</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1561</th>\n",
|
|||
|
" <td>4.440892e-16</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>1562 rows × 1 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" column_name\n",
|
|||
|
"0 4.679599e+00\n",
|
|||
|
"1 4.675801e+00\n",
|
|||
|
"2 4.636000e+00\n",
|
|||
|
"3 4.572200e+00\n",
|
|||
|
"4 4.525266e+00\n",
|
|||
|
"... ...\n",
|
|||
|
"1557 6.661338e-16\n",
|
|||
|
"1558 0.000000e+00\n",
|
|||
|
"1559 2.220446e-16\n",
|
|||
|
"1560 2.220446e-16\n",
|
|||
|
"1561 4.440892e-16\n",
|
|||
|
"\n",
|
|||
|
"[1562 rows x 1 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 73,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"true=true_low+true_high\n",
|
|||
|
"true"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 80,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAKTCAYAAACJusZ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebwsZ10n/k9VdXdV791nP+fuNze52cjOksgmDII4rqi/YVBgXHBjAJWZER0cldEwyoiIP5HBcZBhRH6gqCMiCBIwQEISkpB9ubn7ctbe9656fn88T59zbnK3c3p5qqo/79crL26fnNv9veHWqapPfZ/vYwghBIiIiIiIiIiIiChUTN0FEBERERERERER0eAx+CMiIiIiIiIiIgohBn9EREREREREREQhxOCPiIiIiIiIiIgohBj8ERERERERERERhRCDPyIiIiIiIiIiohBi8EdERERERERERBRCkVF/oOd5OHXqFNLpNAzDGPXHExERERERERERBZoQApVKBQsLCzDN8/f1jTz4O3XqFHbt2jXqjyUiIiIiIiIiIgqV48ePY+fOnef99yMP/tLpNABZWCaTGfXHExERERERERERBVq5XMauXbvWc7bzGXnw11vem8lkGPwRERERERERERFt08XG6HFzDyIiIiIiIiIiohBi8EdERERERERERBRCDP6IiIiIiIiIiIhCaOQz/oiIiIiIiIiIaPy4rotOp6O7jECIRqOwLKvv92HwR0REREREREREQyOEwJkzZ1AsFnWXEii5XA5zc3MX3cDjQrYU/P3Gb/wGfvM3f/Osrx08eBCPP/74tgsgIiIiIiIiIqLw6oV+MzMzSCQSfQVZ40AIgXq9jqWlJQDA/Pz8tt9ryx1/11xzDb74xS9uvEGETYNERERERERERPRcruuuh36Tk5O6ywmMeDwOAFhaWsLMzMy2l/1uObWLRCKYm5vb1ocREREREREREdH46M30SyQSmisJnt5/s06ns+3gb8u7+j711FNYWFjA/v378YY3vAHHjh274Pe3Wi2Uy+Wz/iEiIiIiIiIiovHB5b1bN4j/ZlsK/l74whfiox/9KP7xH/8RH/rQh3D48GG85CUvQaVSOe/vuf3225HNZtf/2bVrV99FExERERERERER0YUZQgix3d9cLBaxZ88e/P7v/z5+8id/8pzf02q10Gq11l+Xy2Xs2rULpVIJmUxmux9NREREREREREQ+12w2cfjwYezbtw+O4+guJ1Au9N+uXC4jm81eNF/ra2eOXC6HK664Ak8//fR5v8e2bdi23c/HEBERERERERER0RZtecbfZtVqFYcOHeprW2EiIiIiIiIiIiK/efnLX453vOMdusvoy5aCv3e+8534yle+giNHjuDrX/86fvAHfxCWZeH1r3/9sOojIiIiIiIiIiLyHSEEut2u7jIuaEvB34kTJ/D6178eBw8exI/+6I9icnISd911F6anp4dVHxERERERERERhYgQAvV2d+T/bGWbize/+c34yle+gg984AMwDAOGYeCjH/0oDMPA5z73Odx8882wbRt33nkn3vzmN+MHfuAHzvr973jHO/Dyl798/bXnebj99tuxb98+xONxXH/99fj0pz89oP+i57elGX9/+Zd/Oaw6iIiIiIiIiIhoDDQ6Lq7+9c+P/HMf/a1XIxG7tCjsAx/4AJ588klce+21+K3f+i0AwCOPPAIA+JVf+RW8733vw/79+5HP5y/p/W6//XZ8/OMfx5/8yZ/g8ssvx1e/+lX82I/9GKanp/Gyl71se3+gS9DX5h5ERERERERERERhk81mEYvFkEgkMDc3BwB4/PHHAQC/9Vu/hVe96lWX/F6tVgu/8zu/gy9+8Yu49dZbAQD79+/HnXfeiQ9/+MMM/oiIiIiIiIiIKBziUQuP/tartXzuINxyyy1b+v6nn34a9Xr9OWFhu93GjTfeOJCazofBHxERERERERERjYxhGJe85NaPksnkWa9N03zO/MBOp7P+62q1CgD47Gc/ix07dpz1fbZtD6lKKbj/lYmIiIiIiIiIiIYkFovBdd2Lft/09DQefvjhs772wAMPIBqNAgCuvvpq2LaNY8eODXVZ77kw+CMiIiIiIiIiInqWvXv34u6778aRI0eQSqXged45v+8Vr3gFfu/3fg8f+9jHcOutt+LjH/84Hn744fVlvOl0Gu985zvxi7/4i/A8Dy9+8YtRKpXwta99DZlMBm9605uG9mcwh/bOREREREREREREAfXOd74TlmXh6quvxvT0NI4dO3bO73v1q1+Nd7/73fiP//E/4vnPfz4qlQre+MY3nvU973nPe/Dud78bt99+O6666iq85jWvwWc/+1ns27dvqH8GQzx7EfKQlctlZLNZlEolZDKZUX40ERERERERERGNULPZxOHDh7Fv3z44jqO7nEC50H+7S83X2PFHREREREREREQUQgz+iIiIiIiIiIj65HkC1VYXAPDp+07gnZ96EKV65yK/i2i4uLkHEREREREREVGf3v03D+GGB34dr9wbxe88/SNY85J45FQZ//C2F8MwDN3l0Zhi8EdERERERERE1Ie1Whv33vM1/Lb9ZeAY8N+tRdQsByeXp/D5Ry7Ha66d010ijSkGf0REREREREREffjsQ6fxXea966+/03pw/de/+s3X4zXXfq+Osog444+IiIiIiIiAaquLD37pKbz/n55Es+PqLocoUL59bA0/aN15zn935fLnR1wN0QYGf0RERERERIT//Y2j+O//9CT+9Evfxie+eUx3OUTBcewuvOfRV2O/eQbtaAb3TX7fWf/6hxqfBoo8pkgPBn9ERERERESEe548jo9Fb8cjzk/i3/7T89G4+6Mo1tv43X98HF97ekV3eUT+43aBr38Q4mPfDwctAEDt5p/HzW/5Y+CHPoLy6/8v7vcOIIUGug98UnOxNK4444+IiIiIiGjMNTsurjr+SbzUeggAYKMDfO7t+O6/6aIm4vgfd6TwiZ99CZ6/d0JzpUQ+8vjfA1/4zzAAfNm9Hr9j/BQ+/10/DpgGcN2PIi0E/kHchhvxNNqHv4HIy3UXTOOIHX9ERERERERj7hsPPYl/b37qOV+/w/5l3OP8PP459ss4dO8XNFRG5F+dk3IDj0PePN7S+WW88KYbYZrG+r83DAPHUtcDAGKnvolmu6OlThpvDP6IaDi6beDePwMKRwAhdFdDREREROfR7nRx8LOvg2OoUOIXH8WZ5/+ns75nt7mMH3rkbXj8ySfwka8+g47raaiUyF9OPnU/AOBj7nfhlv2z+I+vufI531PNXYWqcBDpVPCjv/En+P/uPT7qMmmE2u227hKeg8EfEQ1eswR85DuBv/9F4APXA394A1Bd0l0VEREREZ3DZz79cSy4JwEA5ct/AMjuwNxr3wW87OzwLyZa+Nwn/gi//Q+P4Y+/fEhDpUT+4XkC5soTAICX3PYd+MRbXoSME33O9+2aSuPr3jUAgN+L/An+6q846y9IXv7yl+Otb30r3vrWtyKbzWJqagrvfve7IVRzy969e/Ge97wHb3zjG5HJZPCWt7wFAHDnnXfiJS95CeLxOHbt2oW3ve1tqNVqWv4MDP6IaPA+9WZg8eGN14UjwJd+a+N1pznqioiIiIjoHFxPIPPkXwEAHtv9emTe8OfyXxgGcNu/B3J70Ji9Ge/uvBkA8IviY/ho9L+h/tU/RJddfzTGTiwXsMM7DQD4jhd9x3m/77LpFL7s3QAAOGiewCft90A8/JlRlOhvQgDt2uj/2cZqtD//8z9HJBLBN7/5TXzgAx/A7//+7+NP//RP1//9+973Plx//fW4//778e53vxuHDh3Ca17zGrzuda/Dt7/9bXzyk5/EnXfeibe+9a2D/C94ybi5BxENlhDwjt/7nKcK4v6Pw7jxx9G66yOIPfbXMF78DuAV75YXlURERESkxb2HV3CL9wBgAAde9oaz/6WdBt52P0zXw9+8+2/wE9bnsM9cxMutB/FyPIiHn3orrr3yoJa6iXRbffIb2G0IFIwc8hM7zvt9B2ZS+KD7Qvyw9VVcZzyDqOH
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1600x800 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"plt.figure(figsize=(16,8))\n",
|
|||
|
"plt.plot(true, label='true')\n",
|
|||
|
"plt.plot(pre_data, label='pre')\n",
|
|||
|
"plt.legend()\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 82,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAKTCAYAAACJusZ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebwsZ10n/k9VdXdV791nP+fuNze52cjOksgmDII4rqi/YVBgXHBjAJWZER0cldEwyoiIP5HBcZBhRH6gqCMiCBIwQEISkpB9ubn7ctbe9656fn88T59zbnK3c3p5qqo/79crL26fnNv9veHWqapPfZ/vYwghBIiIiIiIiIiIiChUTN0FEBERERERERER0eAx+CMiIiIiIiIiIgohBn9EREREREREREQhxOCPiIiIiIiIiIgohBj8ERERERERERERhRCDPyIiIiIiIiIiohBi8EdERERERERERBRCkVF/oOd5OHXqFNLpNAzDGPXHExERERERERERBZoQApVKBQsLCzDN8/f1jTz4O3XqFHbt2jXqjyUiIiIiIiIiIgqV48ePY+fOnef99yMP/tLpNABZWCaTGfXHExERERERERERBVq5XMauXbvWc7bzGXnw11vem8lkGPwRERERERERERFt08XG6HFzDyIiIiIiIiIiohBi8EdERERERERERBRCDP6IiIiIiIiIiIhCaOQz/oiIiIiIiIiIaPy4rotOp6O7jECIRqOwLKvv92HwR0REREREREREQyOEwJkzZ1AsFnWXEii5XA5zc3MX3cDjQrYU/P3Gb/wGfvM3f/Osrx08eBCPP/74tgsgIiIiIiIiIqLw6oV+MzMzSCQSfQVZ40AIgXq9jqWlJQDA/Pz8tt9ryx1/11xzDb74xS9uvEGETYNERERERERERPRcruuuh36Tk5O6ywmMeDwOAFhaWsLMzMy2l/1uObWLRCKYm5vb1ocREREREREREdH46M30SyQSmisJnt5/s06ns+3gb8u7+j711FNYWFjA/v378YY3vAHHjh274Pe3Wi2Uy+Wz/iEiIiIiIiIiovHB5b1bN4j/ZlsK/l74whfiox/9KP7xH/8RH/rQh3D48GG85CUvQaVSOe/vuf3225HNZtf/2bVrV99FExERERERERER0YUZQgix3d9cLBaxZ88e/P7v/z5+8id/8pzf02q10Gq11l+Xy2Xs2rULpVIJmUxmux9NREREREREREQ+12w2cfjwYezbtw+O4+guJ1Au9N+uXC4jm81eNF/ra2eOXC6HK664Ak8//fR5v8e2bdi23c/HEBERERERERER0RZtecbfZtVqFYcOHeprW2EiIiIiIiIiIiK/efnLX453vOMdusvoy5aCv3e+8534yle+giNHjuDrX/86fvAHfxCWZeH1r3/9sOojIiIiIiIiIiLyHSEEut2u7jIuaEvB34kTJ/D6178eBw8exI/+6I9icnISd911F6anp4dVHxERERERERERhYgQAvV2d+T/bGWbize/+c34yle+gg984AMwDAOGYeCjH/0oDMPA5z73Odx8882wbRt33nkn3vzmN+MHfuAHzvr973jHO/Dyl798/bXnebj99tuxb98+xONxXH/99fj0pz89oP+i57elGX9/+Zd/Oaw6iIiIiIiIiIhoDDQ6Lq7+9c+P/HMf/a1XIxG7tCjsAx/4AJ588klce+21+K3f+i0AwCOPPAIA+JVf+RW8733vw/79+5HP5y/p/W6//XZ8/OMfx5/8yZ/g8ssvx1e/+lX82I/9GKanp/Gyl71se3+gS9DX5h5ERERERERERERhk81mEYvFkEgkMDc3BwB4/PHHAQC/9Vu/hVe96lWX/F6tVgu/8zu/gy9+8Yu49dZbAQD79+/HnXfeiQ9/+MMM/oiIiIiIiIiIKBziUQuP/tartXzuINxyyy1b+v6nn34a9Xr9OWFhu93GjTfeOJCazofBHxERERERERERjYxhGJe85NaPksnkWa9N03zO/MBOp7P+62q1CgD47Gc/ix07dpz1fbZtD6lKKbj/lYmIiIiIiIiIiIYkFovBdd2Lft/09DQefvjhs772wAMPIBqNAgCuvvpq2LaNY8eODXVZ77kw+CMiIiIiIiIiInqWvXv34u6778aRI0eQSqXged45v+8Vr3gFfu/3fg8f+9jHcOutt+LjH/84Hn744fVlvOl0Gu985zvxi7/4i/A8Dy9+8YtRKpXwta99DZlMBm9605uG9mcwh/bOREREREREREREAfXOd74TlmXh6quvxvT0NI4dO3bO73v1q1+Nd7/73fiP//E/4vnPfz4qlQre+MY3nvU973nPe/Dud78bt99+O6666iq85jWvwWc/+1ns27dvqH8GQzx7EfKQlctlZLNZlEolZDKZUX40ERERERERERGNULPZxOHDh7Fv3z44jqO7nEC50H+7S83X2PFHREREREREREQUQgz+iIiIiIiIiIj65HkC1VYXAPDp+07gnZ96EKV65yK/i2i4uLkHEREREREREVGf3v03D+GGB34dr9wbxe88/SNY85J45FQZ//C2F8MwDN3l0Zhi8EdERERERERE1Ie1Whv33vM1/Lb9ZeAY8N+tRdQsByeXp/D5Ry7Ha66d010ijSkGf0REREREREREffjsQ6fxXea966+/03pw/de/+s3X4zXXfq+Osog444+IiIiIiIiAaquLD37pKbz/n55Es+PqLocoUL59bA0/aN15zn935fLnR1wN0QYGf0RERERERIT//Y2j+O//9CT+9Evfxie+eUx3OUTBcewuvOfRV2O/eQbtaAb3TX7fWf/6hxqfBoo8pkgPBn9ERERERESEe548jo9Fb8cjzk/i3/7T89G4+6Mo1tv43X98HF97ekV3eUT+43aBr38Q4mPfDwctAEDt5p/HzW/5Y+CHPoLy6/8v7vcOIIUGug98UnOxNK4444+IiIiIiGjMNTsurjr+SbzUeggAYKMDfO7t+O6/6aIm4vgfd6TwiZ99CZ6/d0JzpUQ+8vjfA1/4zzAAfNm9Hr9j/BQ+/10/DpgGcN2PIi0E/kHchhvxNNqHv4HIy3UXTOOIHX9ERERERERj7hsPPYl/b37qOV+/w/5l3OP8PP459ss4dO8XNFRG5F+dk3IDj0PePN7S+WW88KYbYZrG+r83DAPHUtcDAGKnvolmu6OlThpvDP6IaDi6beDePwMKRwAhdFdDREREROfR7nRx8LOvg2OoUOIXH8WZ5/+ns75nt7mMH3rkbXj8ySfwka8+g47raaiUyF9OPnU/AOBj7nfhlv2z+I+vufI531PNXYWqcBDpVPCjv/En+P/uPT7qMmmE2u227hKeg8EfEQ1eswR85DuBv/9F4APXA394A1Bd0l0VEREREZ3DZz79cSy4JwEA5ct/AMjuwNxr3wW87OzwLyZa+Nwn/gi//Q+P4Y+/fEhDpUT+4XkC5soTAICX3PYd+MRbXoSME33O9+2aSuPr3jUAgN+L/An+6q846y9IXv7yl+Otb30r3vrWtyKbzWJqagrvfve7IVRzy969e/Ge97wHb3zjG5HJZPCWt7wFAHDnnXfiJS95CeLxOHbt2oW3ve1tqNVqWv4MDP6IaPA+9WZg8eGN14UjwJd+a+N1pznqioiIiIjoHFxPIPPkXwEAHtv9emTe8OfyXxgGcNu/B3J70Ji9Ge/uvBkA8IviY/ho9L+h/tU/RJddfzTGTiwXsMM7DQD4jhd9x3m/77LpFL7s3QAAOGiewCft90A8/JlRlOhvQgDt2uj/2cZqtD//8z9HJBLBN7/5TXzgAx/A7//+7+NP//RP1//9+973Plx//fW4//778e53vxuHDh3Ca17zGrzuda/Dt7/9bXzyk5/EnXfeibe+9a2D/C94ybi5BxENlhDwjt/7nKcK4v6Pw7jxx9G66yOIPfbXMF78DuAV75YXlURERESkxb2HV3CL9wBgAAde9oaz/6WdBt52P0zXw9+8+2/wE9bnsM9cxMutB/FyPIiHn3orrr3yoJa6iXRbffIb2G0IFIwc8hM7zvt9B2ZS+KD7Qvyw9VVcZzyDqOH
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 1600x800 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"plt.figure(figsize=(16,8))\n",
|
|||
|
"plt.plot(true_2, label='true')\n",
|
|||
|
"plt.plot(pre_data, label='pre')\n",
|
|||
|
"plt.legend()\n",
|
|||
|
"plt.show()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {},
|
|||
|
"source": [
|
|||
|
"找论文 引用 峰值达不到 偏低 情况 通过分解之后 提高了 加在分析 结论\n",
|
|||
|
"两个数据集篇幅一样 附录 图 未来数据引入 文章对比 3个亮点"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 83,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"mean_squared_error: 0.0020508589297795984\n",
|
|||
|
"mean_absolute_error: 0.024749394165108834\n",
|
|||
|
"rmse: 0.04528640998996938\n",
|
|||
|
"r2 score: 0.9993959872891868\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n",
|
|||
|
"# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n",
|
|||
|
"from math import sqrt\n",
|
|||
|
"from sklearn.metrics import mean_absolute_error\n",
|
|||
|
"from sklearn.metrics import mean_squared_error\n",
|
|||
|
"from sklearn.metrics import r2_score\n",
|
|||
|
"print('mean_squared_error:', mean_squared_error(pre_data, true)) # mse)\n",
|
|||
|
"print(\"mean_absolute_error:\", mean_absolute_error(pre_data, true)) # mae\n",
|
|||
|
"print(\"rmse:\", sqrt(mean_squared_error(pre_data, true)))\n",
|
|||
|
"print(\"r2 score:\", r2_score(pre_data[:], true[:]))#"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 77,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"(1562, 1)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# 使用MinMaxScaler进行归一化\n",
|
|||
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|||
|
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
|||
|
"pre = scaler.fit_transform(pre_data)\n",
|
|||
|
"print(pre.shape)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 78,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"(1562, 1)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|||
|
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
|||
|
"true_data = scaler.fit_transform(true)\n",
|
|||
|
"print(true_data.shape)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 79,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"mean_squared_error: 0.00010504255695631394\n",
|
|||
|
"mean_absolute_error: 0.00643843807544528\n",
|
|||
|
"rmse: 0.010249027122430398\n",
|
|||
|
"r2 score: 0.9993959872891868\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n",
|
|||
|
"# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n",
|
|||
|
"from math import sqrt\n",
|
|||
|
"from sklearn.metrics import mean_absolute_error\n",
|
|||
|
"from sklearn.metrics import mean_squared_error\n",
|
|||
|
"from sklearn.metrics import r2_score\n",
|
|||
|
"print('mean_squared_error:', mean_squared_error(pre, true_data)) # mse)\n",
|
|||
|
"print(\"mean_absolute_error:\", mean_absolute_error(pre, true_data)) # mae\n",
|
|||
|
"print(\"rmse:\", sqrt(mean_squared_error(pre, true_data)))\n",
|
|||
|
"print(\"r2 score:\", r2_score(pre_data, true_2))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "base",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.9.13"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|