删除 'iceemdan分解 逐步分解.ipynb'

This commit is contained in:
hanyp 2024-11-21 13:54:36 +08:00
parent 584483d854
commit cef7c8b538
1 changed files with 0 additions and 418 deletions

View File

@ -1,418 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from math import sqrt\n",
"from numpy import concatenate\n",
"from matplotlib import pyplot\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.metrics import mean_squared_error\n",
"from tensorflow.keras import Sequential\n",
"\n",
"from tensorflow.keras.layers import Dense\n",
"from tensorflow.keras.layers import LSTM\n",
"from tensorflow.keras.layers import Dropout\n",
"from sklearn.model_selection import train_test_split\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 加载数据\n",
"path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\data6.csv\"#数据所在路径\n",
"#我的数据是excel表若是csv文件用pandas的read_csv()函数替换即可。\n",
"datas1 = pd.DataFrame(pd.read_csv(path1))\n",
"#我只取了data表里的第3、23、16、17、18、19、20、21、27列如果取全部列的话这一行可以去掉\n",
"# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]\n",
"data1=datas1.interpolate()\n",
"values1 = data1.values\n",
"print(data1.head())\n",
"print(data1.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from PyEMD import EMD\n",
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"def ICEEMDAN(data, num_siftings=18, Nstd=0.2, NR=100):\n",
" \"\"\"\n",
" 改进的完全集合经验模态分解与自适应噪声ICEEMDAN。\n",
" \"\"\"\n",
" emd = EMD()\n",
" T = len(data)\n",
" std_data = np.std(data)\n",
" \n",
" # 通过添加白噪声获取数据的 IMFs 集合\n",
" E_IMFs = np.zeros((NR, T, num_siftings))\n",
" for r in range(NR):\n",
" wn = np.random.normal(scale=std_data*Nstd, size=T)\n",
" noisy_data = data + wn\n",
" \n",
" # 分解带噪声的数据\n",
" imfs = emd.emd(noisy_data)\n",
" \n",
" # 仅保留前 `num_siftings` 个 IMFs\n",
" for i in range(min(num_siftings, imfs.shape[0])):\n",
" E_IMFs[r, :, i] = imfs[i]\n",
" \n",
" # 所有实验的 IMFs 平均值\n",
" mean_IMFs = np.mean(E_IMFs, axis=0)\n",
" \n",
" return mean_IMFs\n",
"\n",
"# 假设您有一个名为 'data1' 的 DataFrame其中包含一个 'Power' 列\n",
"data_power = data1['Power'].values\n",
"\n",
"# 定义分解的数据窗口大小\n",
"window_size = 104256\n",
"\n",
"# 遍历以 'window_size' 为单位的数据块\n",
"for i in range(0, len(data_power), window_size):\n",
" # 提取当前数据块\n",
" current_data = data_power[i:i+window_size]\n",
" \n",
" # 对当前数据块应用 ICEEMDAN 分解\n",
" IMFs = ICEEMDAN(current_data)\n",
" \n",
" # 创建一个新的 DataFrame 来保存 ICEEMDAN 分解结果\n",
" data_ICEEMDAN = pd.DataFrame(IMFs, columns=[f'IMF{i}' for i in range(IMFs.shape[1])])\n",
" \n",
" # 计算 IMFs 的总和\n",
" IMFs_sum = data_ICEEMDAN[[f'IMF{i}' for i in range(IMFs.shape[1])]].sum(axis=1)\n",
" \n",
" # 计算 IMFs 总和与原始信号之间的差值\n",
" residue = current_data - IMFs_sum\n",
" \n",
" # 将残差添加到 DataFrame\n",
" data_ICEEMDAN['Residue'] = residue\n",
" \n",
" # 打印当前数据块的分解结果\n",
" print(f\"数据块 {i+1}-{i+len(current_data)} 的分解结果:\")\n",
" print(data_ICEEMDAN)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 将分解后的 IMFs 与残差相加以恢复原始数据\n",
"reconstructed_signal = IMFs_sum + residue\n",
"\n",
"# 绘制重构的数据与原始数据进行比较\n",
"plt.figure(figsize=(30, 18))\n",
"plt.plot(current_data[0:2900], label='Original Signal', color='blue')\n",
"plt.plot(reconstructed_signal[0:2900], label='Reconstructed Signal', color='red')\n",
"plt.xlabel('Time')\n",
"plt.ylabel('Amplitude')\n",
"plt.title('Comparison between Original and Reconstructed Signal')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"# 设置全局字体大小\n",
"plt.rcParams.update({'font.size': 60}) # 设置字体大小为 16\n",
"\n",
"# 在这里放置您的绘图代码\n",
"num_imfs = IMFs.shape[1]\n",
"\n",
"plt.figure(figsize=(64,128))\n",
"\n",
"# 绘制每个 IMF\n",
"for i in range(num_imfs):\n",
" if i <= 19: # 只绘制前 14 个 IMF\n",
" plt.subplot(num_imfs, 1, i + 1)\n",
" plt.plot(data_ICEEMDAN[f'IMF{i}'], label=f'IMF {i}')\n",
" plt.legend()\n",
"plt.legend()\n",
"\n",
"# 绘制残差\n",
"plt.subplot(num_imfs + 1, 1, num_imfs + 1)\n",
"plt.plot(data_ICEEMDAN[f'IMF{17}'], label='Residue', color='red')\n",
"plt.legend()\n",
"\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy.signal import welch\n",
"\n",
"def plot_frequency_spectrum(signal, sampling_rate, title):\n",
" \"\"\"\n",
" 绘制信号的频谱图。\n",
" \n",
" 参数:\n",
" - signal: 输入信号\n",
" - sampling_rate: 信号的采样率\n",
" - title: 图表标题\n",
" \"\"\"\n",
" f, Pxx = welch(signal, fs=sampling_rate, nperseg=len(signal))\n",
" plt.figure(figsize=(10, 5))\n",
" plt.semilogy(f, Pxx)\n",
" plt.title(title)\n",
" plt.xlabel('Frequency (Hz)')\n",
" plt.ylabel('Power spectral density')\n",
" plt.grid(True)\n",
" plt.show()\n",
"\n",
"def compute_zero_crossings(signal):\n",
" \"\"\"\n",
" 计算信号的过零率。\n",
" \"\"\"\n",
" zero_crossings = np.where(np.diff(np.sign(signal)))[0]\n",
" zero_crossing_rate = len(zero_crossings) / len(signal)\n",
" return zero_crossing_rate\n",
"\n",
"def classify_frequency_component(imfs, threshold):\n",
" \"\"\"\n",
" 将每个 IMF 分为高频和低频成分。\n",
" \"\"\"\n",
" high_frequency_imfs = []\n",
" low_frequency_imfs = []\n",
" for i in range(imfs.shape[1]):\n",
" imf = imfs[:, i]\n",
" zero_crossing_rate = compute_zero_crossings(imf)\n",
" if zero_crossing_rate > threshold:\n",
" high_frequency_imfs.append(imf)\n",
" else:\n",
" low_frequency_imfs.append(imf)\n",
" return high_frequency_imfs, low_frequency_imfs\n",
"\n",
"# 定义过零率的阈值\n",
"threshold = 0.2 # 可根据具体情况调整阈值\n",
"\n",
"# 根据过零率判断高频和低频成分\n",
"high_freq_imfs, low_freq_imfs = classify_frequency_component(IMFs, threshold)\n",
"sampling_rate = 1000 \n",
"# 可选:绘制高频和低频成分的频谱图\n",
"for i, imf in enumerate(high_freq_imfs):\n",
" plot_frequency_spectrum(imf, sampling_rate, f'High Frequency IMF {i+1}')\n",
"\n",
"for i, imf in enumerate(low_freq_imfs):\n",
" plot_frequency_spectrum(imf, sampling_rate, f'Low Frequency IMF {i+1}')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 打印高频和低频成分的 IMF 列表\n",
"print(\"High Frequency IMFs:\")\n",
"for i, imf in enumerate(high_freq_imfs):\n",
" print(f\"IMF {i+1}: {imf}\")\n",
"\n",
"print(\"\\nLow Frequency IMFs:\")\n",
"for i, imf in enumerate(low_freq_imfs):\n",
" print(f\"IMF {i+1}: {imf}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# 将高频和低频信号相加\n",
"high_freq_sum = np.sum(high_freq_imfs, axis=0)\n",
"low_freq_sum = np.sum(low_freq_imfs, axis=0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"high_freq_sum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"low_freq_sum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"residue"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"re_low=residue+low_freq_sum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"re_high=residue+high_freq_sum\n",
"re_high"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_low = pd.DataFrame(low_freq_sum, columns=['column_name'])\n",
"df_low.to_csv('iceemdan_reconstructed_data_low.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_high = pd.DataFrame(high_freq_sum, columns=['column_name'])\n",
"df_high.to_csv('iceemdan_reconstructed_data_high.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_high = pd.DataFrame(residue, columns=['column_name'])\n",
"df_high.to_csv('iceemdan_reconstructed_data_residue.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_re_low = pd.DataFrame(re_low, columns=['column_name'])\n",
"df_re_low.to_csv('iceemdan_reconstructed_data_re_low.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_re_high = pd.DataFrame(re_high, columns=['column_name'])\n",
"df_re_high.to_csv('iceemdan_reconstructed_data_re_high.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"IMFs_sum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 指定文件路径和文件名保存DataFrame到CSV文件中\n",
"df_high = pd.DataFrame(IMFs_sum, columns=['column_name'])\n",
"df_high.to_csv('iceemdan_reconstructed_data_IMFs_sum.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}