From e6ea688cec985810a0e44de85fffaa155bf32bf3 Mon Sep 17 00:00:00 2001 From: hanyp Date: Thu, 1 Aug 2024 10:47:40 +0800 Subject: [PATCH] =?UTF-8?q?=E4=B8=8A=E4=BC=A0=E6=96=87=E4=BB=B6=E8=87=B3?= =?UTF-8?q?=20''?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...-筛选-high-ConvBiGruAttention copy 2.ipynb | 1102 +++++++++++++++++ iceemdan信号重构.ipynb | 429 +++++++ iceemdan分解 逐步分解.ipynb | 418 +++++++ 3 files changed, 1949 insertions(+) create mode 100644 iceemdan-筛选-high-ConvBiGruAttention copy 2.ipynb create mode 100644 iceemdan信号重构.ipynb create mode 100644 iceemdan分解 逐步分解.ipynb diff --git a/iceemdan-筛选-high-ConvBiGruAttention copy 2.ipynb b/iceemdan-筛选-high-ConvBiGruAttention copy 2.ipynb new file mode 100644 index 0000000..ef894bb --- /dev/null +++ b/iceemdan-筛选-high-ConvBiGruAttention copy 2.ipynb @@ -0,0 +1,1102 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\computation\\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed).\n", + " from pandas.core.computation.check import NUMEXPR_INSTALLED\n", + "C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\arrays\\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).\n", + " from pandas.core import (\n" + ] + } + ], + "source": [ + "from math import sqrt\n", + "from numpy import concatenate\n", + "from matplotlib import pyplot\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.metrics import mean_squared_error\n", + "from tensorflow.keras import Sequential\n", + "\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.layers import LSTM\n", + "from tensorflow.keras.layers import Dropout\n", + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这段代码是一个函数 time_series_to_supervised,它用于将时间序列数据转换为监督学习问题的数据集。下面是该函数的各个部分的含义:\n", + "\n", + "data: 输入的时间序列数据,可以是列表或2D NumPy数组。\n", + "n_in: 作为输入的滞后观察数,即用多少个时间步的观察值作为输入。默认值为96,表示使用前96个时间步的观察值作为输入。\n", + "n_out: 作为输出的观测数量,即预测多少个时间步的观察值。默认值为10,表示预测未来10个时间步的观察值。\n", + "dropnan: 布尔值,表示是否删除具有NaN值的行。默认为True,即删除具有NaN值的行。\n", + "函数首先检查输入数据的维度,并初始化一些变量。然后,它创建一个新的DataFrame对象 df 来存储输入数据,并保存原始的列名。接着,它创建了两个空列表 cols 和 names,用于存储新的特征列和列名。\n", + "\n", + "接下来,函数开始构建特征列和对应的列名。首先,它将原始的观察序列添加到 cols 列表中,并将其列名添加到 names 列表中。然后,它依次将滞后的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t-滞后时间)。这样就创建了输入特征的部分。\n", + "\n", + "接着,函数开始构建输出特征的部分。它依次将未来的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t+未来时间)。\n", + "\n", + "最后,函数将所有的特征列拼接在一起,构成一个新的DataFrame对象 agg。如果 dropnan 参数为True,则删除具有NaN值的行。最后,函数返回处理后的数据集 agg。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def time_series_to_supervised(data, n_in=96, n_out=10,dropnan=True):\n", + " \"\"\"\n", + " :param data:作为列表或2D NumPy数组的观察序列。需要。\n", + " :param n_in:作为输入的滞后观察数(X)。值可以在[1..len(数据)]之间可选。默认为1。\n", + " :param n_out:作为输出的观测数量(y)。值可以在[0..len(数据)]之间。可选的。默认为1。\n", + " :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。\n", + " :return:\n", + " \"\"\"\n", + " n_vars = 1 if type(data) is list else data.shape[1]\n", + " df = pd.DataFrame(data)\n", + " origNames = df.columns\n", + " cols, names = list(), list()\n", + " cols.append(df.shift(0))\n", + " names += [('%s' % origNames[j]) for j in range(n_vars)]\n", + " n_in = max(0, n_in)\n", + " for i in range(n_in, 0, -1):\n", + " time = '(t-%d)' % i\n", + " cols.append(df.shift(i))\n", + " names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]\n", + " n_out = max(n_out, 0)\n", + " for i in range(1, n_out+1):\n", + " time = '(t+%d)' % i\n", + " cols.append(df.shift(-i))\n", + " names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]\n", + " agg = pd.concat(cols, axis=1)\n", + " agg.columns = names\n", + " if dropnan:\n", + " agg.dropna(inplace=True)\n", + " return agg" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Temp Humidity GHI DHI Rainfall Power\n", + "0 19.779453 40.025826 3.232706 1.690531 0.0 0.0\n", + "1 19.714937 39.605961 3.194991 1.576346 0.0 0.0\n", + "2 19.549330 39.608631 3.070866 1.576157 0.0 0.0\n", + "3 19.405870 39.680702 3.038623 1.482489 0.0 0.0\n", + "4 19.387363 39.319881 2.656474 1.134153 0.0 0.0\n", + "(104256, 6)\n" + ] + } + ], + "source": [ + "# 加载数据\n", + "path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\data6.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "datas1 = pd.DataFrame(pd.read_csv(path1))\n", + "#我只取了data表里的第3、23、16、17、18、19、20、21、27列,如果取全部列的话这一行可以去掉\n", + "# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]\n", + "data1=datas1.interpolate()\n", + "values1 = data1.values\n", + "print(data1.head())\n", + "print(data1.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# data2= data1.drop(['date','Air_P','RH'], axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# # 获取重构的原始数据\n", + "# # 获取重构的原始数据\n", + "# # 获取重构的原始数据\n", + "high_re= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\high_re.csv\"#数据所在路径\n", + "# #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "high_re = pd.DataFrame(pd.read_csv(high_re))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " column_name\n", + "0 -1.426824\n", + "1 -1.426819\n", + "2 -1.426815\n", + "3 -1.426812\n", + "4 -1.426810\n", + "... ...\n", + "104251 -1.629381\n", + "104252 -1.629328\n", + "104253 -1.629271\n", + "104254 -1.629213\n", + "104255 -1.629152\n", + "\n", + "[104256 rows x 1 columns]\n" + ] + } + ], + "source": [ + "reconstructed_data_high= high_re\n", + "# # 打印重构的原始数据\n", + "print(reconstructed_data_high)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIjCAYAAAAwSJuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNU0lEQVR4nO3dd5hTVf4G8DfTe2M6DEPvSBUEpClKE8QCFlTAisIidlEXdBXBgru4rrp27K4KqKAUpYqASAcB6R2GNr1Pzu+P87vJhGnp597k/TzPPDdkMpnvXHKT+552TUIIASIiIiIiIqoiQHUBREREREREesXAREREREREVAMGJiIiIiIiohowMBEREREREdWAgYmIiIiIiKgGDExEREREREQ1YGAiIiIiIiKqAQMTERERERFRDRiYiIiIiIiIasDARER2MZlMePbZZ1WXUa1GjRrhmmuuUV2GX+vXrx/69evn1M+OHTsWjRo1cms9F/voo49gMplw6NAhj/4eR+j5mCLXrVixAiaTCStWrHD5ufT4+q2sX79+aNeuXZ2PO3ToEEwmEz766COHf4f2s6+++qoTFRK5hoGJyE779+/HfffdhyZNmiAsLAwxMTHo1asXZs+ejaKiItXlkRsVFhbi2WefdcuJjt4tWLAAgwYNQr169RAWFoYWLVrg0Ucfxblz51SXRn7gxRdfxPz58/2+Bk/6/PPP8a9//Ut1GUSGFqS6ACIjWLhwIUaOHInQ0FDccccdaNeuHUpLS/Hrr7/isccew86dO/HOO++oLtOjioqKEBTkH28ZhYWFeO655wDA6V4TI3j00Ucxa9YsdOjQAU888QQSEhKwadMmvPHGG/jyyy/xyy+/oGXLlnY915IlS5yu491334XZbHb658m4XnzxRdx4440YMWKEX9fgSZ9//jl27NiByZMnqy4FmZmZKCoqQnBwsOpSiBziH2c/RC44ePAgbr75ZmRmZmLZsmVIS0uzfG/ChAnYt28fFi5cqLBCzzGbzSgtLUVYWBjCwsJUl0Nu9MUXX2DWrFm46aab8NlnnyEwMNDyvbFjx6J///4YOXIkNm3aVGtQLiwsREREBEJCQpyuhSdPjikuLkZISAgCAvxrkEhBQQEiIyNVl0EuMJlM/CwhQ/Kvd1siJ7z88svIz8/H+++/bxOWNM2aNcODDz5o+Xd5eTmef/55NG3aFKGhoWjUqBGeeuoplJSU2PycNu9mxYoV6Nq1K8LDw9G+fXvLMLC5c+eiffv2CAsLQ5cuXbB582abnx87diyioqJw4MABDBw4EJGRkUhPT8c//vEPCCFsHvvqq6+iZ8+eqFevHsLDw9GlSxd88803Vf4Wk8mEiRMn4rPPPkPbtm0RGhqKRYsWWb5Xeb5FXl4eJk+ejEaNGiE0NBTJycm46qqrsGnTJpvn/Prrr9GlSxeEh4cjMTERt912G44fP17t33L8+HGMGDECUVFRSEpKwqOPPoqKiooa/meqWrJkCTp27IiwsDC0adMGc+fOrfKY7OxsTJ48GRkZGQgNDUWzZs3w0ksvWXo4Dh06hKSkJADAc889B5PJZPnbv//+e5hMJmzbts3yfN9++y1MJhOuv/56m9/TunVr3HTTTTb3ffrpp5Z9kZCQgJtvvhlHjx6tUuP69esxaNAgxMbGIiIiAn379sWaNWtsHvPss8/CZDJh3759GDt2LOLi4hAbG4tx48ahsLCwzn313HPPIT4+Hu+8845NWAKAbt264YknnsD27dttXifaPIWNGzeiT58+iIiIwFNPPWX53sW9cYcPH8bw4cMRGRmJ5ORkPPTQQ1i8eHGVeR0Xz2GqPFfhnXfesRxLl156KTZs2GDzO7Zt24axY8dahsqmpqbizjvvdHpIob3P58j+LykpwUMPPYSkpCRER0dj+PDhOHbsmF31aPNgvvzySzzzzDOoX78+IiIikJubC8C+1woAHD9+HHfddRfS09MRGhqKxo0b4/7770dpaanlMQcOHMDIkSORkJCAiIgIXHbZZVUag7R6/ve//2H69Olo0KABwsLCcOWVV2Lfvn02j927dy9uuOEGpKamIiwsDA0aNMDNN9+MnJwcAPI9paCgAHPmzLEcZ2PHjrXZv3/++SduvfVWxMfH4/LLLwdQ83y56ubCmc1mzJ492/JempSUhEGDBuGPP/6oswZtv915551ISUlBaGgo2rZtiw8++KDK7z527BhGjBhh81q/+D3fXjt37sQVV1yB8PBwNGjQAC+88EK1PbDfffcdhg4davk/bdq0KZ5//nmb98x+/fph4cKFOHz4sOXv0/ZRaWkppk6dii5duiA2NhaRkZHo3bs3li9f7lTdAPDnn3+if//+iIiIQP369fHyyy/bfL+mOUxff/012rRpg7CwMLRr1w7z5s2rdW5jXe8LRO7GHiaiOvzwww9o0qQJevbsadfj7777bsyZMwc33ngjHnnkEaxfvx4zZszArl27MG/ePJvH7tu3D7feeivuu+8+3HbbbXj11VcxbNgwvP3223jqqafwwAMPAABmzJiBUaNGYc+ePTatyhUVFRg0aBAuu+wyvPzyy1i0aBGmTZuG8vJy/OMf/7A8bvbs2Rg+fDhGjx6N0tJSfPnllxg5ciQWLFiAoUOH2tS0bNky/O9//8PEiRORmJhY4wfW+PHj8c0332DixIlo06YNzp07h19//RW7du1C586dAciJyuPGjcOll16KGTNm4PTp05g9ezbWrFmDzZs3Iy4uzuZvGThwILp3745XX30VP//8M2bNmoWmTZvi/vvvr3O/7927FzfddBPGjx+PMWPG4MMPP8TIkSOxaNEiXHXVVQBkb0jfvn1x/Phx3HfffWjYsCF+++03TJkyBSdPnsS//vUvJCUl4a233sL999+P6667zhKELrnkEjRo0AAmkwmrVq3CJZdcAgBYvXo1AgIC8Ouvv1pqOXPmDHbv3o2JEyda7ps+fTr+/ve/Y9SoUbj77rtx5swZ/Pvf/0afPn1s9sWyZcswePBgdOnSBdOmTUNAQAA+/PBDXHHFFVi9ejW6detm83ePGjUKjRs3xowZM7Bp0ya89957SE5OxksvvVTrvtqzZw/Gjh2LmJiYah9zxx13YNq0aViwYAFuvvlmy/3nzp3D4MGDcfPNN+O2225DSkpKtT9fUFCAK664AidPnsSDDz6I1NRUfP755w6djH3++efIy8vDfffdB5PJhJdffhnXX389Dhw4YOmVWrp0KQ4cOIBx48YhNTXVMjx2586dWLduHUwmk92/z5nns2f/33333fj0009x6623omfPnli2bFmV464uzz//PEJCQvDoo4+ipKQEISEhdr9WTpw4gW7duiE7Oxv33nsvWrVqhePHj+Obb75BYWEhQkJCcPr0afTs2ROFhYWYNGkS6tWrhzlz5mD48OH45ptvcN1119nUM3PmTAQEBODRRx9FTk4OXn75ZYwePRrr168HIE/GBw4ciJKSEvztb39Damoqjh8/jgULFiA7OxuxsbH45JNPcPfdd6Nbt2649957AQBNmza1+T0jR45E8+bN8eKLL1ZpCLLHXXfdhY8++giDBw/G3XffjfLycqxevRrr1q1D165da63h9OnTuOyyyywNSUlJSfjpp59w1113ITc31zLEraioCFdeeSWOHDmCSZMmIT09HZ988gmWLVvmcL2nTp1C//79UV5ejieffBKRkZF45513EB4eXuWxH330EaKiovDwww8jKioKy5Ytw9SpU5Gbm4tXXnkFAPD0008jJycHx44dwz//+U8AQFRUFAAgNzcX7733Hm655Rbcc889yMvLw/vvv4+BAwfi999/R8eOHR2q/cKFCxg0aBCuv/56jBo1Ct988w2eeOIJtG/fHoMHD67x5xYuXIibbroJ7du3x4wZM3DhwgXcddddqF+/frWPt+d9gcjtBBHVKCcnRwAQ1157rV2P37JliwAg7r77bpv7H330UQFALFu2zHJfZmamACB+++03y32LFy8WAER4eLg4fPiw5f7//ve/AoBYvny55b4xY8YIAOJvf/ub5T6z2SyGDh0qQkJCxJkzZyz3FxYW2tRTWloq2rVrJ6644gqb+wGIgIAAsXPnzip/GwAxbdo0y79jY2PFhAkTatwXpaWlIjk5WbRr104UFRVZ7l+wYIEAIKZOnVrlb/nHP/5h8xydOnUSXbp0qfF3aLR9+e2331ruy8nJEWlpaaJTp06W+55//nkRGRkp/vrrL5uff/LJJ0VgYKA4cuSIEEKIM2fOVPl7NW3bthWjRo2y/Ltz585i5MiRAoDYtWuXEEKIuXPnCgBi69atQgghDh06JAIDA8X06dNtnmv79u0iKCjIcr/ZbBbNmzcXAwcOFGaz2fK4wsJC0bhxY3HVVVdZ7ps2bZoAIO68806b57zuuutEvXr1at1f8+fPFwDEP//5z1ofFxMTIzp37mz5d9++fQUA8fbbb1d5bN++fUXfvn0t/541a5YAIObPn2+5r6ioSLRq1ara13JmZqbl3wcPHhQARL169cT58+ct93/33XcCgPjhhx8s91382hZCiC+++EIAEKtWrbLc9+GHHwoA4uDBg7X+zfY+n737X3tPeOCBB2wed+utt9b4Gqts+fLlAoBo0qSJTW2OvFbuuOMOERAQIDZs2FDl+bWfnTx5sgAgVq9ebfleXl6eaNy4sWjUqJGoqKiwqad169aipKTE8tjZs2cLAGL79u1CCCE2b94sAIivv/661r8vMjJSjBkzpsr92v695ZZbqnzv4tea5uLX0bJlywQAMWnSpBr/7tpquOuuu0RaWpo4e/aszf0333yziI2Ntfx//Otf/xIAxP/+9z/LYwoKCkSzZs2qvNbrov0/rF+/3nJfVlaWiI2NrfL6re61et9994mIiAhRXFxsuW/o0KE2+0VTXl5u838ohBAXLlwQKSkpVV7XddHeGz7++GPLfSUlJSI1NVXccMMNlvu0Y/vDDz+03Ne+fXvRoEEDkZeXZ7lvxYoVAoDT7wtE7sYheUS10Ia9REdH2/X4H3/8EQDw8MMP29z/yCOPAECV4S1t2rRBjx49LP/u3r07AOCKK65Aw4YNq9x/4MCBKr+zci+G1hJaWlqKn3/+2XJ/5dbJCxcuICcnB717964yfA4A+vbtizZt2tTxlwJxcXFYv349Tpw4Ue33//jjD2RlZeGBBx6wGbM+dOhQtGrVqtp5X+PHj7f5d+/evav9m6uTnp5u0woeExODO+64A5s3b8apU6cAyGEfvXv3Rnx8PM6ePWv5GjBgACoqKrBq1ao6f0/v3r2xevVqAHJY4tatW3HvvfciMTHRcv/q1asRFxdnWWZ37ty5MJvNGDVqlM3vTU1NRfPmzS29Llu2bMHevXtx66234ty5c5bHFRQU4Morr8SqVauqDM2pbp+dO3fO8tqtTl5eHoC6X9fR0dFVnic0NBTjxo2razdh0aJFqF+/PoYPH265LywsDPfcc0+dP6u56aabEB8fb/l37969AdgeB5Vf28XFxTh79iwuu+wyAKj29V0XR5+vrv2vvSdMmjTJ5nGOTsAfM2aMTW32vlbMZjPmz5+PYcOGoWvXrlWeV+sx+/HHH9GtWzfLsDdA9kTce++9OHToEP7880+bnxs3bpzNvLWL/29iY2MBAIsXL7ZriGhNLt6/jtCGy06bNq3K9+rqeRRC4Ntvv8WwYcMghLA5bgcOHIicnBzL6+HHH39EWloabrzxRsvPR0REWHqsHPHjjz/isssus+lJTkpKwujRo6s8tvLrIS8vD2fPnkXv3r1RWFiI3bt31/m7AgMDLf+HZrMZ58+fR3l5Obp27erUsRMVFYXbbrvN8u+QkBB069at1vfwEydOYPv27bjjjjssPV+A/Bxq3759tT9jz/sCkbtxSB5RLbThStoJZl0OHz6MgIAANGvWzOb+1NRUxMXF4fDhwzb3Vw5FgPUkIyMjo9r7L1y4YHN/QEAAmjRpYnNfixYtAMDmeh0LFizACy+8gC1bttiMq6/upKFx48Y1/n2VvfzyyxgzZgwyMjLQpUsXDBkyBHfccYelHu1vrW6VtVatWtkMYQNgmV9QWXx8fJW/uSbNmjWr8vdU3hepqanYu3cvtm3bVuX3aLKysur8Pb1798bbb7+Nffv2Yf/+/TCZTOjRo4clSN1zzz1YvXo1evXqZRk+uXfvXggh0Lx582qfUxtGsnfvXgDy5LgmOTk5NicLF7+GtO9duHChxuF2WlCq63Wdl5eH5ORkm/vq169v1wIPhw8fRtOmTav8n1x8bNSmtr9Nc/78eTz33HP48ssvq/z/aXNlHOHo89W1/7X3hIuHmtm7+qDm4uPS3tdKaWkpcnNz67xGzuHDhy0NM5W1bt3a8v3Kz1HX/03jxo3x8MMP47XXXsNnn32G3r17Y/jw4bjtttss72f2sPf9qDr79+9Heno6EhISHP7ZM2fOIDs7G++8806NK6Bqr4/Dhw9X+/7j6P+x9lzV/T9U91w7d+7EM888g2XLllVp2LD3tT9nzhzMmjULu3fvRllZmeV+Z/a7NmS5svj4eJs5nxfTPieqe19o1qxZtcHNnvcFIndjYCKqRUxMDNLT07Fjxw6Hfs7eeRMXT7av637hxBj+1atXY/jw4ejTpw/efPNNpKWlITg4GB9++CE+//zzKo+vbqx8dUaNGoXevXtj3rx5WLJkCV555RW89NJLmDt3bq3j1WtS09/sTmazGVdddRUef/zxar+vBazaaC3wq1atwoEDB9C5c2fLZOnXX38d+fn52Lx5M6ZPn27ze00mE3766adq/06tZVXrPXrllVdqnD9QuRUWcO61op0E13Uik5ubW6W30d7XhzvY87eNGjUKv/32Gx577DF07NgRUVFRMJvNGDRokFNLlTv6fO48Vmtz8X6397Vy/vx5t9ahsefvnjVrFsaOHYvvvvsOS5YswaRJkzBjxgysW7cODRo0sOv3VPd6M5lM1e5fRxaIqYu2f2+77bYaQ6k2j1GF7Oxs9O3bFzExMfjHP/6Bpk2bIiwsDJs2bcITTzxh12v/008/xdixYzFixAg89thjSE5ORmBgIGbMmIH9+/c7XJO3jgVv/R6iyhiYiOpwzTXX4J133sHatWtths9VJzMzE2azGXv37rWclAJy8nB2djYyMzPdWpvZbMaBAwdsTvT/+usvALAs1vDtt98iLCwMixcvRmhoqOVxH374ocu/Py0tDQ888AAeeOABZGVloXPnzpg+fToGDx5s+Vv37NmDK664wubn9uzZ4/Z9sW/fPgghbMLqxfuiadOmyM/Px4ABA2p9rtoCb8OGDdGwYUOsXr0aBw4csAwH6dOnDx5++GF8/fXXqKioQJ8+fSw/07RpUwgh0Lhx41pDmdYLERMTU2eNrmjRogVatGiB+fPnY/bs2dUOzfv4448ByNe/MzIzM/Hnn39W+T+5eCU1V1y4cAG//PILnnvuOUydOtVyv9b7ovr5AOt7wv79+216Cfbs2eP0cwL2v1aSkpIQExNTZ6NPZmZmtTVpQ7ucPV7bt2+P9u3b45lnnsFvv/2GXr164e2338YLL7wAwP7Gpcri4+OrHX51cQ9+06ZNsXjxYpw/f77WXqbqatBWNKyoqKjzWMzMzMSOHTuqvNad+T/OzMys9vV28XOtWLEC586dw9y5c23eaw4ePFjlZ2vax9988w2aNGmCuXPn2jymuiGMnqK9rqp7X3DnewWRqziHiagOjz/+OCIjI3H33Xfj9OnTVb6/f/9+zJ49GwAwZMgQAKhyVfXXXnsNABxeGcseb7zxhuW2EAJvvPEGgoODceWVVwKQrXEmk8mm9fXQoUMuXdm+oqKiypCP5ORkpKenW4b8de3aFcnJyXj77bdthgH+9NNP2LVrl9v3xYkTJ2xWIczNzcXHH3+Mjh07IjU1FYDsPVi7di0WL15c5eezs7NRXl4OQM4/0O6rTu/evbFs2TL8/vvvlsDUsWNHREdHY+bMmZal2zXXX389AgMD8dxzz1VpBRVCWJas7tKlC5o2bYpXX30V+fn5VX7vmTNn7N0ddZo6dSouXLiA8ePHV2mZ37hxI1566SW0a9cON9xwg1PPP3DgQBw/fhzff/+95b7i4mK8++67LtVdmdbSfPE+vfj4U/V8ACy9ra+//rrbnhOw/7USEBCAESNG4IcffrAspV2Z9rcOGTIEv//+O9auXWv5XkFBAd555x00atTIrnmNleXm5lqOJ0379u0REBBg834QGRlZ43FWk6ZNm2L37t02x8PWrVurLKd+ww03QAhhuQh1ZZX/j6urITAwEDfccAO+/fbbasNm5d89ZMgQnDhxwmYJ/sLCQqcuZj5kyBCsW7cOv//+u83v+uyzz6rUd/HfUVpaijfffLPKc0ZGRlY7RK+651i/fr3Na8DT0tPT0a5dO3z88cc2r+OVK1di+/btXquDqC7sYSKqQ9OmTfH555/jpptuQuvWrXHHHXegXbt2KC0txW+//Yavv/7act2ODh06YMyYMXjnnXcsQyZ+//13zJkzByNGjED//v3dWltYWBgWLVqEMWPGoHv37vjpp5+wcOFCPPXUU5Z5OkOHDsVrr72GQYMG4dZbb0VWVhb+85//oFmzZrUOyapNXl4eGjRogBtvvBEdOnRAVFQUfv75Z2zYsAGzZs0CIOflvPTSSxg3bhz69u2LW265xbKseKNGjfDQQw+5bT8AstfkrrvuwoYNG5CSkoIPPvgAp0+ftulJe+yxx/D999/jmmuuwdixY9GlSxcUFBRYrjd06NAhJCYmIjw8HG3atMFXX32FFi1aICEhAe3atbPM4ejduzc+++wzmEwmyxC9wMBA9OzZE4sXL0a/fv1s5vk0bdoUL7zwAqZMmYJDhw5hxIgRiI6OxsGDBzFv3jzce++9ePTRRxEQEID33nsPgwcPRtu2bTFu3DjUr18fx48fx/LlyxETE4MffvjBLftr9OjR2LBhA2bPno0///wTo0ePRnx8PDZt2oQPPvgA9erVwzfffOP0Mr333Xcf3njjDdxyyy148MEHkZaWhs8++8yyAIgzPQsXi4mJQZ8+ffDyyy+jrKwM9evXx5IlS6ptZVfxfIAM0rfccgvefPNN5OTkoGfPnvjll19cbj135LXy4osvYsmSJejbty/uvfdetG7dGidPnsTXX3+NX3/9FXFxcXjyySfxxRdfYPDgwZg0aRISEhIwZ84cHDx4EN9++63DF8ldtmwZJk6ciJEjR6JFixYoLy/HJ598Ygkimi5duuDnn3/Ga6+9hvT0dDRu3LjaOTyV3XnnnXjttdcwcOBA3HXXXcjKysLbb7+Ntm3b2szl6d+/P26//Xa8/vrr2Lt3r2VY5erVq9G/f3/Lgjk11TBz5kwsX74c3bt3xz333IM2bdrg/Pnz2LRpE37++WfLcMd77rkHb7zxBu644w5s3LgRaWlp+OSTTywNL454/PHH8cknn2DQoEF48MEHLcuKZ2Zm2rxf9+zZE/Hx8RgzZgwmTZoEk8mETz75pNphaV26dMFXX32Fhx9+GJdeeimioqIwbNgwXHPNNZg7dy6uu+46DB06FAcPHsTbb7+NNm3aVBvCPeXFF1/Etddei169emHcuHG4cOEC3njjDbRr186rdRDVylvL8REZ3V9//SXuuece0ahRIxESEiKio6NFr169xL///W+bJVzLysrEc889Jxo3biyCg4NFRkaGmDJlis1jhJBLYQ8dOrTK7wFQZblubTnVV155xXLfmDFjRGRkpNi/f7+4+uqrRUREhEhJSRHTpk2zLAGsef/990Xz5s1FaGioaNWqlfjwww8ty/bW9bsrf09bArmkpEQ89thjokOHDiI6OlpERkaKDh06iDfffLPKz3311VeiU6dOIjQ0VCQkJIjRo0eLY8eO2TxG+1suVl2N1dH25eLFi8Ull1xi+TurW9I4Ly9PTJkyRTRr1kyEhISIxMRE0bNnT/Hqq6+K0tJSy+N+++030aVLFxESElJl+eedO3dallau7IUXXhAAxN///vdq6/z222/F5ZdfLiIjI0VkZKRo1aqVmDBhgtizZ4/N4zZv3iyuv/56Ua9ePREaGioyMzPFqFGjxC+//FJl31RePl4I+5fP1syfP19cddVVIj4+XoSGhopmzZqJRx55pMrzCiGXDm7btm21z1PdUs8HDhwQQ4cOFeHh4SIpKUk88sgj4ttvvxUAxLp16yyPq2lZ8cqvd83F/xfHjh0T1113nYiLixOxsbFi5MiR4sSJE1UeZ+9+sff5HNn/RUVFYtKkSaJevXoiMjJSDBs2TBw9etShZcVrWp7bnteKEEIcPnxY3HHHHSIpKUmEhoaKJk2aiAkTJtgsK71//35x4403iri4OBEWFia6desmFixYYFc9Fy8XfeDAAXHnnXeKpk2birCwMJGQkCD69+8vfv75Z5uf2717t+jTp48IDw8XACzLe9e0fzWffvqpaNKkiQgJCREdO3YUixcvrvI6EkIunf3KK6+IVq1aiZCQEJGUlCQGDx4sNm7cWGcNQghx+vRpMWHCBJGRkSGCg4NFamqquPLKK8U777xTZf8OHz5cREREiMTERPHggw+KRYsWObysuBBCbNu2TfTt21eEhYWJ+vXri+eff168//77VV5Xa9asEZdddpkIDw8X6enp4vHHH7dcmqLy78zPzxe33nqriIuLs1mq22w2ixdffFFkZmaK0NBQ0alTJ7FgwYJq92NdanpvqOnYrrysuBBCfPnll6JVq1YiNDRUtGvXTnz//ffihhtuEK1atarys/a8LxC5m0kIzpIjMqKxY8fim2++YQscGcq//vUvPPTQQzh27FiNF6YkIurYsSOSkpKwdOlS1aUQcQ4TERF5RlFRkc2/i4uL8d///hfNmzdnWCIiAEBZWVmV+W4rVqzA1q1b0a9fPzVFEV2Ec5iIiMgjrr/+ejRs2BAdO3ZETk4OPv30U+zevbvKBHYiX1dUVFTntZESEhLsusaZN50/fx6lpaU1fj8wMLDG69rZ6/jx4xgwYABuu+02pKenY/fu3Xj77beRmprq0oWLidyJgYmIiDxi4MCBeO+99/DZZ5+hoqICbdq0wZdffombbrpJdWlEXvXVV19h3LhxtT5m+fLluutRuf7667Fy5coav5+ZmWlzkXRnxMfHo0uXLnjvvfdw5swZREZGYujQoZg5cybq1avn0nMTuQvnMBERERF50MmTJ7Fz585aH9OlSxfEx8d7qSL7bNy4ERcuXKjx++Hh4ejVq5cXKyJSg4GJiIiIiIioBlz0gYiIiIiIqAZ+NYfJbDbjxIkTiI6OdstFE4mIiIiIyJiEEMjLy0N6enqtF+j2q8B04sQJZGRkqC6DiIiIiIh04ujRo2jQoEGN3/erwBQdHQ1A7pSYmBjF1RARERERkSq5ubnIyMiwZISa+FVg0obhxcTEMDAREREREVGdU3W46AMREREREVENGJiIiIiIiIhqwMBERERERERUA7+aw0REREREkhAC5eXlqKioUF0KkUcEBgYiKCjI5csJMTARERER+ZnS0lKcPHkShYWFqksh8qiIiAikpaUhJCTE6edgYCIiIiLyI2azGQcPHkRgYCDS09MREhLicgs8kd4IIVBaWoozZ87g4MGDaN68ea0Xp60NAxMRERGRHyktLYXZbEZGRgYiIiJUl0PkMeHh4QgODsbhw4dRWlqKsLAwp56Hiz4QERER+SFnW9uJjMQdr3MeKURERERERDVgYCIiIiIiIqoBAxMREREREdVq7NixGDFihOoylGBgIiIiIiLdGzt2LEwmE0wmE4KDg9G4cWM8/vjjKC4uVl2a3VasWAGTyYTs7Gyv/D5vhhztbzOZTAgICEBsbCw6deqExx9/HCdPnnT4+UwmE+bPn+/+Qp3AwEREREREhjBo0CCcPHkSBw4cwD//+U/897//xbRp01SX5XalpaWqS3Danj17cOLECWzYsAFPPPEEfv75Z7Rr1w7bt29XXZrTGJiIiIiI/J0QQEGB97+EcKjM0NBQpKamIiMjAyNGjMCAAQOwdOlSy/fNZjNmzJiBxo0bIzw8HB06dMA333xj8xw7d+7ENddcg5iYGERHR6N3797Yv3+/5ef/8Y9/oEGDBggNDUXHjh2xaNEiy88eOnQIJpMJc+fORf/+/REREYEOHTpg7dq1lsccPnwYw4YNQ3x8PCIjI9G2bVv8+OOPOHToEPr37w8AiI+Ph8lkwtixYwEA/fr1w8SJEzF58mQkJiZi4MCBlt+1ZcsWy3NnZ2fDZDJhxYoVdf49zz77LObMmYPvvvvO0vOj/dzRo0cxatQoxMXFISEhAddeey0OHTpkec6Kigo8/PDDiIuLQ7169fD4449D2Pl/lZycjNTUVLRo0QI333wz1qxZg6SkJNx///2Wx2zYsAFXXXUVEhMTERsbi759+2LTpk2W7zdq1AgAcN1118FkMln+vX//flx77bVISUlBVFQULr30Uvz888921eUKBiYiIiIif1dYCERFef+rsNDpknfs2IHffvsNISEhlvtmzJiBjz/+GG+//TZ27tyJhx56CLfddhtWrlwJADh+/Dj69OmD0NBQLFu2DBs3bsSdd96J8vJyAMDs2bMxa9YsvPrqq9i2bRsGDhyI4cOHY+/evTa/++mnn8ajjz6KLVu2oEWLFrjlllsszzFhwgSUlJRg1apV2L59O1566SVERUUhIyMD3377LQDZC3Py5EnMnj3b8pxz5sxBSEgI1qxZg7ffftuufVDb3/Poo49i1KhRll65kydPomfPnigrK8PAgQMRHR2N1atXY82aNYiKisKgQYMsPVuzZs3CRx99hA8++AC//vorzp8/j3nz5jn1/xQeHo7x48djzZo1yMrKAgDk5eVhzJgx+PXXX7Fu3To0b94cQ4YMQV5eHgAZqADgww8/xMmTJy3/zs/Px5AhQ/DLL79g8+bNGDRoEIYNG4YjR444VZvdhB/JyckRAEROTo7qUoiIiIiUKCoqEn/++acoKiqy3pmfL4Ts7/HuV36+3XWPGTNGBAYGisjISBEaGioAiICAAPHNN98IIYQoLi4WERER4rfffrP5ubvuukvccsstQgghpkyZIho3bixKS0ur/R3p6eli+vTpNvddeuml4oEHHhBCCHHw4EEBQLz33nuW7+/cuVMAELt27RJCCNG+fXvx7LPPVvv8y5cvFwDEhQsXbO7v27ev6NSpk8192u/avHmz5b4LFy4IAGL58uV2/T1jxowR1157rc19n3zyiWjZsqUwm82W+0pKSkR4eLhYvHixEEKItLQ08fLLL1u+X1ZWJho0aFDluez524QQ4qeffhIAxPr166v92YqKChEdHS1++OEHy30AxLx582r8fZq2bduKf//73zV+v9rX+/+zNxsEeTaOEREREbmZEMDvvwMdOgBhYaqr8Q0REUB+vprf64D+/fvjrbfeQkFBAf75z38iKCgIN9xwAwBg3759KCwsxFVXXWXzM6WlpejUqRMAYMuWLejduzeCg4OrPHdubi5OnDiBXr162dzfq1cvbN261ea+Sy65xHI7LS0NAJCVlYVWrVph0qRJuP/++7FkyRIMGDAAN9xwg83ja9KlSxc79oCt2v6emmzduhX79u1DdHS0zf3FxcXYv38/cnJycPLkSXTv3t3yvaCgIHTt2tXuYXkX037OZDIBAE6fPo1nnnkGK1asQFZWFioqKlBYWFhnT1F+fj6effZZLFy4ECdPnkR5eTmKioo83sPEwERERETGYTYD774LjB8PPPII8OqrqivyDSYTEBmpuoo6RUZGolmzZgCADz74AB06dMD777+Pu+66C/n/H/gWLlyI+vXr2/xcaGgoADk8zB0qBxQtBJjNZgDA3XffjYEDB2LhwoVYsmQJZsyYgVmzZuFvf/tbnX9bZQEBcuZM5ZBSVlZm8xhn/p78/Hx06dIFn332WZXvJSUlOfx89ti1axcA69ykMWPG4Ny5c5g9ezYyMzMRGhqKHj161LnYxaOPPoqlS5fi1VdfRbNmzRAeHo4bb7zR44tkcA4TERERGcOxY0BysgxLADBrltp6SKmAgAA89dRTeOaZZ1BUVIQ2bdogNDQUR44cQbNmzWy+MjIyAMieodWrV1cJHgAQExOD9PR0rFmzxub+NWvWoE2bNg7VlpGRgfHjx2Pu3Ll45JFH8O677wKAZb5VRUVFnc+hhZfKS3JXXgCirr9H+30X/67OnTtj7969SE5OrrKfYmNjERsbi7S0NKxfv97yM+Xl5di4cWPdf3g1ioqK8M4776BPnz6Wv2nNmjWYNGkShgwZgrZt2yI0NBRnz561+bng4OAqta9ZswZjx47Fddddh/bt2yM1NdVmsQpPYWAiIiIi/Xv9dSAjAzh3zvZ+T0/2Jl0bOXIkAgMD8Z///AfR0dF49NFH8dBDD2HOnDnYv38/Nm3ahH//+9+YM2cOAGDixInIzc3FzTffjD/++AN79+7FJ598gj179gAAHnvsMbz00kv46quvsGfPHjz55JPYsmULHnzwQbtrmjx5MhYvXoyDBw9i06ZNWL58OVq3bg0AyMzMhMlkwoIFC3DmzBlLr1h1wsPDcdlll2HmzJnYtWsXVq5ciWeeecbmMXX9PY0aNcK2bduwZ88enD17FmVlZRg9ejQSExNx7bXXYvXq1Th48CBWrFiBSZMm4dixYwCABx98EDNnzsT8+fOxe/duPPDAA3ZfOyorKwunTp3C3r178eWXX6JXr144e/Ys3nrrLctjmjdvjk8++QS7du3C+vXrMXr06Cq9ZY0aNcIvv/yCU6dO4cKFC5afmzt3LrZs2YKtW7fi1ltvtfTseRIDExEREenbtm1ATSesn3zi3VpIV4KCgjBx4kS8/PLLKCgowPPPP4+///3vmDFjBlq3bo1BgwZh4cKFaNy4MQCgXr16WLZsGfLz89G3b1906dIF7777rmWI3aRJk/Dwww/jkUceQfv27bFo0SJ8//33aN68ud01VVRUYMKECZbf36JFC7z55psAgPr16+O5557Dk08+iZSUFEycOLHW5/rggw9QXl6OLl26YPLkyXjhhRdsvl/X33PPPfegZcuW6Nq1K5KSkrBmzRpERERg1apVaNiwIa6//nq0bt0ad911F4qLixETEwMAeOSRR3D77bdjzJgx6NGjB6Kjo3HdddfZ9fe3bNkS6enp6NKlC2bOnIkBAwZgx44dNr1077//Pi5cuIDOnTvj9ttvx6RJk5CcnGzzPLNmzcLSpUuRkZFhmYP22muvIT4+Hj179sSwYcMwcOBAdO7c2a66XGESzs7eMqDc3FzExsYiJyfH8oIgIiIinbv1VuCLL+TtevWAZ54Bdu4E3ntP3vef/wAPPKCuPoMpLi7GwYMH0bhxY4Rx0QzycbW93u3NBlz0gYiIiPTrwAHgq6/k7f/9D+jRA2jQAKioABISgJdflr1PAwYALVqorZWIfBKH5BEREZF+zZolV8YbOBAYOVKGJQAIDARmzgT69wfKy4GWLYHhw4HDh9XWS0Q+h4GJiIiI9On0aeCDD+TtJ5+s+n2TCbjxRuu/f/gB6NQJ+Pln79RHRH6BgYmIiIj0Z8MG4PnngeJioHt3oG/f6h83aJD1dlgYcOECcPPNcktE5AYMTERERKQvb70FdOsmF3MAgKeflr1J1WnSBLjiCiA9HfjrL6BtW7n0+MyZ3qvXoPxo3S/yY+54nTMwERERkX7k5gJTp1r/3b8/cM01tf/Mzz8DBw/K6zQ9+6y8b/58T1VoeNqS04WFhYorIfI87XWuve6dwVXyiMhYDhwAtm4Fhg0Dgiq9hR08CCxeLJcf5mUDiIzriSeAs2eB6Gjg738Hxo6tuXdJYzIBISHy9oABQECA7G06dsy6SARZBAYGIi4uDllZWQCAiIgImOrax0QGI4RAYWEhsrKyEBcXh8DAQKefi9dhIiJj6dZNzm1o3RpYsEAOx9m6FejXD9CuQt6nD7BwIRAVpbJSInLUtm1Ahw7y9rJlsnfJGdr7xMcfA7ff7r76fIgQAqdOnUK29r5J5KPi4uKQmppabaMAr8NERL4nL0+eBAHArl3ypGjuXOCjj6xhCQBWrZKt02lpwL33WofoEJG+/fOfcjtypPNhCZBzmjZskKGLgalaJpMJaWlpSE5ORllZmepyiDwiODjYpZ4lDXuYiMg4li+XJ0JBQUDHjsAffwDBwYD2Yf/hh3Luw9Gj1p8JDQWysjhMj0jvTp0CMjOB0lJg7Vrgssucf64lS+R1mxo2lD3Q5eVAYqL7aiUin2BvNuCiD0RkHOvWye311wMrVwKjRlnDknb/q6/a/kxJiRy6R0T6VVYGPPqoDEuXXeZaWAKAXr3k9sgRID4eaNRIzmciInICAxMRGcfixXJ72WVARATwxRfWeUqRkbIXqU8f6+O167Z8+6136yQix9x6K/DZZ/L2Qw+5/nyRkUDPntZ/FxQAa9a4/rxE5JcYmIjIGDZskL1KQUHADTfI+wICrEN3PvpI3peaKi92+cgjwCuvyPuWLpUt10SkP3l5wHffydt33209vl31xBPApZcCCQny3zt2uOd5icjvcNEHIjKGDz6Q25tvlvMSNO3aydBU2TPPyK3ZDCQnyzlMa9a4NomciDxj+XI5JK9JE+Cdd+peQtxew4fLr9mzgcmTGZiIyGnsYSIiY9DmL40YYf/PBATIid8A8OOPbi+JiNxg0SK5HTzYfWGpsnbt5JaBiYicxMBERPpXWAhs3y5vd+/u2M8OGya38+YB/rMoKJFxLFsmt1dd5Znn1wLT/v1Abq5nfgcR+TQGJiLSv82bgYoKeV2l+vUd+9nBg4HwcHmytHWrZ+ojIuecPg3s2SN7lnr39szvSE4GmjeXDSZffumZ30FEPo2BiYj0b/lyue3WzfEhO1FRMjQBwNixwIULbi2NiFywerXctm9vXZzB3UwmYPx4efuttzzzO4jIpxkmML311lu45JJLEBMTg5iYGPTo0QM//fST6rKIyFP27pUr402ZAvz97/I+R+YvVfb880BKiuxh+uc/3VYiEblIm5t4+eWe/T1jx8oVNrdsAQ4c8OzvIiKfY5jA1KBBA8ycORMbN27EH3/8gSuuuALXXnstdu7cqbo0InI3IeTwnG7dgJkz5X1JSXKFPGe0aQO8/rq8/e67the7JSJ1srLktlEjz/6ehARrKFu40LO/i4h8jmEC07BhwzBkyBA0b94cLVq0wPTp0xEVFYV1WusUEfmO/Hw5t0GTkiKH0oSFOf+cI0bI5zl1Cli1yuUSicgNzp+XW08Nx6ts6FC5ZWAiIgcZJjBVVlFRgS+//BIFBQXo0aNHjY8rKSlBbm6uzRcRGYB2EgUAixfLkOPqxSxDQqyTyrdsce25iMg9tGM9Pt7zv0uby7hyJVBS4vnfR0Q+w1CBafv27YiKikJoaCjGjx+PefPmoU2bNjU+fsaMGYiNjbV8ZWRkeLFaInKadhKVmgpcfbX7nveSS+T2m2/kqnlEpJY3e5jatJHvKcXF1rlTRER2MFRgatmyJbZs2YL169fj/vvvx5gxY/Dnn3/W+PgpU6YgJyfH8nX06FEvVktETtNWsnP3SZQWmNatA7p0Ac6ede/zE5F9hAA++0wuKQ54JzCZTMAVV8jbv/zi+d9HRD7DUIEpJCQEzZo1Q5cuXTBjxgx06NABs2fPrvHxoaGhllX1tC8iMgBPDdPp0MF6OycHePNN9z4/EdnnrbeA226z/tsbgQmwBibtYrlERHYwVGC6mNlsRgnHIRP5Hk/1MGVmyoUfNP/5D1Ba6t7fQUR1+/BD2397OzCtXy8XlyEisoNhAtOUKVOwatUqHDp0CNu3b8eUKVOwYsUKjB49WnVpRORunuphMpmAn3+WrctpaXJJ4++/d+/vIKK6HTtm++/wcO/83saN5Vd5OfDrr975nURkeIYJTFlZWbjjjjvQsmVLXHnlldiwYQMWL16Mq666SnVpRORunuphAoB27YD+/YFx4+S/L27pJiLPunBBrnxZmcnkvd/PYXlE5KAg1QXY6/3331ddAhF5Q06O7AUCPLvU8E03AS++KK/JVF4OBBnm7ZDI2H77Te3v79YNeP99oJZFo4iIKjNMDxMR+YlbbgE2bpS3PTmvoW1bIDZWzmPYts1zv4eIbKkOTE2ayO2BA2rrICLDYGAiIv3Yvx/46Sfrvz3ZwxQYCPTsKW9zLgOR9+glMB08CJjNamshIkNgYCIi/fjgA9t/e/pSAJdfLrcMTETeUVYmV6gDgCeflNtHHvFuDRkZssGkuBg4edK7v5uIDImBiYj0oaIC+Ogj2/sqLwHuCb16ye2aNfJCmkTkWVu3AkVFsvd4+nTZq/zyy96tIThYXmIA4LA8IrILAxMRqZeVBbRpA5w4AdSrByxfDrz7rpyc7UmXXipPnk6cAA4d8uzvIiLrcLwePYCAADk8LkDBqQjnMRGRAxiYiEi9OXOAv/6St8eNA/r1A+6+2/O/NyIC6NJF3uawPCLP0wKTNn9QlWbN5HbtWrV1EJEhMDARkXraqng9egDPP+/d362duG3Y4N3fS+SP1qyRW204rCo33SS3//2vfM/hkFwiqgUDExGppwWm554DwsK8+7tbtpTb/fu9+3uJ/M3Ro8CxY3LBhUsvVVtL375Ap07y9tSpvIgtEdWKgYmI1MrJAfbtk7e1Exhv4lwGIu/QhuN17AhERiotBSYT8Nln1n9v2aKsFCLSPwYmIlJr0ya5bdgQSEz0/u9v2lRueU0WIs/ShuOpnr+kad0aePZZeXvnTqWlEPmNpUvlXOWvvlJdiUMYmIhILa3VuXt3Nb8/IwMICgJKSoDjx9XUQOQPtGNd9fylytq2ldsdO9TWQeQvVq6UlxBZvlx1JQ5hYCIitbTV6Xr3VvP7g4J4TRYiTysosA5700sPE2ANTH/+yR5mIm/QGie0Y88gGJiISJ2KCmur8+WXq6tDG5anLW1ORO61YYM83hs0kL26etGsGRASIgPd1q2qqyHyfdrwVwYmIiI77dkD5OYCUVHAJZeoq0O7QO7ChepqIPJlepu/pAkOBq67Tt5+4QW1tRD5uqIi64q07dqprcVBDExEpI72xtmihVxqWJVRo+T2p5/kqn1E5F56nL+kmTpVbufOBc6cUVsLkS/btUte8ywxEUhOVl2NQxiYiEgdbc5Q48Zq62jXTq6YVVoK/PCD2lqIfI3ZDKxdK2/rrYcJANq0sbZ2r1ypthYiX2bQ4XgAAxMRqXTwoNyqDkwmEzBihLzNwETkXrt3AxcuABERQIcOqqupXv/+cssL2BJ5jhaYDDYcD2BgIiKVtB4m7eKxKg0fLreLFsmeJiJyD204Xrducs6QHmmBacUKpWUQ+TSDrpAHMDARkUp66WEC5MlccrJchGL1atXVEPmOdevktkcPtXXURhsquHu3XDGPiNyrpMR6aQH2MBER2UkIffUwBQQAQ4fK2xyWR+Q+2nLdnTurraM2KSmywUQIeU0mInKfCxeAevWsF4dnDxMRkZ327gUKC+U1ULQLx6o2bJjcfv+9PHEiItdUVFjnLai8dIA92reX223b1NZB5Gt+/NG25zYhQV0tTmJgIiI1Fi+W28svB0JD1daiueoqOcfi4EHg0CHV1RAZ34ED8tor4eHWC0TrlRbotm9XWweRr1mwwHr7lVfU1eECBiYiUmPJErkdOFBtHZVFRVlbmf/4Q20tRL5A661p00bttdbsoQUm9jARuU95uVxMCZAXsH70UbX1OImBiYi8r6jIunzv1VerreVil14qtwxMRK7T5gNpDRF61qqV3O7dq7YOIl/y229Adracw9S9u+pqnMbARETet2SJnL/UsKH+rsvStavcMjARue7ECbnNyFBbhz20IYPHjslGHSJynTYcb/Bg/fcy14KBiYi8b948ub3uOnnRWD2pHJjMZrW1EBnd6dNym5Kitg57JCYC0dHytnbJAyJyzcKFcnvNNWrrcBEDExF5lxDW+UvaxWL1pG1bICxMXo9p3z7V1RAZW1aW3BohMJlMQLNm8vb+/WprIfIFp0/LYbkmk1xUycAYmIjIuw4dAk6eBIKCgMsuU11NVcHBQMeO8jaH5RG5xkg9TIB1WB4DE5HrVq2S2/btDbmUeGUMTETkXb/9JredOwMREWprqQnnMRG5BwMTkf9asUJu+/ZVWoY7MDARkXetWSO3vXqpraM22kp5v/+utg4iIysqAvLy5G2jBSYOxyVy3cqVcsvARETkoK1b5bZbN7V11EYbKrhhA1fLInKW1rsUGgrExKitxV7sYSJyj7NngZ075e0+fdTW4gYMTETkPUIAu3bJ261bq62lNs2bA/XrA6Wl1iGEROQYLTAlJ+tvNcyaaIs+HDoEVFQoLYXI0LT5S23bAklJamtxAwYmIvKes2eBCxfkyVPz5qqrqZnJBFxxhbytXWCXiBxjtPlLgGwoCQkBysqAo0dVV0NkXFpg8oHheAADExF50+7dcpuZqd8FHzT9+smtNueKiOwnBPDRR/J2ZqbSUhwSGAg0bixvcx4TkfM2bZLbHj3U1uEmDExE5D1aYGrVSm0d9rjkErnVhhASkf3WrpUXqA4OBqZMUV2NYziPicg1QgDbt8vb2mepwTEwEZH3GCkwaTVmZQHnzqmthchotm2T26uvBrp0UVuLo7R5TGwsIXLOiRNAdrbssW3ZUnU1bsHARETeY6TAFBUFNGwob/PEicgxe/bIrRFPlrRLHixerLYOIqPasUNuW7SQq2T6AAYmIvIeIwUmwLqSHwMTkWP++ktuW7RQW4czrr5atozv3g0cOKC6GiLj0QJTu3Zq63AjBiYi8o7iYuDgQXnbKIGpTRu51a4lQUT20QKTEXuY4uKAyy+Xt5csUVoKkSFpjYzaZ6gPYGAiIu/Yu1dOBI2Lk9dlMYKOHeX299+VlkFkKKWl1sYRI/YwAUD37nLLxhIixxm5waQGDExE5B2Vh+MZ5SKW2nKoGzcCJSVqayEyiv375UVfIyOBtDTV1ThH6wXX3reIyH5GHpJbAwYmIvKOLVvkVpsXZATNmgGJibLFfPNm1dUQGYO2nHDbtsZpHLmY1jKuLV5BRPbJybFetFrPF6h3EAMTEXmHdgHYnj3V1uEIkwm47DJ5e906tbUQGYUWmNq3V1uHK7TAdPQoUFCgthYiI9F6l1JTgZgYtbW4EQMTEXleSQmwfr28rU2mNooOHeSWLc1E9vGFwFSvnuxdBqwngERUNyNfUqAWDExE5HmbNslV8urVM96bqHYRy3371NZBZBRaYLrkErV1uEobPqz9PURUt6VL5VZbNMlHMDARkedpvUs9ehhvTgMDE5H98vOt1y4ycg8TAFx6qdxq719EVLuSEmD+fHn7xhuVluJuDExE5HmbNslt165q63CGFpiOHOFKeUR10ZbhTk21DmkzKs5fJHLMypVAbi6Qnm6s+cp2YGAiIs/buFFuu3RRW4czUlLk8shmM3DokOpqiPTNF+YvabRrMW3bBhQWqq2FyAi04//yy4EA34oYvvXXEJH+FBRYr2VixMBkMnFYHpG9fCkwZWTIlvLycmDtWtXVEOmf9llvtLnKdmBgIiLP2rpV9s6kphr3IpYMTET28aXAZDIBAwfK2wsXqq2FyAgqX6DexzAwEZFnGXk4noaBicg+2hymdu3U1uEu11wjtwsWqK2DyAi0JcUZmIiIHMTAROQfsrOBrCx521dOmK66CggMBPbuBU6cUF0NkX6dOwecOSNvt2ihthYPYGAiIs/SVsgzcmBq3lxuGZiIarZ3r9ympQFRUWprcZfoaCAzU97m8U9Usz//lNuMDN85/ithYCIizykqsr6Jdu6sthZXaD1Mhw4BZWVKSyHSrb/+kltfa11mDzNR3bZskVsfu2CthoGJiDxn61agogJITgbq11ddjfPS0oDwcLla1pEjqqsh0ieth0nrkfUVDExEddu8WW4ZmIiIHFR5OJ7JpLYWVwQEAE2bytvapFYisuXrPUz796utg0jPtB6mTp2UluEpDExE5Dm+sOCDpnVrud21S20dRHrlq4FJayxhDxNR9UpLrStksoeJiMhBWmAy8vwlDQMTUc2E4JA8In914IAMTVFRQKNGqqvxCAYmIvKM4mJri5Mv9DC1aSO3DExEVWVlAbm5cuit1iPjKzIy5DY3F8jLU1sLkR5pvcvNmxt7+H0tGJiIyDO2b5eLJCQmWk84jEzrYfrzT9maTkRW2glTZiYQGqq2FneLjpZfAHDypNpaiPRI6132teG4lTAwEZFnVJ6/5AstTi1ayMUfsrOB06dVV0OkL75+wpSeLrfHj6utg0iPfHX+YiUMTETkGdoKeb4wfwkAwsKAJk3kbQ7LI7Ll6ydMWmA6cUJtHUR6VHlIno9iYCIiz6i8pLivqDwsj4istOX2ffWESbuOHAMTUVW+3sMMBiYi8gQhrCdQbduqrcWduFIeUfW0Y0JbHMXXsIeJqHoFBdahqr7aYAIGJiLyhHPngPx8OXfJl5YY5Up5RFWVlFiX3GZgIvIv2rFfrx6QkKC2Fg9iYCIi9ztwQG7T0+XcH1/BIXlEVf31F1BRAcTGAmlpqqvxDC76QFQ9X5+/+P8YmIjI/bTApC2S4CtatZLbU6fkanlEZG1AaNPGN1bErI42h+nYMbV1EOkNAxMRkZMOHpRbXwtMMTFAgwbyNoflEUmVA5Ov0oYWHzsmry9HRJK24IMPz18CGJiIyBN8tYcJ4LA8ootpx7svnzClpgIhIXLoIYflEVmxh4mIyEnaCVTjxmrr8AQu/EBk69AhufWlBV4uFhAANGwob2t/L5G/q6gAtm2Tt325hxkMTETkCb46JA/g0uJEFzt8WG4zM9XW4WlaIGRgIpJ275bLikdGWuf4+igGJiJyr7Iy4MgReduXAxOH5BHJ410bosbARORfNmyQ2y5dgMBAtbV4GAMTEbnX0aOymz4sTI779zXasIPDh4HCQrW1EKl2/DhgNsv5PSkpqqvxLAYmIltaYLr0UrV1eAEDExG5V+X5S764xHBiovwSAtizR3U1RGpp4aFhQznPx5dpPea7d6utg0gvGJiIiJzky/OXNByWRyRp85d8ecEHTbducrtpE1BcrLYWItVKS4GtW+VtBiYiIgf58gp5Gq6URyRpPUy+Pn8JkI1AKSnyRPGPP1RXQ6TWtm3yWKhXz7c/7/8fAxMRuZc/LDHMHiYiSWsgadpUbR3eYDIBvXrJ22vWqK2FSDVtOF7Xrr45/P4ihglMM2bMwKWXXoro6GgkJydjxIgR2MP5A0T6o62YlZGhtg5P0pZP5XsQ+Ttfvkh1dbRhedq1Z4j81aZNctu1q9o6vMQwgWnlypWYMGEC1q1bh6VLl6KsrAxXX301CgoKVJdGRJUdOya3DRqorcOTmjeX2wMH5AphRP7K3wKT1nN+9KjSMoiU0xoM27ZVW4eXBKkuwF6LFi2y+fdHH32E5ORkbNy4EX369FFUFRHZEMLaw1S/vtpaPKlhQyAoSE78PnHCt8MhUU2KiuTrH/CfwKT1nDMwkb/TAlOLFmrr8BLD9DBdLCcnBwCQkJBQ42NKSkqQm5tr80VEHnT2rJwEajIBaWmqq/GcoCDrJNd9+9TWQqSKtiJmTAxQy2exT9EC07Fj8npzRP4oOxvIypK3GZj0y2w2Y/LkyejVqxfatWtX4+NmzJiB2NhYy1eGL8+pINIDbTheSoq8kKUva9ZMbhmYyF9VXvDBDyZ9A5ANQYGBQHk5cPq06mqI1PjrL7lNSwOio9XW4iWGDEwTJkzAjh078OWXX9b6uClTpiAnJ8fydZRd6ESepQUmXx6Op2FgIn/nb/OXANm7nJ4ub/OcgvyVFpj8pHcJMGBgmjhxIhYsWIDly5ejQR3zBkJDQxETE2PzRUQepM1f8oc5PQxM5O/8MTAB1mF5R46orYNIFW3+UsuWauvwIsMEJiEEJk6ciHnz5mHZsmVo7AcXySIyHO0EgoGJyPf5a2Bq2FBuGZjIX/lhD5NhVsmbMGECPv/8c3z33XeIjo7GqVOnAACxsbEIDw9XXB0RAbCGB3+4iGXlwCSE/8zhINL4a2DSlhbXFr0g8jdaYGIPk/689dZbyMnJQb9+/ZCWlmb5+uqrr1SXRkQa7U1Uu06RL2vUCAgIAAoKgP9vwCHyG0L4b2DSGkv27lVbB5EKZjN7mPRMCKG6BCKqjRDWHiZ/CEwhIUBmpmxl3rfPt5dRJ7rY6dPyOkwBAdYhav5Ce3/jcFzyRydOAIWFtpfX8AOG6WEiIp07eVL2tgQG+s+bKOcxkb86dEhu69f3/UsIXEw77g8dktedI/In2oIPTZoAwcFqa/EiBiYicg9teEqjRv5zAsXARP7Kn1bEvFhaGhARIYcmacGRyF/s3y+32uefn2BgIiL38Kf5Sxpt8jdXyyJ/c+KE3GrXJPInJhMbS8h/addb9LOhuAxMROQeWg+TPwUm7QPj8GG1dRB5mxaY/OEi1dXRVgLlSnnkb7QLNmvXI/MTDExE5B7+GJgyM+WWPUzkb/y5hwmwnixqJ49E/oKBiYjIBVpg8qNlRi09TMeOARUVamsh8iZtDpO/BiZt7hYDE/kbbUien81fZGAiIteZzf61pLgmNVUurVpRIVcJJPIX/j4kjz1M5I+EYA8TEZHTjh4FSkrkEqP+NBE0MNDaysZ5TORPOCRPbrXWdiJ/cOGCvAYTwB4mIiKHacPxmjSRPS7+hPOYyN8UFAA5OfI2A5PsYSfyB1oDQWIiEBamthYvY2AiItf544IPGq1HjYGJ/IU2fykyEoiJUVuLKunpQEAAUFYGZGWprobIO/z4+msMTETkOn9c8EHDpcXJ32itzH42h8FGUJC8gC3AeUzkP7S5utpr348wMBGR6/zxorUa9jCRv/HjVmYbXCmP/M2pU3Kbmqq2DgUYmIjIdf48JI9zmMjf+OmywlVwpTzyN+xhIiJyUnk5cOCAvO2PgYk9TORvGJgkrpRH/kYLTOxhIiJy0JEjMjSFhfnnCZR20pSTY105jMiXMTBJ7GEif6MNyWMPExGRg7TFDho2lKtG+ZuoKCAhQd5mLxP5AwYmiYGJ/A17mIiInKSdLPjTBWsvxnlM5E8YmCQu+kD+RAjOYSIicpp2suDPSwxzaXHyFyUl1usO+Xtg0t7zTpwAKirU1kLkaXl5QFGRvM0eJiIiB2m9KgxM7GEi33fihNyGhVmHovqr1FR5PaaKCmvLO5Gv0j7fYmPlRav9DAMTEbmGPUwMTOQ/tOF49esDJpPaWlQLDLS+7x08qLYWIk/bs0du/fEC9WBgIiJXcQ4T5zCR/+D8JVtNm8rtvn1q6yDyNC0wtWyptg5FGJiIyDXsYeIcJvIfDEy2tMC0f7/aOog8TQtMrVqprUMRBiYicl5urvXaQwxMcn5HWZnaWog8iYHJFgMT+Yvdu+WWPUxERA7SThKSkuT1iPxVSgoQEgKYzdZJ8US+iIHJFgMT+QMhOCRPdQFEZGDaSYJ20uCvAgKsPWycx0S+jIHJFgMT+YMLF6yjSfz0856BiYicx8BkxXlM5A+OH5fb+vXV1qEXTZrI7fnzcogykS/SGgKTkoCICLW1KMLARETOO3BAbrWTBn/GpcXJ11VUAKdOydsMTFJ0tLwuDWDtfSPyNdrnmh+vhsvARETOYw+TFQMT+bqsLBmaAgKA5GTV1eiHNjyRgYl8FQMTAxMRuYCByUq7FhOH5JGv0hY0SUkBgoLU1qIn2vxFBibyVQxMDExE5CSz2TqfwY/fRC3Yw0S+TgtM6elq69Ab9jCRr+MF6hmYiMhJ585ZrzmUlqa2Fj2oHJiEUFsLkSdwwYfqaYFJO6kk8jXsYWJgIiInaa3NSUlAcLDaWvRAG5aTny+XYCXyNexhqh57mMjXMTAxMBGRk3jyZCsiwjoR/tAhpaUQeQSP+epxDhP5srIy67HPwERE5KCTJ+WWJ09WjRvLLQMT+SIGpupVvmg1h+OSrzlxQs5ZDgnx69UxGZiIyDk8eaqqUSO5ZWAiX6Qd85zDZEtbITM3l8Nxyfdow/EyMuQlBfyU//7lROQaBqaqtMB08KDSMog8Qlv0gce8rYgIudQ6wMYS8j2cvwSAgYmInKUFJq6QZ8UheeSrSkqAs2flbQamqrRjn40l5GsYmAAwMBGRs9jDVBWH5JGvOnVKbkNCgHr11NaiRwxM5KsYmAAwMBGRs7joQ1WVh+Rx8jf5ksoNJCaT2lr0iI0l5KsYmAAwMBGRM8xmBqbqaJO/CwrkhX2JfAXnL9WOPUzkq7QLMmvXG/NTDExE5LgzZ4CKCtnSrE12JiAszDqniy3N5Es4BLd2WmOJ1hpP5Cu0xhI/Xx2TgYmIHKedPKWkAEFBamvRG7Y0ky9iYKqddjKp9bwT+YKiIuD8eXmbgYmIyEFcIa9mnMtAvoiBqXbafjl3DiguVlsLkbtoDQBhYUB8vNpaFGNgIiLHcf5SzRiYyBdxWE7t4uLkSSXAXibyHZWPez9f7IWBiYgcx9bmmnFIHvkiHvO1M5ms+0bbV0RGx4YSCwYmInIcT55qpk3+PnxYbR1E7sRjvm4MTORrGJgsGJiIyHE8eaqZtvQqT5rIV+TnA7m58jaP+ZppJ5U89slXMDBZMDARkeO46EPNtBPK7GygsFBpKURuoc3JiYoCYmLU1qJn2rGvnWQSGR0DkwUDExE5jos+1CwmBoiIkLfZ0ky+gBettQ8DE/kaBiYLBiYickxFBXDqlLzNE6iqTCYOzSHfwiG49tGG4x47prYOIndhYLJgYCIix2RlAWYzEBAAJCerrkafOPmbfAkDk320BV+OHFFbB5E7CGE99hmYGJiIyEHaG2hqKhAYqLYWvWJgIl/Ckyb7NGwot8eOyZ54IiM7exYoLZW3OV+ZgYmIHMQFH+qmnVhyLgP5As5hsk9qKhAUBJSXW4ctExmVdtwnJwMhIWpr0QEGJiJyDBd8qBt7mMiXcEiefQIDrfOYOCyPjI4NJTYYmIjIMTx5qhsDE/kSHvP204bl8cLVZHRc8MEGAxMROUZbAYonTzVjYCJfwYnfjtECE3uYyOgYmGwwMBGRY7QTAW1FKKqq8hwmIdTWQuSKCxeA4mJ5m/MW65aRIbdcWpyMjg0lNhiYiMgxWmDSWlKpKu3EsqgIyMlRWwuRK7STpoQEICxMbS1GkJoqt6dPq62DyFXsYbLBwERE9hOCgcke4eFAfLy8zWF5ZGScv+SYlBS55Sp5ZHQMTDYYmIjIfufOyV4TwLoaFFWP85jIF3BYjmO0HiYGJjI6BiYbDExEZD+tdyk1FQgNVVuL3vFaTOQL2MPkGA7JI19QXCwbSAEGpv/HwERE9uNwPPuxh4l8Aa/F4hgtMOXkWHvjiYxG+9wKC7MOL/dzDExEZD+ukGc/7QSTPUxkZOxhckxMjLX3nb1MZFSVh+OZTGpr0QkGJiKyn3YxRvYw1U0bxsAeJjIyBibHmEycx0TGx/lLVTAwEZH9OCTPfhySR76Aiz44jvOYyOgYmKpgYCIi+zEw2Y+LPpDRVVQAJ0/K2+xhsh+XFiej49zFKhiYiMh+DEz20z5oTp4EzGa1tRA548wZGZpMJmsIoLpxSB4ZHXuYqmBgIiL7lJRYTwAYmOqWkgIEBMgTzqws1dUQOU4bjpeSAgQFqa3FSDgkj4yOgakKBiYiss+xY3IbHg7Uq6e2FiMICrK2ynMeExkR5y85h0PyyOgYmKpgYCIi+1QejsdlRu3DpcXJyDiPwTkckkdGJgQbS6rBwERE9jl6VG4zMtTWYSRcWpyMjEuKO4dD8sjIzp0DSkvlbR77Fg4HprKyMgQFBWHHjh2eqIeI9Ipd9I5jDxMZGQOTcyoPyRNCbS1EjtI+r5KSgJAQtbXoiMOBKTg4GA0bNkRFRYUn6iEiveLJk+PYw0RGxmE5ztECU2EhkJ+vthYiR7FxtFpODcl7+umn8dRTT+H8+fPuroeI9Ipvoo5jDxMZGRtJnBMVJb8AzmMi4+FnfbWcWif0jTfewL59+5Ceno7MzExERkbafH/Tpk1uKY6IdIStzY7jxWvJyLjog/NSUmTv0unTQPPmqqshsh8DU7WcCkwjRoxwcxlEpHs8eXKctq84JI+MprRUXrgW4DHvjNRUYP9+9jCR8TAwVcupwDRt2jR310FEemY2AydPytt8E7Wftq/OnQOKi4GwMLX1ENlLO9EPDgYSE9XWYkRcWpyMioGpWk4vK56dnY333nsPU6ZMscxl2rRpE45z6AmR78nKAioqgIAA64Rmqlt8PBAaKm9rgZPICLQT/dRUXnfNGdr7JJcWJ6NhYKqWU4Fp27ZtaNGiBV566SW8+uqryM7OBgDMnTsXU6ZMcWd9NlatWoVhw4YhPT0dJpMJ8+fP99jvIqJKtCFlKSlAkFMd0/7JZOI8JjImLTCxgcQ57GEio+Lw+2o5FZgefvhhjB07Fnv37kVYpSEmQ4YMwapVq9xW3MUKCgrQoUMH/Oc///HY7yCiavAN1HlcKY+MSOsZ0U78yTEMTGRExcVyCDnAHqaLONVUvGHDBvz3v/+tcn/9+vVxyoNvDoMHD8bgwYM99vxEVAOukOe8tDS55dAcMhL2MLlGC0w87slItM/60FAgIUFtLTrjVGAKDQ1Fbm5ulfv/+usvJCUluVyUu5SUlKCkpMTy7+pqJiI7sIfJeWxpJiNiD5NrtKDJ456MRJtrm57OuYsXcWpI3vDhw/GPf/wDZWVlAACTyYQjR47giSeewA033ODWAl0xY8YMxMbGWr4yMjJUl0RkTJwE6jxO/iYjqrzoAzmuckOJEGprIbKXdtxrIyPIwqnANGvWLOTn5yM5ORlFRUXo27cvmjVrhujoaEyfPt3dNTptypQpyMnJsXwdPXpUdUlExqR107OHyXHsYSIj0gI+h+Q5R9tvZWXAhQtqayGyl9bDxIaSKpwakhcbG4ulS5fi119/xbZt25Cfn4/OnTtjwIAB7q7PJaGhoQjVlvQlIuexh8l5DExkROxhck1oKBAXB2Rny33J+SBkBOxhqpFTgam4uBhhYWG4/PLLcfnll7u7JiLSG/YwOY9D8siI2MPkurQ0a2Bq00Z1NUR1Yw9TjZwKTHFxcejWrRv69u2L/v37o0ePHggPD3d3bVXk5+dj3759ln8fPHgQW7ZsQUJCAho2bOjx30/kl7jMqGsqr5ZlNsuL/xLpWWEhkJcnb/PEyXlpacCuXdYGJyK9Yw9TjZz65P75558xaNAgrF+/HsOHD0d8fDwuv/xyPP3001i6dKm7a7T4448/0KlTJ3Tq1AmAvB5Up06dMHXqVI/9TiK/p7U4hYUB8fFqazGi5GS5LS/nXAYyBq13KSwMiI5WW4uRaSed2nsokd6xh6lGTgWmyy+/HE899RSWLFmC7OxsLF++HM2aNcPLL7+MQYMGubtGi379+kEIUeXro48+8tjvJPJ7lZcU5zKjjgsJsc5f4DwmMoLK85d4zDuPgYmMhj1MNXJqSB4gr7m0YsUKy1dJSQmuueYa9OvXz43lEZFyvGit61JTgfPn5YdR27aqqyGqHecvuYc255OBiYygogLIypK32cNUhVOBqX79+igqKkK/fv3Qr18/PPHEE7jkkktgYksUke/hRWtdl5IC/PknF34gY+AKee6htdJzDhMZwdmzMjSZTNah5GTh1JC8pKQkFBYW4tSpUzh16hROnz6NoqIid9dGRHrAJcVdx6XFyUjYw+QeHJJHRqJ9PiUlAUFOD0DzWU4Fpi1btuDUqVN48sknUVJSgqeeegqJiYno2bMnnn76aXfXSEQqcUlx1zEwkZGwh8k9GJjISLjgQ62cjpBxcXEYPnw4evXqhZ49e+K7777DF198gfXr12P69OnurJGIVGIPk+t4LSYyEi0wsYfJNVpgys+Xy7RzxUHSMy74UCunAtPcuXMtiz38+eefSEhIwOWXX45Zs2ahb9++7q6RiFRiD5Pr2MNERqIFe7Y0uyY6GoiKkoHp5EkGJtI39izXyqnANH78ePTp0wf33nsv+vbti/bt27u7LiLSAyHYw+QOlS9eS6R3PHFyn7Q0YO9eGZhatFBdDVHNtCF57GGqllOBKUtbdpCIfFtODqAt6MIeJudpQ5vYw0R6JwQXfXCn9HRrYCLSMzaU1MrpOUwVFRWYP38+du3aBQBo06YNrr32WgQGBrqtOCJSTOtdio8HwsPV1mJk2gfQmTNy2Va+T5Je5ecDhYXyNgOT67i0OBkFF32olVOBad++fRgyZAiOHz+Oli1bAgBmzJiBjIwMLFy4EE2bNnVrkUSkCOcvuUdSEhAQAJjNMjTxA4n0SutdioyU82/INVwpj4yCiz7UyqllxSdNmoSmTZvi6NGj2LRpEzZt2oQjR46gcePGmDRpkrtrJCJVOH/JPQIDrSHp6FG1tRDVhsNy3IuBiYyCPUy1cqqHaeXKlVi3bh0SEhIs99WrVw8zZ85Er1693FYcESmm9TAxMLmuUSO5Pw8dAi69VHU1RNXj/CX30nrnGZhIz/Lz5RfAHqYaONXDFBoairy8vCr35+fnIyQkxOWiiEgntB4mDslzXWam3B4+rLYOotqwh8m9OIeJjEBrKImI4FDcGjgVmK655hrce++9WL9+PYQQEEJg3bp1GD9+PIYPH+7uGolIFQ7Jc59GjeT20CGVVRDVjj1M7sUheWQElZcUN5nU1qJTTgWm119/Hc2aNUPPnj0RFhaGsLAw9OrVC82aNcPs2bPdXSMRqcJFH9yHPUxkBOxhci8tMFW+RAOR3vC4r5NDc5jMZjNeeeUVfP/99ygtLcWIESMwZswYmEwmtG7dGs2aNfNUnUSkAnuY3Ic9TGQE7GFyr9hYeUmGoiLZit+kieqKiKrigg91cqiHafr06XjqqacQFRWF+vXr48cff8T8+fMxbNgwhiUiX1NRYW11Yg+T67QepkOH5MVBifSILc3uZTJxHhPpH5cUr5NDgenjjz/Gm2++icWLF2P+/Pn44Ycf8Nlnn8FsNnuqPt909izQsiWQkCCvy0KkR6dPy9dnQABbm92hQQO5rbwaEZHesIfJ/TiPifSODSV1cigwHTlyBEOGDLH8e8CAATCZTDjBVhPHxMYCe/cCFy7I8ESkR9pxnZoqryNEromKkisQAdaTUiI9EYInTp7ApcVJ7yov+kDVcigwlZeXIywszOa+4OBglJWVubUonxccDCQny9sMm6RXnL/kftpJKAMT6VFuLlBSIm+zh8l92MNEeseGkjo5tOiDEAJjx45FaGio5b7i4mKMHz8ekZGRlvvmzp3rvgp9VXq6PGk6cQLo2FF1NURVcYU890tJAQ4csH44EemJ9rqMiZELFZB7cA4T6R0XfaiTQ4FpzJgxVe677bbb3FaMX0lPBzZv5hso6Rd7mNxPa7VnDxPpkfa65EmTe7GHifSsogLIypK3OSSvRg4Fpg8//NBTdfgfrdWegYn0ioHJ/RiYSM+0HiYOx3MvzmEiPTtzRi7wZDIBSUmqq9Etpy5cS26gnYQyMJFeaa9Ntji5DwMT6RnnMXgGj3vSM+24T04GghzqR/ErDEyqaC1OWis+kd7wGkzuxxMn0jMuKe4Z2v48exYoL1dbC9HF2FBiFwYmVTgkj/SOb6Lux8BEesZj3jMSE+X17ITgpURIf7ikuF0YmFRhYCI9Ky+X45oBtja7EwMT6Rl7mDwjMFCGJoDHPukPG0rswsCkihaYTp9mFz3pz9mzsjU0IICTQN2JgYn0jCdOnsNjn/SKS4rbhYFJlaQk2eokBN9ASX+0EyftdUruoX0gFRTILyI9YQ+T5zAwkV5pn/ccklcrBiZVAgJ4MTvSL7Y0e0ZUlPWCoDxxIj2p3HjH4979GJhIr/h5bxcGJpU4j4n0im+gnmEyWU+ctH1MpAcXLgBlZfJ2crLaWnwRAxPpFRd9sAsDk0pcWpz0ioHJc3jiRHqkHfPx8UBoqNpafBGPe9Irft7bhYFJJV68lvSKcxk8hydOpEc85j1L67XjcU96kp8vvwD2MNWBgUklDskjvWKLk+cwMJEe8Zj3LB73pEfacR8ZKefYUo0YmFRiYCK94smT5/DEifSIPUyexeOe9Iif9XZjYFKJgYn0im+insMTJ9Ij7ZhnYPIMbb+eOQOYzWprIdJwwQe7MTCpxBMn0isGJs/hcU96lJUltwxMnqHNYaqoAM6fV1sLkYaf9XZjYFKpcotTebnaWog0JSVAdra8zZMn99M+mBiYSE/OnJFbLinuGcHBQEKCvM1jn/SCPUx2Y2BSKTFRXpdFCODsWdXVEEnah3lwsFximNyLPUykR1oPEwOT5/DYJ73hUFy7MTCpFBQEJCXJ23wDJb2o3EVvMqmtxRdpH0x5eUBhodpaiDQMTJ7HwER6w6G4dmNgUo1voKQ3HNPsWTEx1guD8rgnvdBOnLRGPHI/ft6T3jAw2Y2BSTXtRaqdpBKpxsDkWSYTT5xIXwoKrL2d7GHyHB73pDfaa5HHfZ0YmFTjBHDSG45p9jyeOJGeaAs+hIXx4pWexOOe9EQI9jA5gIFJNb6Bkt5or0X2MHkOj3vSk8rD8Thv0XN43JOe5OUBxcXyNofi1omBSTW+gZLecEie5/G4Jz3hkuLeweOe9ERrKImMlF9UKwYm1TiHifSGgcnzOBSX9IQr5HkHAxPpCYfjOYSBSTWeOJHeMDB5Hk+cSE8YmLxD279ZWXL+CJFKXPDBIQxMqvHEifSGiz54Ho970hMuKe4d2nFfWgpkZysthYg9TI5hYFJNe6GePQtUVKithSg/37q8MHuYPIeBifSEc5i8IyxMXocNsJ6sEqnCHiaHMDCplpgoVyUym60fWkSqaL1LkZFcXtiTGJhITzgkz3t47JNe8Lh3CAOTakFB1mEQfAMl1Th/yTu0k6acHOuyrkSq8MTJexiYSC+01yCH5NmFgUkP+AZKesHA5B1xcUBIiLzN455U4xwm7+HnPekFG0ocwsCkB3wDJb04eVJuGZg8y2SyfkjxuCeVhOAcJm/i5z3pBRd9cAgDkx5oJ6e8FhOpduyY3Navr7YOf8ATJ9KD3Fy5ahvAHiZv4HFPesFFHxzCwKQHfAMlvTh+XG4ZmDyP12AjPdBamaOjgfBwtbX4A37ekx6UlgIXLsjbDEx2YWDSA+0NlMuMkmpaYGrQQG0d/oAnTqQH2nA89i55B4970gPtuA8MBBIS1NZiEAxMesC5DKQX7GHyHg7FJT3gxG/vYmAiPai80EsAo4A9uJf0QPugYg8TqSQEA5M3MTCRHjAweVflwCSE2lrIf3FJcYcxMOkBh+SRHmRnA4WF8jYDk+cxMJEecElx79I+74uKgPx8tbWQ/2JDicMYmPSgcg8TW5xIFa13KT6ek7+9IS1NbrWl3IlU4JLi3hUZKb8ADssjdRiYHMbApAday155uXXVEiJvO3FCbtm75B3sYSI94ImT93EeE6nGIXkOY2DSg9BQIC5O3uawPFJFewPlRWu9Q9vPBQVAXp7aWsh/MTB5Hxd6ItV43DuMgUkvuPADqcY3UO+KipJfAHuZSB3OYfI+rVVfGw5J5G3sYXIYA5NesMWJVOMbqPdxWB6pxjlM3scGUlKNDaQOY2DSC66UR6rxDdT7uPADqWQ2MzCpwMBEqvHz3mEMTHrBN1BSjT1M3sceJlLp/HkZmgAgMVFtLf6En/ekkhDW1x4/7+3GwKQXHJJHqmmvPbY4eQ9PnEglrXcpPh4IDlZbiz/hcU8qZWcDZWXyNucu2o2BSS84JI9UY4uT9/G4J5U4LEcNBiZSSWscjY0FwsLU1mIgDEx6wTdQUold9GqwZ5lUYmBSQ2vV5+c9qcDj3ikMTHrBEydSiV30arChhFTikuJqaMf9uXNARYXaWsj/cPi9UxiY9IJDc0gldtGrweOeVOIKeWrUqweYTLJn/9w51dWQv+FoEqcwMOmF9oGVmwsUF6uthfwPW5zUYM8yqcShOWoEBcnQBLCxhLyPx71TGJj0IjYWCAmRt/kGSt7GFic1tP1dUCC/iLyJJ07qcDguqcJLiDiFgUkvTCa+gZI67GFSIyrKOgSSxz15G+cwqcPPe1KFDSVOYWDSEw7PIVXYw6QGG0pIJc5hUofHPanCBlKnMDDpCd9ASRV20avDhR9IFbY0q6P16mmhlchb2EDqFAYmPeGJE6nCFid12LNMKpSVAefPy9s87r2PDaSkCj/vncLApCc8cSJV2OKkDk+cSAVtOeuAACAhQW0t/ojHPalQVATk5cnb/Lx3iOEC03/+8x80atQIYWFh6N69O37//XfVJbkP30BJFbY4qcOeZVJBe70lJsrQRN7Fz3tSQRsCGhwsV2cmuxnqXfKrr77Cww8/jGnTpmHTpk3o0KEDBg4ciCxfecPhiROpwh4mddizTCpw/pJaDEykQuXGUZNJbS0GY6jA9Nprr+Gee+7BuHHj0KZNG7z99tuIiIjABx98UO3jS0pKkJuba/OlazxxIhUKC4H8fHmbJ0/ex4YSUoFLiqvFwEQqsHHUaYYJTKWlpdi4cSMGDBhguS8gIAADBgzA2rVrq/2ZGTNmIDY21vKVkZHhrXKdwxMnUkF7vYWGAjExamvxRzxxIhW4pLhaWlDNzQVKStTWQv6Dw++dZpjAdPbsWVRUVCDlolSckpKCU6dOVfszU6ZMQU5OjuXr6NGj3ijVedoL+MwZwGxWWwv5j8pLirOL3vvYs0wqcEieWnFxQFCQvM2lxclb2MPkNMMEJmeEhoYiJibG5kvXtBanigrrcq9EnsYWJ7W0D66zZ+WxT+QNDExq8aLVpAKPe6cZJjAlJiYiMDAQpy9qhT19+jRSU1MVVeVmwcHW5V3Z2kzewhYnterVkydPQsjQROQNnMOkHgMTeRsvUu80wwSmkJAQdOnSBb/88ovlPrPZjF9++QU9evRQWJmbcR4TeRt7mNQKCpKhCeBxT97DOUzqMTCRt7GHyWmGCUwA8PDDD+Pdd9/FnDlzsGvXLtx///0oKCjAuHHjVJfmPnwDJW9jD5N6bCghb+OJk3r8vCdvYwOp04JUF+CIm266CWfOnMHUqVNx6tQpdOzYEYsWLaqyEIShcQI4eRu76NVLTgZ27uRxT97DwKQeAxN5GxtInWaowAQAEydOxMSJE1WX4TlsaSZvY4uTejzuyZuKi4G8PHmbc5jU0fY9V8kjbzCbra81HvcOM9SQPL/AHibyNrY4qceWZvIm7aQpOBiIjVVbiz/jcU/edP689ZI1DEwOY2DSG7Y0k7exh0k9NpSQN1Uejsdrr6nDwETepL3O4uOBkBC1tRgQA5Pe8MSJvKm8HDh3Tt5mD5M6bCghb+L8JX1gYCJv4nHvEgYmveGJE3mTNjQnIMC6tDV5HxtKyJs4j0EfKgcmIdTWQr6Px71LGJj0hidO5E3a6ywxEQgMVFuLP2NDCXkTW5r1QTtxLS4G8vPV1kK+j8e9SxiY9EZ7IRcWAgUFamsh38cFH/SBLc3kTTxx0ofISPkFsLGEPI/HvUsYmPQmKgoID5e3+QZKnsYFH/RB2/9FRWxpJs/j0Bz94NLi5C3aOSWPe6cwMOmNycRheeQ97GHSh8hIICJC3uaJE3kaW5r1gws/kLdony087p3CwKRHnM9A3sIeJv3QWv143JOnMTDpBwMTeQuPe5cwMOkRe5jIW9jDpB/acc8eJvI0njjpBwMTeQuPe5cwMOkRe5jIW9jDpB/sYSJvEIJzmPSEgYm8hce9SxiY9Ig9TOQt2muMPUzqsYeJvKGgQC4uArChRA8YmMgbysqA8+flbR73TmFg0iP2MJG3cEiefrCHibxBe31FRFiXtCZ1uEoeecPZs3IbEAAkJKitxaAYmPSILU7kDUJwTLOesIeJvIHHvL7w8568QXt98SL1TmNg0iMOySNvyM6W3fQAT570gD1M5A2cx6AvDEzkDTzuXcbApEcckkfeoAXymBggLExtLcQeJvIO9jDpS+Xj3mxWWwv5Lh73LmNg0iPtBX3uHFBerrYW8l1c8EFf2MNE3sATJ31JTJTbigrgwgW1tZDv4nHvMgYmPapXT07ME8I6UY/I3fgGqi+VW5qFUFsL+S4OzdGXkBAgPl7eZmMJeYp23PPz3mkMTHoUGGhtdeI8JvIU9jDpi3YCW1oK5OaqrYV8FxtK9IfzmMjTtNcWG0qcxsCkV5zHRJ7GJcX1JTwciIqStzmPiTyFgUl/uLQ4eRqPe5cxMOkVW5zI07QeJr6B6gfnMZGn8cRJf/h5T57G495lDEx6xaXFydP4Bqo/bGkmT+McJv1hYCJP43HvMgYmveKQPPI0zmHSHy4tTp7Ei1XrEwMTeRqPe5cxMOkVe5jI0ziHSX84JI88KTvbeqkKtjTrBwMTeVJxMZCXJ28zMDmNgUmv2MNEnsYWJ/1hDxN5knbMx8YCoaFqayErBibyJO3zJDhYHvvkFAYmvWIPE3lSURFbnPSIPUzkSZzHoE+cu0ieVHlJcZNJbS0GxsCkV1oPEwMTeYL2BhoSwhYnPWEPE3kSe5X1iT1M5Ek87t2CgUmvKp84CaG2FvI9ld9A2eKkH+xhIk/iiZM+af8f588DZWVqayHfw+PeLRiY9Eo7cSopsQ6dInIXrpCnT+xhIk/ikDx9SkgAAv7/dOzsWbW1kO/RjnsGJpcwMOlVRAQQFSVvs7WZ3I0tTvpUeS4De5bJ3SrPZSD9CAhg7zJ5Do97t2Bg0jOOayZP4ZLi+qR9oJWVATk5amsh38OWZv3i5z15ChtI3YKBSc/4Bkqeog3J4xuovoSFAdHR8jaPe3I3DsnTL37ek6ewocQtGJj0jEuLk6ewxUm/OI+JPIWBSb+4tDh5Cj/v3YKBSc/Y4kSewiF5+sW5DOQp2sl4YqLaOqgqft6Tp3AOk1swMOkZ30DJUzgkT7/Yw0SeIIR1BTaeOOkPR5SQJwjBHiY3YWDSM631n4GJ3I09TPrFHibyhJwcoLxc3mYPk/5wSB55QkEBUFwsbzMwuYSBSc/Yw0SeUFHBSaB6xh4m8gTt9RQVJRcXIX1hYCJP0M4fw8OByEi1tRgcA5OeMTCRJ5w/D5jN8jZbmvWHPUzkCVzwQd8YmMgTOBzPbRiY9IyBiTxBez3VqwcEB6uthariiRN5AgOTvvG4J0/gaBK3YWDSM+0Ffu6cdew5kau44IO+saGEPIELPuib9v+SmwuUlKithXwHe5jchoFJz+rVA0wmucrJuXOqqyFfwQUf9I0tzeQJXFJc3+LigMBAeVsLt0Su4pLibsPApGeBgdYPN7Y2k7vwDVTfKi/6oM01I3IVh+TpW0CA9fOejSXkLuxhchsGJr3jtRnI3TimWd+0k6aKCiA7W2kp5EMYmPSPvcvkbvy8dxsGJr3jfAZyN224B4fm6FNoKBAbK2/zuCd34XGvfwxM5G7sYXIbBia9Y2Aid+OJk/7xxIncjT1M+sfjntyNQ/DdhoFJ7xiYyN0YmPSPxz25GwOT/jEwkbuxh8ltGJj0jidO5G5cLUv/eOJE7sbApH887smdhOAcJjdiYNI7belnBiZyF16PRf/YUELuVFgovwA2lOgZAxO5U3a29Rqe/Lx3GQOT3vHEidxJCA7JMwKeOJE7acd8cDAQE6O2FqoZj3tyJ+28MSZGLiZELmFg0jsGJnKn7Gy5XDUgL4xM+sTjntyp8nA8k0ltLVQzBiZyJw7HcysGJr3jiRO5k9bSHBUFhIWprYVqxhMncifOWzQG7bjn5z25Axd8cCsGJr3TXugFBfKLyBUcjmcM2nHPwETuwAUfjEH7/7lwASgrU1sLGR+XFHcrBia9q9wTwFYnchVbmo2BLc3kTqdPy622iBDpU7161iGT586prYWM7+RJuU1NVVuHj2Bg0juTicPyyH3YRW8M2v/P2bOA2ay2FjI+LTDxxEnfAgOBhAR5m73L5CotMKWlqa3DRzAwGQEDE7kLW5qNQesBNJuB8+fV1kLGd+qU3PK41z/OXyR30Y57Bia3YGAyAgYmchcGJmMIDgbi4+VtnjiRq9jDZBwMTOQu7GFyKwYmI9ACk/ahR+QsBibj4Dwmchf2MBkHAxO5CwOTWzEwGYH2BqqtcEbkLO3kmydO+scTJ3IX9jAZhzYcl4s+kCvMZh73bsbAZATaGygDE7mKPUzGwaG45A7l5dbQzeNe//h5T+5w9qw89k0mHvduwsBkBGxxInfRAhNXydM/9jCRO5w9CwghT5x4OQH94+c9uYM2DDcxUc6JJZcxMBkBW5zIHcrKrCuuscVJ/9jDRO6gNZIkJQFBQWprobrVqye3/LwnV3D+ktsxMBkB30DJHbQT78BA62uK9Is9TOQOXPDBWNjDRO7AwOR2DExGwB4mcofKLc0BPPR1jz1M5A6c+G0sbCAld9ACE497t+FZkxFogSk3Vw6rInIGV8gzFvYwkTuwh8lY2EBK7sCL1rodA5MRxMVZewTYTU/O4gp5xsIeJnIH9jAZixaYCguBoiK1tZBxcUie2zEwGUFgIBAfL2+z1YmcxcBkLFoP07lzQEWF2lrIuNjDZCwxMdbFOdhASs5iYHI7Biaj4ERQchWXFDcW7ZgXgsc9OY89TMZiMlnnMfG4J2dxDpPbMTAZBcc1k6vYw2QsQUFAQoK8zXlM5Cwe98bDhR/IFUKwh8kDGJiMgoGJXMUTJ+PhPCZylTYkjy3NxsHPe3JFfr6cAwcwMLkRA5NRsMWJXMVV8oyHK+WRK8rKrMO6eNwbB4fgkyu03qXoaCAyUm0tPoSBySj4BkquYg+T8bClmVxx5owcnhMQwItVGwkbSMkVHI7nEQxMRsETJ3JFRYW1l4KByTg4+ZtcoZ04paTI1VbJGNhASq7ggg8ewcBkFAxM5IqzZwGzWa7ApL2WSP8YmMgVbGk2JvYwkSt43HsEA5NR8A2UXHH8uNympADBwWprIfsxMJEreOJkTGwgJVdoC73wuHcrBiajYBc9uUILTPXrq62DHMPARK7QAlN6uto6yDH8vCdXsKHEIxiYjIItTuQKBiZj4nFPrjhxQm554mQsHFFCrmBg8ggGJqPQTpxyc4HSUrW1kPEcOya3DRqorYMcwx4mcgVPnIyJPUzkCi764BGGCUzTp09Hz549ERERgbi4ONXleF9cnFwaFuCbKDmOPUzGxMBErmBgMiYtMOXnA8XFamsh4+EcJo8wTGAqLS3FyJEjcf/996suRY2AACAhQd7myRM5ij1MxqQFppwcoLxcbS1kPJzDZEyxsdZl4Pl5T44oLbW+ZhiY3CpIdQH2eu655wAAH330kdpCVEpMlGOaOa6ZHMUeJmOKj7fePn8eSE5WVwsZi9nMlmajMplkY0lWljz55fs22UtrHA0Lszayk1sYpofJGSUlJcjNzbX5MjROACdnaW+i/OA1lqAgORwXYEszOebsWdkraTLxYtVGxIUfyBlHjshtw4by2Ce38enANGPGDMTGxlq+MjIyVJfkGr6BkjPy8uQXwMBkRGwoIWdow/ESE3ntNSPiwg/kjMqBidxKaWB68sknYTKZav3avXu3088/ZcoU5OTkWL6OHj3qxuoV4BsoOUMbjhcTA0RHq62FHMeFH8gZnL9kbGwoIWcwMHmM0jlMjzzyCMaOHVvrY5o0aeL084eGhiI0NNTpn9cdvoGSM7jgg7ExMJEzuEKesXFECTmDgcljlAampKQkJCUlqSzBWBiYyBlc8MHYGJjIGbxorbFxRAk54/Bhuc3MVFuHDzLMKnlHjhzB+fPnceTIEVRUVGDLli0AgGbNmiEqKkptcd7CFidyBhd8MDYGJnIGe5iMjZ/35Az2MHmMYQLT1KlTMWfOHMu/O3XqBABYvnw5+vXrp6gqL2OLEzlD62HikDxjYs8yOYNzmIyNn/fkKCEYmDzIMKvkffTRRxBCVPnym7AE8MSJnMMhecbGHiZyBnuYjI2f9+So8+eBwkJ5mw2kbmeYwETgGyg5h4s+GBsDEzmDc5iMjUPyyFHa/KXUVHnhWnIrBiYj0d5A8/KA0lK1tZBxsIfJ2BiYyFEVFdbAxIYSY+KQPHIUh+N5FAOTkcTFAQH//1/GN1GyR2kpcPq0vM3AZEwMTOSo06eBsjL5ecEeJmOq3EBaUqK2FjIGBiaPYmAykoAAdtOTY7R5DCEh1hZLMpbKgUkItbWQMWgXaa9fHwgyzNpOVBkbSMlRDEwexcBkNJzHRI7QhuOlp1s/fMlYtMBUUQHk5KithYxBO3HKyFBbBzmvcgMpAxPZg4HJo3gGZTTsYSJHcMEH4wsPByIj5e0zZ9TWQsag9TAxMBkbP+/JEbxorUcxMBkNJ4KSI7jgg29ITpZbBiayhxaY2NJsbPy8J0ewh8mjGJiMhkPyyBHsYfINKSlym5Wltg4yBg7J8w3sYSJ7lZQAp07J2wxMHsHAZDQMTOQI9jD5Bq2HSVvxkKg2bCjxDfy8J3tpx3x4uDVok1sxMBkNW5zIEdoqeVxa2Ni0wMQeJrKH1tKcnq62DnINh+SRvSrPXzKZ1NbioxiYjIZvoOQIbc6LdsJNxsQheWQvIayBKTVVbS3kGjaQkr04f8njGJiMhl305AjtBJuBydg4JI/slZ0tL1gNWIM2GRMbSMleDEwex8BkNAxMZK+KCuD8eXk7KUltLeQa9jCRvbRhuPHxQFiY2lrINexhInsxMHkcA5PR8EJ2ZK9z5+TwHICTQI2Oc5jIXhyO5zvYQEr22rtXbhs3VluHD2NgMhrtDTQvDyguVlsL6Zs2fykhAQgKUlsLuYZD8sheDEy+Q/u8P3PG2vhFdDGzGdi8Wd7u2FFpKb6Mgclo4uKswyxOnFBaCumc1hvB4XjGp538nj8vr7dBVBMGJt+hLQufny/nphFVZ/9+2YgeFga0aqW6Gp/FwGQ0JpP1TVRbd5+oOlwhz3ckJMjrawA87ql2DEy+IyLC+v596JDSUkjHNm6U2w4dOJrEgxiYjEi7evvRo2rrIH3TAhN7mIzPZOJxT/bRLlbNwOQbGjWSWwYmqokWmDp3VluHj2NgMiL2MJE9GJh8i7b6EQMT1WbDBrlt105tHeQeWmDSLkxKdLG1a+W2Wze1dfg4BiYjYmAie2hz3BiYfIPWw6QtH0t0saws62pZPXqorYXcIzNTbtnDRNUpKQH++EPe7tVLbS0+joHJiLTAxJZmqonZDCxaJG936qS2FnIPDsmjuvz2m9y2bSuvw0TGxyF5VJuNG2VoSkoCmjVTXY1PY2AyIu3EiT1MVJN16+SJdXQ0MHiw6mrIHbQheexhopqsWSO3bGn2HVpg2r1baRmkUytXym2vXnKuK3kMA5MRaYHp4EFem4Gq9913cjt8uHV1NTI27bjnXAaqCQOT7+nRQ658tmcP8NdfqqshvVmwQG4HDlRbhx9gYDKi1q3levvnz7PViaq3apXcXn212jrIfbRJ/Lt2AWfPqq2F9Ke42LpaFgOT74iPB664Qt6eO1dtLaQvWVnWBR+uuUZtLX6AgcmIQkOBnj3l7RUrlJZCOlRQYJ0E2qeP2lrIfdLTgfbtZa/ykiWqqyG9+eMPoLQUSEkBmjRRXQ250403yu0bb8iL2BIBwAcfyM+DTp2sc9vJYxiYjKpfP7ldtkxpGaRDa9cC5eVyzos2/p18gzYfTRtySaRZvVpuOZfB99x+uwzBx48DTz+tuhrSg0OHgBkz5O3Jk1VW4jd4SWCjGjgQmDoVmDcP2L5dtjwTAdbheOxd8j0jRwIvvwx8/TXwyCO87gZZaY1n/furrYPcLyxM9i4NGQK8/rpsOBk0SHVVvk0IoKxM9tpe/FVSUv39zj7OmefMz5f1XXopcNttqveWX2BgMqpu3YAbbgC+/Ra4/355khzADkOCNTD17au2DnK/rl2BO+4APv4YGD9eXqQ0MFB1VaRaSQnw66/ytjbfhXzL4MHAxIkyOI0dC2zbBiQnq67KcRUV9oeImgKLI1/OhpayMtV7qm6tWslGc577eYVJCP9ZZi03NxexsbHIyclBTEyM6nJcd/SoXACioAB4913g7rtVV0SqFRcDcXHyjX/PHqBFC9UVkbtlZQEtWwLZ2cBrrwEPPaS6IlLthx/kipgpKcDJkxyS56uKimRj6Y4dckGfefNkg0lZmfWrvNz23/aGDkfDiTNhpqxMXiPQiEwmOX88JKT2r7oe467nCA6WFzVmg5nL7M0GDExGN2sW8OijQESEXCGpVSvVFZFK8+YB11/PEydf9847wH33yQ/OTZuANm1UV0SqlJQAHTvKFVMfflh+JpDv2r5dDsMqKVFdiXsEBVUNBMHBdYcK7XHBwfJ90NNBJTCQn6c+ioGpGj4ZmCoq5HymX34BLrlETviPiFBdFalQUiJfA3/9BTz5pHVCKPkeIYChQ4GffgI6dAAWLwZiYuT9jn6Zzc79nKeeRy81aftZ74/fvl1eiyUpSR77cXFefzmSl/3wA/DAA9VfvD4w0BokagoejgQSTz4uOJjDyUg5BqZq+GRgAoBTp+RJkzZUp3Fj+aYZEGD9qvzv2r6nfZlMtl/23ueu+9313L6iupOmi29//TWwcKEc1753rzyBJt918qS8NtP586orIT344Qdei8WfVFTIY79yOAoKYgAhcpC92YCLPviC1FRg/nw5KXTPHvlF/uu99xiW/EFaGvDjj8CddwJ//unac1XX2FDTV02NE578WRW/U2twcefjPPXYq66SK6iR/wgMlL2KROQVDEy+okcPORF0+XLZ8mQ22345ep+9w1sceayj97v6HL5ACNsTJ21b3X2xscBNNwHDhnm/TlKje3d53OfmOh8iiIiIqFYMTL6kQQN5gTsi8h9aWCYiIiKP4GBXIiIiIiKiGjAwERERERER1YCBiYiIiIiIqAYMTERERERERDVgYCIiIiIiIqoBAxMREREREVENGJiIiIiIiIhqwMBERERERERUAwYmIiIiIiKiGjAwERERERER1YCBiYiIiIiIqAYMTERERERERDVgYCIiIiIiIqoBAxMREREREVENGJiIiIiIiIhqwMBERERERERUAwYmIiIiIiKiGjAwERERERER1SBIdQHeJIQAAOTm5iquhIiIiIiIVNIygZYRauJXgSkvLw8AkJGRobgSIiIiIiLSg7y8PMTGxtb4fZOoK1L5ELPZjBMnTiA6Ohomk0lpLbm5ucjIyMDRo0cRExOjtBZfxP3rWdy/nsd97Fncv57F/etZ3L+exf3rWXrav0II5OXlIT09HQEBNc9U8qsepoCAADRo0EB1GTZiYmKUv1h8GfevZ3H/eh73sWdx/3oW969ncf96FvevZ+ll/9bWs6Thog9EREREREQ1YGAiIiIiIiKqAQOTIqGhoZg2bRpCQ0NVl+KTuH89i/vX87iPPYv717O4fz2L+9ezuH89y4j7168WfSAiIiIiInIEe5iIiIiIiIhqwMBERERERERUAwYmIiIiIiKiGjAwERERERER1YCByY1mzJiBSy+9FNHR0UhOTsaIESOwZ88em8cUFxdjwoQJqFevHqKionDDDTfg9OnTNo85cuQIhg4dioiICCQnJ+Oxxx5DeXm5N/8UXXrrrbdwySWXWC501qNHD/z000+W73PfutfMmTNhMpkwefJky33cx8579tlnYTKZbL5atWpl+T73rXscP34ct912G+rVq4fw8HC0b98ef/zxh+X7QghMnToVaWlpCA8Px4ABA7B3716b5zh//jxGjx6NmJgYxMXF4a677kJ+fr63/xTdadSoUZXXsMlkwoQJEwDwNeyqiooK/P3vf0fjxo0RHh6Opk2b4vnnn0fltbn4+nVNXl4eJk+ejMzMTISHh6Nnz57YsGGD5fvcv/ZbtWoVhg0bhvT0dJhMJsyfP9/m++7al9u2bUPv3r0RFhaGjIwMvPzyy57+06onyG0GDhwoPvzwQ7Fjxw6xZcsWMWTIENGwYUORn59vecz48eNFRkaG+OWXX8Qff/whLrvsMtGzZ0/L98vLy0W7du3EgAEDxObNm8WPP/4oEhMTxZQpU1T8Sbry/fffi4ULF4q//vpL7NmzRzz11FMiODhY7NixQwjBfetOv//+u2jUqJG45JJLxIMPPmi5n/vYedOmTRNt27YVJ0+etHydOXPG8n3uW9edP39eZGZmirFjx4r169eLAwcOiMWLF4t9+/ZZHjNz5kwRGxsr5s+fL7Zu3SqGDx8uGjduLIqKiiyPGTRokOjQoYNYt26dWL16tWjWrJm45ZZbVPxJupKVlWXz+l26dKkAIJYvXy6E4GvYVdOnTxf16tUTCxYsEAcPHhRff/21iIqKErNnz7Y8hq9f14waNUq0adNGrFy5Uuzdu1dMmzZNxMTEiGPHjgkhuH8d8eOPP4qnn35azJ07VwAQ8+bNs/m+O/ZlTk6OSElJEaNHjxY7duwQX3zxhQgPDxf//e9/vfVnWjAweVBWVpYAIFauXCmEECI7O1sEBweLr7/+2vKYXbt2CQBi7dq1Qgj5AgwICBCnTp2yPOatt94SMTExoqSkxLt/gAHEx8eL9957j/vWjfLy8kTz5s3F0qVLRd++fS2BifvYNdOmTRMdOnSo9nvct+7xxBNPiMsvv7zG75vNZpGamipeeeUVy33Z2dkiNDRUfPHFF0IIIf78808BQGzYsMHymJ9++kmYTCZx/PhxzxVvQA8++KBo2rSpMJvNfA27wdChQ8Wdd95pc9/1118vRo8eLYTg69dVhYWFIjAwUCxYsMDm/s6dO4unn36a+9cFFwcmd+3LN998U8THx9u8PzzxxBOiZcuWHv6LquKQPA/KyckBACQkJAAANm7ciLKyMgwYMMDymFatWqFhw4ZYu3YtAGDt2rVo3749UlJSLI8ZOHAgcnNzsXPnTi9Wr28VFRX48ssvUVBQgB49enDfutGECRMwdOhQm30J8PXrDnv37kV6ejqaNGmC0aNH48iRIwC4b93l+++/R9euXTFy5EgkJyejU6dOePfddy3fP3jwIE6dOmWzn2NjY9G9e3eb/RwXF4euXbtaHjNgwAAEBARg/fr13vtjdK60tBSffvop7rzzTphMJr6G3aBnz5745Zdf8NdffwEAtm7dil9//RWDBw8GwNevq8rLy1FRUYGwsDCb+8PDw/Hrr79y/7qRu/bl2rVr0adPH4SEhFgeM3DgQOzZswcXLlzw0l8jBXn1t/kRs9mMyZMno1evXmjXrh0A4NSpUwgJCUFcXJzNY1NSUnDq1CnLYyp/mGjf177n77Zv344ePXqguLgYUVFRmDdvHtq0aYMtW7Zw37rBl19+iU2bNtmM6dbw9eua7t2746OPPkLLli1x8uRJPPfcc+jduzd27NjBfesmBw4cwFtvvYWHH34YTz31FDZs2IBJkyYhJCQEY8aMseyn6vZj5f2cnJxs8/2goCAkJCRwP1cyf/58ZGdnY+zYsQD4/uAOTz75JHJzc9GqVSsEBgaioqIC06dPx+jRowGAr18XRUdHo0ePHnj++efRunVrpKSk4IsvvsDatWvRrFkz7l83cte+PHXqFBo3blzlObTvxcfHe6T+6jAweciECROwY8cO/Prrr6pL8SktW7bEli1bkJOTg2+++QZjxozBypUrVZflE44ePYoHH3wQS5curdICR67TWokB4JJLLkH37t2RmZmJ//3vfwgPD1dYme8wm83o2rUrXnzxRQBAp06dsGPHDrz99tsYM2aM4up8y/vvv4/BgwcjPT1ddSk+43//+x8+++wzfP7552jbti22bNmCyZMnIz09na9fN/nkk09w5513on79+ggMDETnzp1xyy23YOPGjapLI53jkDwPmDhxIhYsWIDly5ejQYMGlvtTU1NRWlqK7Oxsm8efPn0aqamplsdcvKqQ9m/tMf4sJCQEzZo1Q5cuXTBjxgx06NABs2fP5r51g40bNyIrKwudO3dGUFAQgoKCsHLlSrz++usICgpCSkoK97EbxcXFoUWLFti3bx9fv26SlpaGNm3a2NzXunVry9BHbT9Vtx8r7+esrCyb75eXl+P8+fPcz//v8OHD+Pnnn3H33Xdb7uNr2HWPPfYYnnzySdx8881o3749br/9djz00EOYMWMGAL5+3aFp06ZYuXIl8vPzcfToUfz+++8oKytDkyZNuH/dyF37Uk/vGQxMbiSEwMSJEzFv3jwsW7asSjdily5dEBwcjF9++cVy3549e3DkyBH06NEDANCjRw9s377d5kW0dOlSxMTEVDkRINmiXFJSwn3rBldeeSW2b9+OLVu2WL66du2K0aNHW25zH7tPfn4+9u/fj7S0NL5+3aRXr15VLuXw119/ITMzEwDQuHFjpKam2uzn3NxcrF+/3mY/Z2dn27Q4L1u2DGazGd27d/fCX6F/H374IZKTkzF06FDLfXwNu66wsBABAbanZYGBgTCbzQD4+nWnyMhIpKWl4cKFC1i8eDGuvfZa7l83cte+7NGjB1atWoWysjLLY5YuXYqWLVt6dTgeAC4r7k7333+/iI2NFStWrLBZerWwsNDymPHjx4uGDRuKZcuWiT/++EP06NFD9OjRw/J9bdnVq6++WmzZskUsWrRIJCUlcdlVIcSTTz4pVq5cKQ4ePCi2bdsmnnzySWEymcSSJUuEENy3nlB5lTwhuI9d8cgjj4gVK1aIgwcPijVr1ogBAwaIxMREkZWVJYTgvnWH33//XQQFBYnp06eLvXv3is8++0xERESITz/91PKYmTNniri4OPHdd9+Jbdu2iWuvvbbapW47deok1q9fL3799VfRvHlzv1w2uDoVFRWiYcOG4oknnqjyPb6GXTNmzBhRv359y7Lic+fOFYmJieLxxx+3PIavX9csWrRI/PTTT+LAgQNiyZIlokOHDqJ79+6itLRUCMH964i8vDyxefNmsXnzZgFAvPbaa2Lz5s3i8OHDQgj37Mvs7GyRkpIibr/9drFjxw7x5ZdfioiICC4rbnQAqv368MMPLY8pKioSDzzwgIiPjxcRERHiuuuuEydPnrR5nkOHDonBgweL8PBwkZiYKB555BFRVlbm5b9Gf+68806RmZkpQkJCRFJSkrjyyistYUkI7ltPuDgwcR8776abbhJpaWkiJCRE1K9fX9x000021wfivnWPH374QbRr106EhoaKVq1aiXfeecfm+2azWfz9738XKSkpIjQ0VFx55ZViz549No85d+6cuOWWW0RUVJSIiYkR48aNE3l5ed78M3Rr8eLFAkCVfSYEX8Ouys3NFQ8++KBo2LChCAsLE02aNBFPP/20zZLKfP265quvvhJNmjQRISEhIjU1VUyYMEFkZ2dbvs/9a7/ly5dXe847ZswYIYT79uXWrVvF5ZdfLkJDQ0X9+vXFzJkzvfUn2jAJUekS0kRERERERGTBOUxEREREREQ1YGAiIiIiIiKqAQMTERERERFRDRiYiIiIiIiIasDAREREREREVAMGJiIiIiIiohowMBEREREREdWAgYmIiIiIiKgGDExERORzxo4dixEjRqgug4iIfECQ6gKIiIgcYTKZav3+tGnTMHv2bAghvFQRERH5MgYmIiIylJMnT1puf/XVV5g6dSr27NljuS8qKgpRUVEqSiMiIh/EIXlERGQoqamplq/Y2FiYTCab+6KioqoMyevXrx/+9re/YfLkyYiPj0dKSgreffddFBQUYNy4cYiOjkazZs3w008/2fyuHTt2YPDgwYiKikJKSgpuv/12nD171st/MRERqcTAREREfmHOnDlITEzE77//jr/97W+4//77MXLkSPTs2RObNm3C1Vdfjdtvvx2FhYUAgOzsbFxxxRXo1KkT/vjjDyxatAinT5/GqFGjFP8lRETkTQxMRETkFzp06IBnnnkGzZs3x5QpUxAWFobExETcc889aN68OaZOnYpz585h27ZtAIA33ngDnTp1wosvvohWrVqhU6dO+OCDD7B8+XL89ddfiv8aIiLyFs5hIiIiv3DJJZdYbgcGBqJevXpo37695b6UlBQAQFZWFgBg69atWL58ebXzofbv348WLVp4uGIiItIDBiYiIvILwcHBNv82mUw292mr75nNZgBAfn4+hg0bhpdeeqnKc6WlpXmwUiIi0hMGJiIiomp07twZ3377LRo1aoSgIH5cEhH5K85hIiIiqsaECRNw/vx53HLLLdiwYQP279+PxYsXY9y4caioqFBdHhEReQkDExERUTXS09OxZs0aVFRU4Oqrr0b79u0xefJkxMXFISCAH59ERP7CJHgpdCIiIiIiomqxiYyIiIiIiKgGDExEREREREQ1YGAiIiIiIiKqAQMTERERERFRDRiYiIiIiIiIasDAREREREREVAMGJiIiIiIiohowMBEREREREdWAgYmIiIiIiKgGDExEREREREQ1YGAiIiIiIiKqwf8BBllN6R9a4WYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# # 假设你已经有了原始数据和重构数据\n", + "# # 原始数据\n", + "original_data = data1['Power'].values\n", + "\n", + "# # 创建时间序列(假设时间序列与数据对应)\n", + "time = range(len(original_data))\n", + "\n", + "# # 创建画布和子图\n", + "plt.figure(figsize=(10, 6))\n", + "\n", + "# # 绘制原始数据\n", + "# plt.plot(time, original_data, label='Original Data', color='blue')\n", + "\n", + "# # 绘制重构数据\n", + "plt.plot(reconstructed_data_high[200:1000], label='Reconstructed Data', color='red')\n", + "\n", + "# # 添加标题和标签\n", + "plt.title('Comparison between Original and reconstructed_data_high')\n", + "plt.xlabel('Time')\n", + "plt.ylabel('Power')\n", + "plt.legend()\n", + "\n", + "# # 显示图形\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data3=data1.iloc[:,:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Temp Humidity GHI DHI Rainfall column_name\n", + "0 19.779453 40.025826 3.232706 1.690531 0.0 -1.426824\n", + "1 19.714937 39.605961 3.194991 1.576346 0.0 -1.426819\n", + "2 19.549330 39.608631 3.070866 1.576157 0.0 -1.426815\n", + "3 19.405870 39.680702 3.038623 1.482489 0.0 -1.426812\n", + "4 19.387363 39.319881 2.656474 1.134153 0.0 -1.426810\n", + "... ... ... ... ... ... ...\n", + "104251 13.303740 34.212711 1.210789 0.787026 0.0 -1.629381\n", + "104252 13.120920 34.394939 2.142980 1.582670 0.0 -1.629328\n", + "104253 12.879215 35.167400 1.926214 1.545889 0.0 -1.629271\n", + "104254 12.915867 35.359989 1.317695 0.851529 0.0 -1.629213\n", + "104255 13.134816 34.500034 1.043269 0.597816 0.0 -1.629152\n", + "\n", + "[104256 rows x 6 columns]\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "# # 创建data3和imf1_array对应的DataFrame\n", + "data3_df = pd.DataFrame(data3)\n", + "imf1_df = pd.DataFrame(reconstructed_data_high)\n", + "\n", + "# # 合并data3_df和imf1_df\n", + "merged_df = pd.concat([data3_df, imf1_df], axis=1)\n", + "\n", + "merged_df = merged_df.iloc[:104256]\n", + "\n", + "# # 打印合并后的表\n", + "print(merged_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(104256, 6)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged_df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(104256, 6)\n" + ] + } + ], + "source": [ + "# 使用MinMaxScaler进行归一化\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "scaledData1 = scaler.fit_transform(merged_df)\n", + "print(scaledData1.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 0 1 2 3 4 5 0(t-96) \\\n", + "96 0.555631 0.349673 0.190042 0.040558 0.0 0.245160 0.490360 \n", + "97 0.564819 0.315350 0.211335 0.044613 0.0 0.264683 0.489088 \n", + "98 0.576854 0.288321 0.229657 0.047549 0.0 0.283988 0.485824 \n", + "99 0.581973 0.268243 0.247775 0.053347 0.0 0.303131 0.482997 \n", + "100 0.586026 0.264586 0.266058 0.057351 0.0 0.322308 0.482632 \n", + "\n", + " 1(t-96) 2(t-96) 3(t-96) ... 2(t-1) 3(t-1) 4(t-1) 5(t-1) \\\n", + "96 0.369105 0.002088 0.002013 ... 0.166009 0.036794 0.0 0.225396 \n", + "97 0.364859 0.002061 0.001839 ... 0.190042 0.040558 0.0 0.245160 \n", + "98 0.364886 0.001973 0.001839 ... 0.211335 0.044613 0.0 0.264683 \n", + "99 0.365615 0.001950 0.001697 ... 0.229657 0.047549 0.0 0.283988 \n", + "100 0.361965 0.001679 0.001167 ... 0.247775 0.053347 0.0 0.303131 \n", + "\n", + " 0(t+1) 1(t+1) 2(t+1) 3(t+1) 4(t+1) 5(t+1) \n", + "96 0.564819 0.315350 0.211335 0.044613 0.0 0.264683 \n", + "97 0.576854 0.288321 0.229657 0.047549 0.0 0.283988 \n", + "98 0.581973 0.268243 0.247775 0.053347 0.0 0.303131 \n", + "99 0.586026 0.264586 0.266058 0.057351 0.0 0.322308 \n", + "100 0.590772 0.258790 0.282900 0.060958 0.0 0.340588 \n", + "\n", + "[5 rows x 588 columns]\n" + ] + } + ], + "source": [ + "n_steps_in =96 #历史时间长度\n", + "n_steps_out=1#预测时间长度\n", + "processedData1 = time_series_to_supervised(scaledData1,n_steps_in,n_steps_out)\n", + "print(processedData1.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# processedData1.to_csv('processedData1.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "data_x = processedData1.loc[:,'0(t-96)':'5(t-1)']\n", + "data_y = processedData1.loc[:,'5']" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(104159, 576)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "96 0.245160\n", + "97 0.264683\n", + "98 0.283988\n", + "99 0.303131\n", + "100 0.322308\n", + " ... \n", + "104250 0.000090\n", + "104251 0.000099\n", + "104252 0.000109\n", + "104253 0.000118\n", + "104254 0.000128\n", + "Name: 5, Length: 104159, dtype: float64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_y" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(104159,)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_y.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(83328, 96, 6) (83328,) (20831, 96, 6) (20831,)\n" + ] + } + ], + "source": [ + "# 7.划分训练集和测试集\n", + "\n", + "test_size = int(len(data_x) * 0.2)\n", + "# 计算训练集和测试集的索引范围\n", + "train_indices = range(len(data_x) - test_size)\n", + "test_indices = range(len(data_x) - test_size, len(data_x))\n", + "\n", + "# 根据索引范围划分数据集\n", + "train_X1 = data_x.iloc[train_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))\n", + "test_X1 = data_x.iloc[test_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))\n", + "train_y = data_y.iloc[train_indices].values\n", + "test_y = data_y.iloc[test_indices].values\n", + "\n", + "\n", + "# # 多次运行代码时希望得到相同的数据分割,可以设置 random_state 参数为一个固定的整数值\n", + "# train_X1,test_X1, train_y, test_y = train_test_split(data_x.values, data_y.values, test_size=0.2, random_state=343)\n", + "# reshape input to be 3D [samples, timesteps, features]\n", + "train_X = train_X1.reshape((train_X1.shape[0], n_steps_in, scaledData1.shape[1]))\n", + "test_X = test_X1.reshape((test_X1.shape[0], n_steps_in,scaledData1.shape[1]))\n", + "print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)\n", + "# 使用train_test_split函数划分训练集和测试集,测试集的比重是40%。\n", + "# 然后将train_X1、test_X1进行一个升维,变成三维,维数分别是[samples,timesteps,features]。\n", + "# 打印一下他们的shape:\\\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(83328, 96, 6)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_X1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From d:\\Anaconda3\\lib\\site-packages\\keras\\src\\backend\\tensorflow\\core.py:192: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
Model: \"functional\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer         │ (None, 96, 6)     │          0 │ -                 │\n",
+       "│ (InputLayer)        │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ conv1d (Conv1D)     │ (None, 95, 64)    │        832 │ input_layer[0][0] │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ max_pooling1d       │ (None, 95, 64)    │          0 │ conv1d[0][0]      │\n",
+       "│ (MaxPooling1D)      │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ bidirectional       │ (None, 95, 128)   │     49,920 │ max_pooling1d[0]… │\n",
+       "│ (Bidirectional)     │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ attention_with_imp… │ [(None, None,     │     66,304 │ bidirectional[0]… │\n",
+       "│ (AttentionWithImpr…128), (None, 8,   │            │ bidirectional[0]… │\n",
+       "│                     │ None, None)]      │            │ bidirectional[0]… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ global_average_poo… │ (None, 128)       │          0 │ attention_with_i… │\n",
+       "│ (GlobalAveragePool… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ dense_4 (Dense)     │ (None, 1)         │        129 │ global_average_p… │\n",
+       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", + "│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m96\u001b[0m, \u001b[38;5;34m6\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n", + "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ conv1d (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m95\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m832\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ max_pooling1d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m95\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv1d[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mMaxPooling1D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ bidirectional │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m95\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m49,920\u001b[0m │ max_pooling1d[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mBidirectional\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ attention_with_imp… │ [(\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m66,304\u001b[0m │ bidirectional[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ (\u001b[38;5;33mAttentionWithImpr…\u001b[0m │ \u001b[38;5;34m128\u001b[0m), (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, │ │ bidirectional[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m)] │ │ bidirectional[\u001b[38;5;34m0\u001b[0m]… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ attention_with_i… │\n", + "│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m129\u001b[0m │ global_average_p… │\n", + "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 117,185 (457.75 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m117,185\u001b[0m (457.75 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 117,185 (457.75 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m117,185\u001b[0m (457.75 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 0 (0.00 B)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.layers import Input, Conv1D, Bidirectional, GlobalAveragePooling1D, Dense, GRU, MaxPooling1D\n", + "from tensorflow.keras.models import Model\n", + "from tensorflow.keras.initializers import RandomUniform\n", + "class AttentionWithImproveRelativePositionEncoding(tf.keras.layers.Layer):\n", + " def __init__(self, d_model, num_heads, max_len=5000):\n", + " super(AttentionWithImproveRelativePositionEncoding, self).__init__()\n", + " self.num_heads = num_heads\n", + " self.d_model = d_model\n", + " self.max_len = max_len\n", + " self.wq = tf.keras.layers.Dense(d_model)\n", + " self.wk = tf.keras.layers.Dense(d_model)\n", + " self.wv = tf.keras.layers.Dense(d_model)\n", + " self.dense = tf.keras.layers.Dense(d_model)\n", + " self.position_encoding = ImproveRelativePositionEncoding(d_model)\n", + "\n", + " def call(self, v, k, q, mask):\n", + " batch_size = tf.shape(q)[0]\n", + " q = self.wq(q)\n", + " k = self.wk(k)\n", + " v = self.wv(v)\n", + "\n", + " # 添加位置编码\n", + " k += self.position_encoding (k)\n", + " q += self.position_encoding (q)\n", + "\n", + " q = self.split_heads(q, batch_size)\n", + " k = self.split_heads(k, batch_size)\n", + " v = self.split_heads(v, batch_size)\n", + "\n", + " scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)\n", + " scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])\n", + " concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))\n", + " output = self.dense(concat_attention)\n", + " return output, attention_weights\n", + "\n", + " def split_heads(self, x, batch_size):\n", + " x = tf.reshape(x, (batch_size, -1, self.num_heads, self.d_model // self.num_heads))\n", + " return tf.transpose(x, perm=[0, 2, 1, 3])\n", + "\n", + " def scaled_dot_product_attention(self, q, k, v, mask):\n", + " matmul_qk = tf.matmul(q, k, transpose_b=True)\n", + " dk = tf.cast(tf.shape(k)[-1], tf.float32)\n", + " scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)\n", + "\n", + " if mask is not None:\n", + " scaled_attention_logits += (mask * -1e9)\n", + "\n", + " attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)\n", + " output = tf.matmul(attention_weights, v)\n", + " return output, attention_weights\n", + "\n", + "class ImproveRelativePositionEncoding(tf.keras.layers.Layer):\n", + " def __init__(self, d_model, max_len=5000):\n", + " super(ImproveRelativePositionEncoding, self).__init__()\n", + " self.max_len = max_len\n", + " self.d_model = d_model\n", + " # 引入可变化的参数u和v进行线性变化\n", + " self.u = self.add_weight(shape=(self.d_model,),\n", + " initializer=RandomUniform(),\n", + " trainable=True)\n", + " self.v = self.add_weight(shape=(self.d_model,),\n", + " initializer=RandomUniform(),\n", + " trainable=True)\n", + " def call(self, inputs):\n", + " seq_length = inputs.shape[1]\n", + " pos_encoding = self.relative_positional_encoding(seq_length, self.d_model)\n", + " \n", + " # 调整原始的相对位置编码公式,将u和v参数融入其中\n", + " pe_with_params = pos_encoding * self.u+ pos_encoding * self.v\n", + " return inputs + pe_with_params\n", + "\n", + " def relative_positional_encoding(self, position, d_model):\n", + " pos = tf.range(position, dtype=tf.float32)\n", + " i = tf.range(d_model, dtype=tf.float32)\n", + " \n", + " angles = 1 / tf.pow(10000.0, (2 * (i // 2)) / tf.cast(d_model, tf.float32))\n", + " angle_rads = tf.einsum('i,j->ij', pos, angles)\n", + " #保留了sinous机制\n", + " # Apply sin to even indices; 2i\n", + " angle_rads_sin = tf.sin(angle_rads[:, 0::2])\n", + " # Apply cos to odd indices; 2i+1\n", + " angle_rads_cos = tf.cos(angle_rads[:, 1::2])\n", + "\n", + " pos_encoding = tf.stack([angle_rads_sin, angle_rads_cos], axis=2)\n", + " pos_encoding = tf.reshape(pos_encoding, [1, position, d_model])\n", + "\n", + " return pos_encoding\n", + "\n", + "\n", + "\n", + "def PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads):\n", + " inputs = Input(shape=input_shape)\n", + " # CNN layer\n", + " cnn_layer = Conv1D(filters=64, kernel_size=2, activation='relu')(inputs)\n", + " cnn_layer = MaxPooling1D(pool_size=1)(cnn_layer)\n", + " gru_output = Bidirectional(GRU(gru_units, return_sequences=True))(cnn_layer)\n", + " \n", + " # Apply Self-Attention\n", + " self_attention =AttentionWithImproveRelativePositionEncoding(d_model=gru_units*2, num_heads=num_heads)\n", + " gru_output, _ = self_attention(gru_output, gru_output, gru_output, mask=None)\n", + " \n", + " pool1 = GlobalAveragePooling1D()(gru_output)\n", + " output = Dense(1)(pool1)\n", + " \n", + " return Model(inputs=inputs, outputs=output)\n", + "\n", + "\n", + "input_shape = (96, 6)\n", + "gru_units = 64\n", + "num_heads = 8\n", + "\n", + "# Create model\n", + "model = PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads)\n", + "model.compile(optimizer='adam', loss='mse')\n", + "model.summary()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m88s\u001b[0m 65ms/step - loss: 0.0178 - val_loss: 0.0018\n", + "Epoch 2/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 64ms/step - loss: 0.0011 - val_loss: 0.0016\n", + "Epoch 3/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m93s\u001b[0m 71ms/step - loss: 0.0010 - val_loss: 0.0024\n", + "Epoch 4/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m84s\u001b[0m 64ms/step - loss: 9.7998e-04 - val_loss: 0.0015\n", + "Epoch 5/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m76s\u001b[0m 59ms/step - loss: 0.0010 - val_loss: 0.0015\n", + "Epoch 6/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m70s\u001b[0m 54ms/step - loss: 0.0010 - val_loss: 0.0016\n", + "Epoch 7/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m76s\u001b[0m 58ms/step - loss: 9.6638e-04 - val_loss: 0.0015\n", + "Epoch 8/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 58ms/step - loss: 8.8641e-04 - val_loss: 0.0017\n", + "Epoch 9/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m65s\u001b[0m 50ms/step - loss: 9.5932e-04 - val_loss: 0.0015\n", + "Epoch 10/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m67s\u001b[0m 51ms/step - loss: 9.3643e-04 - val_loss: 0.0015\n", + "Epoch 11/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m67s\u001b[0m 52ms/step - loss: 9.2035e-04 - val_loss: 0.0017\n", + "Epoch 12/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m68s\u001b[0m 52ms/step - loss: 8.8128e-04 - val_loss: 0.0017\n", + "Epoch 13/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m74s\u001b[0m 57ms/step - loss: 8.7290e-04 - val_loss: 0.0016\n", + "Epoch 14/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 59ms/step - loss: 8.5652e-04 - val_loss: 0.0016\n", + "Epoch 15/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m81s\u001b[0m 62ms/step - loss: 8.6573e-04 - val_loss: 0.0018\n", + "Epoch 16/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 61ms/step - loss: 9.3113e-04 - val_loss: 0.0015\n", + "Epoch 17/100\n", + "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m79s\u001b[0m 61ms/step - loss: 8.6217e-04 - val_loss: 0.0015\n", + "\u001b[1m651/651\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 17ms/step\n" + ] + } + ], + "source": [ + "# Compile and train the model\n", + "model.compile(optimizer='adam', loss='mean_squared_error')\n", + "from keras.callbacks import EarlyStopping, ModelCheckpoint\n", + "\n", + "# 定义早停机制\n", + "early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='min')\n", + "\n", + "# 拟合模型,并添加早停机制和模型检查点\n", + "history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(test_X, test_y), \n", + " callbacks=[early_stopping])\n", + "# 预测\n", + "lstm_pred = model.predict(test_X)\n", + "# 将预测结果的形状修改为与原始数据相同的形状" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABN8klEQVR4nO3de3xT9f0/8NdJmkubXqBJ6QWK7aCIQLlD5bKhs7NOplanIlO5zK+6/VCpFVQYF6doFUW5zo5t3rYx0E3ReUFZVbxQi1Au4oWbIAi0tECbNr2kTc7vj08uDbSlaZOcJH09H488kpx8cvo5RZNX35/P+RxJlmUZRERERCFOpXQHiIiIiHyBoYaIiIjCAkMNERERhQWGGiIiIgoLDDVEREQUFhhqiIiIKCww1BAREVFYYKghIiKisBChdAcCxW6348SJE4iJiYEkSUp3h4iIiDpAlmXU1NQgJSUFKlX7tZhuE2pOnDiB1NRUpbtBREREnXDs2DH06dOn3TbdJtTExMQAEL+U2NhYhXtDREREHWE2m5Gamur6Hm9Ptwk1ziGn2NhYhhoiIqIQ05GpI5woTERERGGBoYaIiIjCAkMNERERhYVuM6eGiIjIX2RZRnNzM2w2m9JdCTlqtRoRERE+WW6FoYaIiKgLrFYrTp48ibq6OqW7ErKioqKQnJwMrVbbpf0w1BAREXWS3W7H4cOHoVarkZKSAq1WywVevSDLMqxWKyoqKnD48GFkZGRccIG99jDUEBERdZLVaoXdbkdqaiqioqKU7k5IioyMhEajwQ8//ACr1Qq9Xt/pfXGiMBERURd1pbpAvvv98V+BiIiIwgJDDREREYUFhhoiIiLqkrS0NCxfvlzpbnCiMBERUXd02WWXYfjw4T4JI19++SUMBkPXO9VFDDVdtL+8Bq9tP4Z4gw6/v6yf0t0hIiLyCVmWYbPZEBFx4aiQkJAQgB5dGIefuuhkdQP+8ulhvLnruNJdISIihcmyjDprsyI3WZY73M8ZM2Zgy5YtWLFiBSRJgiRJeOmllyBJEt577z2MGjUKOp0On332GQ4dOoTrrrsOiYmJiI6OxpgxY/C///3PY3/nDj9JkoS//vWvuP766xEVFYWMjAy89dZbvvo1t4mVmi4yRYvVD09brAr3hIiIlFbfZMOgRe8r8rO/eTQHUdqOfa2vWLEC+/fvx5AhQ/Doo48CAL7++msAwMMPP4xnnnkGP/nJT9CzZ08cO3YMV199NR5//HHodDq88soruOaaa7Bv3z707du3zZ/xxz/+EUuXLsXTTz+NVatW4dZbb8UPP/yA+Pj4rh9sG1ip6SJTtA4AcMZihd3e8ZRMRESklLi4OGi1WkRFRSEpKQlJSUlQq9UAgEcffRS/+MUv0K9fP8THx2PYsGG4++67MWTIEGRkZOCxxx5Dv379Llh5mTFjBqZOnYr+/fvjiSeeQG1tLbZt2+bX42KlpoviDaJSY7PLqKpvcj0nIqLuJ1KjxjeP5ij2s31h9OjRHs9ra2vxyCOP4J133sHJkyfR3NyM+vp6HD16tN39DB061PXYYDAgNjYWp06d8kkf28JQ00UatQo9ojSoqmtCZW0jQw0RUTcmSVKHh4CC1blnMc2ZMwebN2/GM888g/79+yMyMhI33ngjrNb2p11oNBqP55IkwW63+7y/LYX2bz5IGA1aV6gZkBijdHeIiIguSKvVwmazXbDd559/jhkzZuD6668HICo3R44c8XPvOodzanzAOa+mspaThYmIKDSkpaWhpKQER44cQWVlZZtVlIyMDLz++uvYtWsXdu/ejd/85jd+r7h0FkONDzhDzenaRoV7QkRE1DFz5syBWq3GoEGDkJCQ0OYcmWeffRY9e/bE+PHjcc011yAnJwcjR44McG87hsNPPuA8rbuSoYaIiELEgAEDUFxc7LFtxowZ57VLS0vDhx9+6LFt1qxZHs/PHY5qbc2cqqqqTvXTG6zU+IDRVanh8BMREZFSGGp8wD2nhpUaIiIipTDU+IDRNfzESg0REZFSGGp8gJUaIiIi5THU+IDr+k+s1BARESmGocYHnJWa+iYbLI3NCveGiIioe2Ko8YEorRp6jfhVslpDRESkDIYaH5AkyVWtqeC8GiIiIkUw1PiIkasKExERKYqhxkcSeFo3ERGFkMsuuwx5eXk+29+MGTOQm5vrs/11BkONjxgNrNQQEREpiaHGR0wxjtO6LazUEBFRcJsxYwa2bNmCFStWQJIkSJKEI0eOYO/evfjlL3+J6OhoJCYm4vbbb0dlZaXrff/+97+RmZmJyMhIGI1GZGdnw2Kx4JFHHsHLL7+MN99807W/jz/+OODHxQta+oizUsOJwkRE3ZgsA011yvxsTRQgSR1qumLFCuzfvx9DhgzBo48+Kt6u0WDs2LH4v//7Pzz33HOor6/HQw89hJtvvhkffvghTp48ialTp2Lp0qW4/vrrUVNTg08//RSyLGPOnDn49ttvYTab8eKLLwIA4uPj/XaobWGo8RFTDIefiIi6vaY64IkUZX72/BOA1tChpnFxcdBqtYiKikJSUhIAYMmSJRgxYgSeeOIJV7sXXngBqamp2L9/P2pra9Hc3IwbbrgBF110EQAgMzPT1TYyMhKNjY2u/SmBocZHTAZOFCYiotC1e/dufPTRR4iOjj7vtUOHDuHKK6/EFVdcgczMTOTk5ODKK6/EjTfeiJ49eyrQ29Yx1PgIKzVERARNlKiYKPWzu6C2thbXXHMNnnrqqfNeS05OhlqtxubNm7F161Z88MEHWLVqFf7whz+gpKQE6enpXfrZvsJQ4yNGR6XmbF0Tmmx2aNScg01E1O1IUoeHgJSm1Wphs9lcz0eOHIn//Oc/SEtLQ0RE6/FAkiRMmDABEyZMwKJFi3DRRRfhjTfeQH5+/nn7UwK/eX2kZ5QWKsf8rLM8A4qIiIJcWloaSkpKcOTIEVRWVmLWrFk4c+YMpk6dii+//BKHDh3C+++/j5kzZ8Jms6GkpARPPPEEtm/fjqNHj+L1119HRUUFLrnkEtf+9uzZg3379qGyshJNTU0BPyaGGh9RqSTE8wwoIiIKEXPmzIFarcagQYOQkJAAq9WKzz//HDabDVdeeSUyMzORl5eHHj16QKVSITY2Fp988gmuvvpqDBgwAAsWLMCyZcvwy1/+EgBw55134uKLL8bo0aORkJCAzz//PODHxOEnHzJFa1FZ28iLWhIRUdAbMGAAiouLz9v++uuvt9r+kksuwaZNm9rcX0JCAj744AOf9a8zWKnxIedFLStZqSEiIgo4hhofMjmu/8RKDRERUeAx1PiQkZUaIiIixTDU+JB7+ImVGiIiokBjqPEhY7RzVWFWaoiIiAKNocaHEhyVmtMWhhoiou5ElmWluxDSfPX7Y6jxIVelpobDT0RE3YFGowEA1NUpdGXuMOH8/Tl/n53FdWp8yNSiUiPLMqQOXgKeiIhCk1qtRo8ePXDq1CkAQFRUFD/7vSDLMurq6nDq1Cn06NEDarW6S/tjqPGheMf1n5psMsz1zYiL6lriJCKi4JeUlAQArmBD3uvRo4fr99gVDDU+pNeoEaOPQE1DMyotjQw1RETdgCRJSE5ORq9evRS53lGo02g0Xa7QODHU+JgpWidCTU0j+iVEK90dIiIKELVa7bMvZ+qcTk0UXrNmDdLS0qDX65GVlYVt27a12/61117DwIEDodfrkZmZiXfffdfjdVmWsWjRIiQnJyMyMhLZ2dk4cOCAR5u0tDRIkuRxe/LJJzvTfb9yrSrMK3UTEREFlNehZsOGDcjPz8fixYtRWlqKYcOGIScnp82xxK1bt2Lq1Km44447sHPnTuTm5iI3Nxd79+51tVm6dClWrlyJwsJClJSUwGAwICcnBw0NDR77evTRR3Hy5EnX7d577/W2+35nNHBVYSIiIiV4HWqeffZZ3HnnnZg5cyYGDRqEwsJCREVF4YUXXmi1/YoVK3DVVVdh7ty5uOSSS/DYY49h5MiRWL16NQBRpVm+fDkWLFiA6667DkOHDsUrr7yCEydOYOPGjR77iomJQVJSkutmMBi8P2I/M8U4F+BjpYaIiCiQvAo1VqsVO3bsQHZ2tnsHKhWys7NbvXw5ABQXF3u0B4CcnBxX+8OHD6OsrMyjTVxcHLKyss7b55NPPgmj0YgRI0bg6aefRnNzc5t9bWxshNls9rgFAis1REREyvBqonBlZSVsNhsSExM9ticmJuK7775r9T1lZWWtti8rK3O97tzWVhsAuO+++zBy5EjEx8dj69atmDdvHk6ePIlnn3221Z9bUFCAP/7xj94cnk+YYhxr1TDUEBERBVTInP2Un5/vejx06FBotVrcfffdKCgogE6nO6/9vHnzPN5jNpuRmprq936aDBx+IiIiUoJXw08mkwlqtRrl5eUe28vLy9tcNCcpKand9s57b/YJAFlZWWhubsaRI0dafV2n0yE2NtbjFgis1BARESnDq1Cj1WoxatQoFBUVubbZ7XYUFRVh3Lhxrb5n3LhxHu0BYPPmza726enpSEpK8mhjNptRUlLS5j4BYNeuXVCpVOjVq5c3h+B3RlZqiIiIFOH18FN+fj6mT5+O0aNHY+zYsVi+fDksFgtmzpwJAJg2bRp69+6NgoICAMDs2bMxadIkLFu2DJMnT8b69euxfft2rF27FoBYiTEvLw9LlixBRkYG0tPTsXDhQqSkpCA3NxeAmGxcUlKCyy+/HDExMSguLsb999+P2267DT179vTRr8I3nJWa2sZmNDTZoNdwISYiIqJA8DrUTJkyBRUVFVi0aBHKysowfPhwbNq0yTXR9+jRo1Cp3AWg8ePHY926dViwYAHmz5+PjIwMbNy4EUOGDHG1efDBB2GxWHDXXXehqqoKEydOxKZNm6DX6wGIoaT169fjkUceQWNjI9LT03H//fd7zJkJFjG6CGjVKlhtdlTWNqJPzyilu0RERNQtSLIsy0p3IhDMZjPi4uJQXV3t9/k14wqKcLK6AW/OmoBhqT38+rOIiIjCmTff3526TAK1zxTNtWqIiIgCjaHGD4zO6z9xsjAREVHAMNT4gbNSU8FKDRERUcAw1PgBKzVERESBx1DjBwmcU0NERBRwDDV+4KrUWBhqiIiIAoWhxg9cZz/VcPiJiIgoUBhq/MBocFz/iZUaIiKigGGo8QNTjBh+OmOxwmbvFmsbEhERKY6hxg/io7SQJMAuA2frOARFREQUCAw1fhChVqFnlPNq3RyCIiIiCgSGGj8xGrhWDRERUSAx1PgJr/9EREQUWAw1fuJcq6aSlRoiIqKAYKjxE1ZqiIiIAouhxk9Mrus/MdQQEREFAkONn7grNRx+IiIiCgSGGj8xOkINKzVERESBwVDjJyZOFCYiIgoohho/aTlRWJZ5qQQiIiJ/Y6jxE+cp3Y3NdtQ2NivcGyIiovDHUOMnUdoIRGnVALiqMBERUSAw1PgR16ohIiIKHIYaP+KqwkRERIHDUONHrNQQEREFDkONH7lXFWalhoiIyN8YavyIlRoiIqLAYajxI6PBUamxMNQQERH5G0ONH5lieP0nIiKiQGGo8SOjgcNPREREgcJQ40cJMZwoTEREFCgMNX7krNRU1zfB2mxXuDdEREThjaHGj+IiNYhQSQCAMxZWa4iIiPyJocaPVCoJ8QbnqsKcV0NERORPDDV+xrVqiIiIAoOhxs94/SciIqLAYKjxswRHpeY0KzVERER+xVDjZ+5KDUMNERGRPzHU+JnJVanh8BMREZE/MdT4mdERaipYqSEiIvIrhho/M0VzVWEiIqJAYKjxM57STUREFBgMNX7mnCh8xmKF3S4r3BsiIqLwxVDjZ87rPzXbZVTXNyncGyIiovDFUONn2ggVYvURAIDTFg5BERER+QtDTQCYYhxnQNVwsjAREZG/MNQEgMkxBMVKDRERkf8w1ASAKcaxqnANQw0REZG/MNQEgNFVqeHwExERkb8w1AQA16ohIiLyP4aaAHBf1JKVGiIiIn9hqAkAVmqIiIj8j6EmAHj9JyIiIv9jqAkAVmqIiIj8j6EmAJxzauqsNtRZmxXuDRERUXhiqAmAaF0EdBHiV80hKCIiIv9gqAkASZI4BEVERORnDDUBYuJp3URERH7FUBMgRkel5jQrNURERH7BUBMg7koNQw0REZE/dCrUrFmzBmlpadDr9cjKysK2bdvabf/aa69h4MCB0Ov1yMzMxLvvvuvxuizLWLRoEZKTkxEZGYns7GwcOHCg1X01NjZi+PDhkCQJu3bt6kz3FWF0zanh8BMREZE/eB1qNmzYgPz8fCxevBilpaUYNmwYcnJycOrUqVbbb926FVOnTsUdd9yBnTt3Ijc3F7m5udi7d6+rzdKlS7Fy5UoUFhaipKQEBoMBOTk5aGhoOG9/Dz74IFJSUrzttuI4UZiIiMi/vA41zz77LO68807MnDkTgwYNQmFhIaKiovDCCy+02n7FihW46qqrMHfuXFxyySV47LHHMHLkSKxevRqAqNIsX74cCxYswHXXXYehQ4filVdewYkTJ7Bx40aPfb333nv44IMP8Mwzz3h/pArjqsJERET+5VWosVqt2LFjB7Kzs907UKmQnZ2N4uLiVt9TXFzs0R4AcnJyXO0PHz6MsrIyjzZxcXHIysry2Gd5eTnuvPNO/P3vf0dUVNQF+9rY2Aiz2exxUxIrNURERP7lVaiprKyEzWZDYmKix/bExESUlZW1+p6ysrJ22zvv22sjyzJmzJiB3/3udxg9enSH+lpQUIC4uDjXLTU1tUPv8xfnqsKnLazUEBER+UNInP20atUq1NTUYN68eR1+z7x581BdXe26HTt2zI89vDBnpeZsnRXNNruifSEiIgpHXoUak8kEtVqN8vJyj+3l5eVISkpq9T1JSUnttnfet9fmww8/RHFxMXQ6HSIiItC/f38AwOjRozF9+vRWf65Op0NsbKzHTUk9o7RQSYAsA2fqWK0hIiLyNa9CjVarxahRo1BUVOTaZrfbUVRUhHHjxrX6nnHjxnm0B4DNmze72qenpyMpKcmjjdlsRklJiavNypUrsXv3buzatQu7du1ynRK+YcMGPP74494cgmLUKgnxBsdaNTUMNURERL4W4e0b8vPzMX36dIwePRpjx47F8uXLYbFYMHPmTADAtGnT0Lt3bxQUFAAAZs+ejUmTJmHZsmWYPHky1q9fj+3bt2Pt2rUAxHWR8vLysGTJEmRkZCA9PR0LFy5ESkoKcnNzAQB9+/b16EN0dDQAoF+/fujTp0+nDz7QjAYdKmutOG3hZGEiIiJf8zrUTJkyBRUVFVi0aBHKysowfPhwbNq0yTXR9+jRo1Cp3AWg8ePHY926dViwYAHmz5+PjIwMbNy4EUOGDHG1efDBB2GxWHDXXXehqqoKEydOxKZNm6DX631wiMHDFKPFvnKeAUVEROQPkizLstKdCASz2Yy4uDhUV1crNr/mvn/txFu7T2DB5Evwfz/9iSJ9ICIiCiXefH+HxNlP4cJ5BlQFKzVEREQ+x1ATQEauKkxEROQ3DDUBlMBVhYmIiPyGoSaAWKkhIiLyH4aaAOL1n4iIiPyHoSaAWlZquslJZ0RERAHDUBNAzkqN1WaHuaFZ4d4QERGFF4aaANJr1IjWifUOT3MIioiIyKcYagLM5BiCquRkYSIiIp9iqAkwo2MIipUaIiIi32KoCTB3pYahhoiIyJcYagLM6Dqtm8NPREREvsRQE2Bcq4aIiMg/GGoCzMRVhYmIiPyCoSbAWKkhIiLyD4aaADMaHJUaCys1REREvsRQE2BGVmqIiIj8gqEmwBIcoaamoRkNTTaFe0NERBQ+GGoCLDYyAhq1BAA4wyEoIiIin2GoCTBJkmA0cAiKiIjI1xhqFGDkad1EREQ+x1CjAOdp3RWs1BAREfkMQ40CWKkhIiLyPYYaBSTwtG4iIiKfY6hRgLtSw1BDRETkKww1CjDxSt1EREQ+x1CjAK4qTERE5HsMNQpwXqmblRoiIiLfYahRgHP46YylEXa7rHBviIiIwgNDjQLiHVfqtsvA2TpWa4iIiHyBoUYBGrUKPaI0AIDTvP4TERGRTzDUKMR1BlQNJwsTERH5AkONQoyOIahKVmqIiIh8gqFGIaYYVmqIiIh8iaFGISZHpea0haGGiIjIFxhqFOKeU8PhJyIiIl9gqFGIc1VhVmqIiIh8g6FGIc5VhSu4qjAREZFPMNQoxFWp4fWfiIiIfIKhRiEJLS5qKcu8VAIREVFXMdQoxOgYfmposqPOalO4N0RERKGPoUYhBl0EIjVqAKJaQ0RERF3DUKMgZ7WmkpOFiYiIuoyhRkGmFvNqiIiIqGsYahTkPK37NCs1REREXcZQoyBWaoiIiHyHoUZBRlelhqGGiIioqxhqFOSu1HD4iYiIqKsYahRk5PATERGRzzDUKMjkOqWboYaIiKirGGoUZHJdqZvDT0RERF3FUKMgZ6ipqmtCk82ucG+IiIhCG0ONgnpEaqBWSQCAM6zWEBERdQlDjYJUKgnxBjGvpqKG82qIiIi6gqFGYUZHqOG8GiIioq5hqFFYQozjtG5WaoiIiLqEoUZh7koNQw0REVFXMNQojKsKExER+QZDjcK4qjAREZFvdCrUrFmzBmlpadDr9cjKysK2bdvabf/aa69h4MCB0Ov1yMzMxLvvvuvxuizLWLRoEZKTkxEZGYns7GwcOHDAo821116Lvn37Qq/XIzk5GbfffjtOnDjRme4HFfeqwqzUEBERdYXXoWbDhg3Iz8/H4sWLUVpaimHDhiEnJwenTp1qtf3WrVsxdepU3HHHHdi5cydyc3ORm5uLvXv3utosXboUK1euRGFhIUpKSmAwGJCTk4OGhgZXm8svvxyvvvoq9u3bh//85z84dOgQbrzxxk4ccnBxrSrMSg0REVGXSLIsy968ISsrC2PGjMHq1asBAHa7Hampqbj33nvx8MMPn9d+ypQpsFgsePvtt13bLr30UgwfPhyFhYWQZRkpKSl44IEHMGfOHABAdXU1EhMT8dJLL+GWW25ptR9vvfUWcnNz0djYCI1Gc8F+m81mxMXFobq6GrGxsd4csl/t+bEK167+HImxOpTMz1a6O0REREHFm+9vryo1VqsVO3bsQHa2+8tXpVIhOzsbxcXFrb6nuLjYoz0A5OTkuNofPnwYZWVlHm3i4uKQlZXV5j7PnDmDf/7znxg/fnyHAk0wc1dqrPAyXxIREVELXoWayspK2Gw2JCYmemxPTExEWVlZq+8pKytrt73zviP7fOihh2AwGGA0GnH06FG8+eabbfa1sbERZrPZ4xaMnCsKN9tlVNc3KdwbIiKi0BVSZz/NnTsXO3fuxAcffAC1Wo1p06a1Wd0oKChAXFyc65aamhrg3naMXqNGjD4CACcLExERdYVXocZkMkGtVqO8vNxje3l5OZKSklp9T1JSUrvtnfcd2afJZMKAAQPwi1/8AuvXr8e7776LL774otWfO2/ePFRXV7tux44d6/iBBpiJp3UTERF1mVehRqvVYtSoUSgqKnJts9vtKCoqwrhx41p9z7hx4zzaA8DmzZtd7dPT05GUlOTRxmw2o6SkpM19On8uIIaZWqPT6RAbG+txC1bO07pPs1JDRETUaRHeviE/Px/Tp0/H6NGjMXbsWCxfvhwWiwUzZ84EAEybNg29e/dGQUEBAGD27NmYNGkSli1bhsmTJ2P9+vXYvn071q5dCwCQJAl5eXlYsmQJMjIykJ6ejoULFyIlJQW5ubkAgJKSEnz55ZeYOHEievbsiUOHDmHhwoXo169fu8EnVBgNrNQQERF1ldehZsqUKaioqMCiRYtQVlaG4cOHY9OmTa6JvkePHoVK5S4AjR8/HuvWrcOCBQswf/58ZGRkYOPGjRgyZIirzYMPPgiLxYK77roLVVVVmDhxIjZt2gS9Xg8AiIqKwuuvv47FixfDYrEgOTkZV111FRYsWACdTtfV34HiTDHOSg1DDRERUWd5vU5NqArWdWoA4LnN+7Gi6ACmju2Lghsyle4OERFR0PDbOjXkH6YYripMRETUVQw1QcBkcF7/iaGGiIiosxhqgoCrUmPh2U9ERESdxVATBIzOSk0NKzVERESdxVATBJyVGovVhnqrTeHeEBERhSaGmiAQo4uAVi3+KTivhoiIqHMYaoKAJEnuVYU5r4aIiKhTGGqChDGap3UTERF1BUNNkHBWajj8RERE1DkMNUHC6LpSN4efiIiIOoOhJkiYonlRSyIioq5gqAkSronCrNQQERF1CkNNkGClhoiIqGsYaoKEkZUaIiKiLmGoCRKs1BAREXUNQ02QcFZqztRZYbPLCveGiIgo9DDUBIn4KC0kCZBl4AxXFSYiIvIaQ02QiFCr0DPKeakEDkERERF5i6EmiLhWFa5hpYaIiMhbDDVBxGhwXP+JlRoiIiKvMdQEEVOMCDUVNQw1RERE3mKoCSJGg3NODYefiIiIvMVQE0QSHJWaSlZqiIiIvMZQE0RYqSEiIuo8hpogwlWFiYiIOo+hJojw+k9ERESdx1ATRJyVmoraRsgyL5VARETkDYaaIOIMNdZmO2obmxXuDRERUWhhqAkikVo1DFo1AKCSQ1BEREReYagJMkZHteY0JwsTERF5haEmyLiu/8RQQ0RE5BWGmiBjdJ3WzeEnIiIibzDUBBmuVUNERNQ5DDVBxsS1aoiIiDqFoSbIsFJDRETUOQw1QYarChMREXUOQ02QMRpYqSEiIuoMhpogkxATZKd0yzLw6jRg9VjAclrp3hAREbWJoSbIOCs15oZmNDbbFO4NgEMfAt+8CVTuA774k9K9ISIiahNDTZCJi9QgQiUBAM5YFJ5XI8vAxwXu59vWAvVVinWHiIioPQw1QUalkhBvcAxB1Sgcag4VAT9+CUToAWN/oNEsgg0REVEQYqgJQq7Tui0KzquRZeDjJ8Xj0XcAl88Xj7/4E9BYo1y/iIiI2sBQE4Scp3VX1igYalxVmkhgwmxgUK6o1tSfBb78m3L9IiIiagNDTRBKcF6pW6k5NbIMfOSYSzPmDiAmEVCpgZ8+ILYVrwasdcr0jYiIqA0MNUFI8UrNwSLg+HZRpRl/n3t75k1Aj4sASwVQ+ooyfSMiImoDQ00QMilZqWl5xpOzSuOk1gAT7xePP18BNAfJWjpERERgqAlKRiWv/9SySjNh9vmvD/8NENsbqDkB7Ppn4PtHRETUBoaaIOS8UndloK//JMvAx0+Ix2PuAKJ7nd8mQucOO589B9iaAtc/IiKidjDUBCHFrtR98H/A8R1tV2mcRk4DDAlA1VFgz6uB6x8REVE7GGqCkDPUnLFYYbfLgfmh586laa1K46SJBMbfKx5/ugywB8HlHIiIqNtjqAlCzhWFbXYZVfUBGt45sLlFlSbvwu1H3wFE9gTOHAK+fsPv3SMiIroQhpogpI1QIS5SAwA4HYghqJZVmrH/B0QnXPg9umjg0lni8SfPAHa7//pHRETUAQw1Qcq5Vk1FIELNgc3AiVLHujTtzKU519g7AV0sUPEtsO8d//WPiIioAxhqgpRrrRp/nwHVmSqNU2QPIOtu8fiTp8W+iIiIFMJQE6Tcp3X7uVJz4ANRpdFEeVelccr6PaAxACd3i4oPERGRQhhqglRAKjUeZzx5WaVxMhiBMb8Vjz9ZymoNEREphqEmSBkNAVir5sAHwImdjirNfRdu35Zx9wIRenFV78Of+K5/REREXmCoCVKmGD+vKuwxl+bOzlVpnGISgZHTxeNPnu5634iIiDqBoSZI+b1Ss/9931RpnCbcB6g0wJFPgR+Ku74/IiIiLzHUBKkER6XmtMUPoebcKo3B1PV9xvURF7sEgE+f6fr+iIiIvNSpULNmzRqkpaVBr9cjKysL27Zta7f9a6+9hoEDB0Kv1yMzMxPvvvuux+uyLGPRokVITk5GZGQksrOzceDAAdfrR44cwR133IH09HRERkaiX79+WLx4MazWAF/wMYBclZoaPxzj/veBk7vEWUu+qNI4TbwfkNTua0gREREFkNehZsOGDcjPz8fixYtRWlqKYcOGIScnB6dOnWq1/datWzF16lTccccd2LlzJ3Jzc5Gbm4u9e/e62ixduhQrV65EYWEhSkpKYDAYkJOTg4aGBgDAd999B7vdjj//+c/4+uuv8dxzz6GwsBDz58/v5GEHP1OMCDX1TTbUWZt9t2N/VGmc4tOBoTeLx58s891+iYiIOkCSZe/Owc3KysKYMWOwevVqAIDdbkdqairuvfdePPzww+e1nzJlCiwWC95++23XtksvvRTDhw9HYWEhZFlGSkoKHnjgAcyZMwcAUF1djcTERLz00ku45ZZbWu3H008/jeeffx7ff/99h/ptNpsRFxeH6upqxMbGenPIipBlGQMXbkJjsx2fzL0cfY1RvtnxvveAf90iqjR5e3wbagCgYj+wZiwAGfjd50DSEN/un4iIuhVvvr+9qtRYrVbs2LED2dnZ7h2oVMjOzkZxceuTQ4uLiz3aA0BOTo6r/eHDh1FWVubRJi4uDllZWW3uExDBJz4+vs3XGxsbYTabPW6hRJIk11o1lb6aV+PPKo1TwgBg8PXiMefWEBFRAHkVaiorK2Gz2ZCYmOixPTExEWVlZa2+p6ysrN32zntv9nnw4EGsWrUKd999d5t9LSgoQFxcnOuWmpra/sEFIdeqwjU+CjX7N4mVf309l+ZcP31A3H+9UVRuiIiIAiDkzn46fvw4rrrqKtx00024884722w3b948VFdXu27Hjh0LYC99w7WqsMUHk4VbVmmy7hIrAftL0hDg4skAZOCzZ/33c4iIiFrwKtSYTCao1WqUl5d7bC8vL0dSUlKr70lKSmq3vfO+I/s8ceIELr/8cowfPx5r165tt686nQ6xsbEet1DjvFL3aV+sVbPvPXeVZty9Xd/fhfxMzI/CnleBM4f9//OIiKjb8yrUaLVajBo1CkVFRa5tdrsdRUVFGDduXKvvGTdunEd7ANi8ebOrfXp6OpKSkjzamM1mlJSUeOzz+PHjuOyyyzBq1Ci8+OKLUKlCrsjkNdecmq6uKhzIKo1T75FA/2xAtgGfPef/n0dERN2e18kgPz8ff/nLX/Dyyy/j22+/xe9//3tYLBbMnDkTADBt2jTMmzfP1X727NnYtGkTli1bhu+++w6PPPIItm/fjnvuuQeAmBCbl5eHJUuW4K233sJXX32FadOmISUlBbm5uQDcgaZv37545plnUFFRgbKysjbn3IQLY7SPVhXe9x5QtgfQRgemSuP0s7niftc6oPrHwP1cIiLqliK8fcOUKVNQUVGBRYsWoaysDMOHD8emTZtcE32PHj3qUUUZP3481q1bhwULFmD+/PnIyMjAxo0bMWSI+1TfBx98EBaLBXfddReqqqowceJEbNq0CXq9HoCo7Bw8eBAHDx5Enz59PPrj5RnpIcU1UbgrocbjjKcAVWmc+l4KpP1UXDrh8xXA1bwuFBER+Y/X69SEqlBbpwYAPj9YiVv/WoKMXtHYnD+pczv57h1g/W9ElWb2nsCGGgD4fgvwyrWAWgfkfSUufklERNRBflunhgLL1NXhJyWrNE7pPwP6jAVsjUDxqsD/fCIi6jYYaoKY8+yns3VNaLbZvd/BvneBsq9ElWZ8AOfStCRJwKQHxeMvXwAsp5XpBxERhT2GmiDWM0oLlSQen/F2rRqPM57uBqLaXn3Z7/pnA8nDgCYL8MWflOsHERGFNYaaIKZWSYg3OCcLexlqvnvHUaWJAcbd44feeUGS3GdCbVsL1Fcp2h0iIgpPDDVBrlPzamQZ2PKkeKx0lcbp4slAr0FAo1kEGyIiIh9jqAlyrlWFvbmopUeVZpafeuYllcp9Tagv/gQ01ijbHyIiCjsMNUHOVamp6eDwk90OfBxkVRqnwdcDxv5A/Vlg+wtK94aIiMIMQ40vfPcO0NTgl10bDY5Q09FKzb53gPIgq9I4qdTuas3WVYC1Ttn+EBFRWGGo6aoft4vF7VaNBL78G9Dsgytqt2CKcUwU7kilxm4HPn5KPL70d8FVpXHKvAno0RewVAClryjdGyIi/6o7A5T+Hfj7DUDhRGDvf5TuUVhjqOmqujNAbG/AfBx4Jx9YPUr8B2xr8snuTY5KTYfm1LSs0lz6/3zy831OrQEm3i8ef74CaPbBFciJiIJJ/Vlg5z+Af/waeCYDeOse4FCRmOv4798C/75DtCGf8/raT3SOAVcC95YCpS8Dny4Dqo6K/4A/XQZc9rCoTKjUnd69saPXf2o5lyZYqzROw28FtjwN1JwAdv0TGP1bpXtE1L3JMmCpBM4ecd+qjwGJg4GhNwORPRXuYAiorxILnn79BnDoI8De4g/bxExgcC7QVA989hyw99/AD1uB3DVAv58r1eOwxGs/+ZK1TkyA/ew5oK5SbDMNEOFm0PXiDCAv7T5WhevWfI7kOD2K513RdsNv3gJevR3QxQKzdwd3qAGALwqBTQ+Joah7S0UFh4j8p7lR/NHVMricOex+3GRp/X0RkcCQG8QfH71HiXWnSGioBva9J4LMwSLPINNrsDg5YnAuYMpwb/9xO/D6XcCZQ+L52LuB7EcAbVQgex5SvPn+Zqjxh8ZasRbL1pXuEmOvQcBl84BLrvHqQ+HHs3WY+NRH0KpV2LfkKkitvdduB/78U6B8L/CzB4Gf/8FHB+JH1jpgxVAxtyb3eWD4b5TuEVFoO6/actgzwJhPAGjv414SQ+k908Qtuhew/33g1NfuJkmZwKiZonqji/HboQS1BjOwf5MjyPwPsLWY75hwiTvIJFzc9j6sFmDzIuDLv4rnxgzghj+L0EjnYahphSJX6W4wAyWFwNbVQGO12JY0FLh8PjDgqg6Fm4YmGwYu3AQA2L34SsRFtlLRCLUqjdPnK8T/2Mb+wKxtXRqmI+oWmhrOr7a0vLVVbXHSGID4dHdwcd3SgR6pQITOs70sA8e2ATteBPa+Li5MC4jryWXeBIyeKS6BEu4aa4B9LYNMi+kApotFJWtQLtBroHf7PfA/4M1ZQG0ZIKnFdfJ++gAr1+dgqGmFIqHGqf4sULwG+OJ5wFortvUeJcJNvysuGG6GLH4ftY3NKHpgEvolRHu+aLeLGfWnvg6dKo1TYw2wPFP8fn79NyDzRqV7RL5y9Asxx6Df5ed/UVLHyTJwfAew51UxzFF9DF5VW3qmeYaYKGPnh4/qzgC7/wVsfxE4fcC9vfcoMTQ1+IbwGkJprPWsyDS3WLbDmCGCzODrgV6XdO3n1J0RJ5l8/YZ4njISuGGt55BVN8dQ0wpFQ42T5bQYktq2FmhyrNGSeqkINz+Z1ObbLnv6Ixw5XYdX7x6HsennVGG+eRN4dZqo0uTtCb0JfVuWAh89Lobnfvd5p+YdURCpPABsmgcc3CyeR/YEMm8GRtwGJA9Vtm+h5PQhEWS+ehU4873na9ro1istPdNar7b4miwDRz4T8we//a97HokuDhh2i6jedPWLXilWixhy+/oN4MAHnkEmvl+LIDPIt3OLZBn46t/Auw+IeToRkcCVjwFj/o9zmMBQ06qgCDVOtafE0MuXf3X/T5P2U+DyPwAXjTuv+a+f34odP5zFn24diaszk90vtKzSTHpIhKNQU18lqjWNZmDKP8ScIwo9DdUioJYUAvZmQKUBDCag5qS7TdJQYOQ0YMivQ2eINJBqT4khnq9eFdUZJ00UMHCyGO7pPapr1RZfq60Adv1DVG+qfnBv7ztehJtLrgU0euX61xHWOhFgvn5DBJrmevdr8T9xzJG5Hkgc4v/fe/Vx4M3/B3z/sXje7+fAdWuA2BT//twgx1DTiqAKNU7mk8BnzwI7XnJPNuv3cxFu+ox2Nbv779vx/tfleOy6wbh9XJr7/aFepXEqegz49BkxNn/XluD5wKYLs9vEehxFj7rP+BtwFZDzhKgcfP+ReP27d9z/jat1wCW/EtWb9Endey5VY6343Xz1qjgNWLaJ7ZJaDN1l3iwCjS66/f0ozW4Hvv9QhJt977mPIzIeGHGrmFxs7KdsHwFREak9BZw+KIbQvt8ihpiaWqxu3jNNDKUNzhVBPNCfR3Y78OVfxHzD5gZA3wP41bPij4FuiqGmFUEZapyqjol1bXb+XfyVCwAZOaLykjIc89/4CutKjuK+KzKQ/4sB4nW7HSicAJz6JnSrNE6W08DyIeKD5dZ/Axm/ULpH1BE/FIvT8k/uFs9NA4CcAiAj+/y2dWeAr14TC1OWf+XeHpcqznwb/hvxZdId2JpEgPnqVcclVlp8ofYeJYLMkBvE2UehyHxC/DuXviwWJXVKnyTm3gyc7P+JsFaLGMI7fUDcVx5wP240n9++x0XuikzysOD4w6pinzj1++Qu8XzIjcDkZ0L3j9cuYKhpRVCHGqezR8SidLv/5f5LZ+Cv8Ir+N1j0BXBrVl88fn2m2P71RuC16WIcO28PENlDoU77yPt/AIpXA33GAnd8EBwfKv7Q1CBOva/4TvwVGIrzTKp/FH9FOpd718WJtZjG3tmxL6uTu0X1Zs+rQEOVe3v6z4ARt4shSE2kX7quGFkW65N89aoYYnJWtQAxxJF5szhNOhiqGb5iaxZzq7a/ABzYDNcE5+hEUaUbOR3oeVHn92+3iTPBTh8Ut5bBpWWYOo8k1scyZYghpUHXASkjgvMzx9YEfPI08Mkz4jshJqVbLtjHUNOKkAg1TqcPAVueEh/6jg+Ct22XYnvanXjkjhvPqdI8DFw+T9n++kJNuZhbY2sEpr3V7sTpkGFrFuHlRClwvFTcl3/juUBX71GiND/kBkBrUK6vHdFUD3y+Uiwu2VwPQAJGTQd+vlDMn/F6fw3i0h47/yEqF84vPV0ckPlr8cWXMjI4v2w6qvKgCDJ7XhXrxjgZEsRwQubNQO8QP8aOOPuDuNZb6SuA5ZRjoySqsqNmAhlXAuo2Fri3nHaEFWdwcYSYM997rhFzrsh4EVyM/d03U4aYVB3s83zOdd6CfXcB2X8Mr7PN2sFQ04qQCjVOFfuAjwtcp/rZIUGVeZNYAGvzwvCp0ji9O1ecGZb2U2DG20r3xjuyLD5kneHleClQtsdzaMEpyiQ+XH/c3uLMkVhg6BQxuTJxcGD7fiGyDHyzEfhgoeOUYoiJoL980ndrlFQdBXb9S0w6rTrq3t5rkAg3Q6d0LjgpoaYc+Pp1YM8G4MRO93aNQcwlyrwZ+MllbX+JhzNbkxhy2/GiezIsIE5DHzlNnDVVeaDF0NHB9q+RpNaJSpepvzjN2hlcjP3DbzJ6N16wj6GmFSEZahz27PgcJzYuxlXqLz1fuGyeKPuHi+ofgRXDxRf9b98H+l6qdI9aJ8ti3kDLCsyJneIMoHNpY4CU4eKv8ZSR4j4uVfxl7jxzZMdLYujRqc9YEW4G5Sr/l1jZV8B7DwM/fCaex/YRp5oOvt4/1QW7HTjyqajefPuW++xAlQa4+CoxPNXviuALBI01wLdvi6rM9x8Dsl1sl9RA/yscE36vDv5qXCCdPiTCzc5/AvVn2m8b28cRXBzhxfk4LrX7TTQ/+D9gY/dasI+hphWhHGoOVdTiimVbMFZ3FK9e/LGYrR9lAu7dET5VGqe37hMTDPtnA7f9R+neCHVnPCswJ0qB2vLz26l1Yo6MM7ykjBQfvBdae8duBw5/7Dhz5F33ZHF9HDBsqijPe7tSaVdZKoEPl4h/C9ku1s2YmAeMvy9wQau+Sszb2fkP8Tt3ikkWv5cRtyk7B8XWBBz6UFRkvnvX81TgPmNEkBl8PRCdoFwfQ0FTg1jvZtc/xCrspgxH1aWfeBzfT/lwH2y62YJ9DDWtCOVQU13XhGGPfgAA+O6xq6CvOiT+4ovrrXDP/ODMYWDVKDEpTh8nFhrTRotTWrUGUflwPY4W159xPY4+p73zZhC3jlQWGmvF2QYtQ0zL9TecJLUYGuk9wh1ieg3q+l9LNeXiLLjSlz2HYfqOA0bNEJMa/TmJ1tYkytsfF7grT4NvAH7xqFjYTSnlX4u/6PesB+pOu7f3HS/CzaDrLnzasyyLeUFNdaKU31QvLitgrWuxrc79/LxtzraO91Ud9RwaMfYXw2SZN4ohESJ/6kYL9jHUtCKUQ40syxiw4D002WR8/vDP0btHmJ0Zcq535oh1GnxKcgec1sKPJImhlop9aHUZ+vh+nkNISUP9+9ej3S6qADvOWfdD30Oc/jxqJpAwwLc/82CRWA24cp94npQJ/HIpcNF43/6crmi2ikrlzn+IM2ucwzzaaHHKsGxrI5w47tu9xEAnGHqJEJN5U/CeQUPhrRss2MdQ04pQDjUAcOkTRSgzN+DNWRMwLLWH0t3xL1kWwzuNNeJmrRVfVI21gLWmxWPHrdHxurXW0d7SYnstvP4ii+0tvqCcISZlhLLDfOaTonqz42XA/KN7+0UTRLgZdG3XlsY/fUicUr//PfE8yghcsUjMXwnm+QrmE8Du9SLgOM8K6agIvVipV2sQ95pI92NtlJjUq41yvBblfuxqYxDrhSQPD775PdT9hPmCfQw1rQj1UPOrVZ9i73EzXpgxGj8fmKh0d0KHLLuHEdoLSLZGIGGgCDExQfr7tdvEJMHtLwIH3ndXKSLj3dUbU/+O76/BLFZyLv6TmJytigDG3i0mHobSXC1ZFhfQLNsjwkpHwkkwhzWizqrYD7x+p3vBvsE3iMqNruVQfLTnkL0mKugrjAw1rQj1UDP9hW3Ysr8CS389FDePUXBuAwWH6h8dq7a+AtSccG9P+6k4c2rgNUCEtvX32u3A7nXA//7oXjOk3xXAVQVAwsX+7zsR+c+5C/ZdkHRO2Gk5R9H5PMb9WBfj2a7l+3Qx4rmP1wHy5vubddMQYYoWwwuVlkaFe0JBIa6PWHTxZ3PFxfh2vChWbT3yqbhFmcQ1d0ZO9zxD6Ng24L0H3eunxP9EXNpgQE7Q/7VGRB2g1ojL5mTkiCGputPuIXlXldrSYmhedg/l+0L6z4Dp//XNvjqBoSZEmKLFX92VNe2soEndjzpCrH8y8GpxNk7pK6KCU1smrgT/+Qqx0Nvw28TE2j0bxPu0MWKYKet3bVd0iCh09Rklbm1pOTTfWuCx1nr/WpNFVGoUxFATIpyVmtOs1FBbevQFfr5AXDpj/yZxzZ1DH4qzIlyrt0qigvPzRcE7d4iI/E+S3MNG8NHFU+329i9dEQAMNSHC6KzU1DLU0AWoI8Ry/Jf8SqxUXPqKWKQrro+4XkzvkUr3kIjCkUoFqJS9rhZDTYhwVWpqOfxEXuiZJk7PvmKR0j0hIvK7C6zfTsGClRoiIqL2MdSEiARHpeaMxQqbvVuchU9EROQVhpoQ0dMgKjV2GThbxyEoIiKiczHUhAiNWoWeUeJiiZxXQ0REdD6GmhBidC7Ax3k1RERE52GoCSEmThYmIiJqE0NNCHFXajj8REREdC6GmhCS4FqrhpUaIiKiczHUhBCjgcNPREREbWGoCSGmGK4qTERE1BaGmhDCSg0REVHbGGpCiLNSw4nCRERE52OoCSEmg3udGlnmpRKIiIhaYqgJIaYYMfzU2GyHxWpTuDdERETBhaEmhERpIxCpUQMAKms4r4aIiKglhpoQ46zWnLYw1BAREbXEUBNijI55NRU1nCxMRETUEkNNiDE5VxVmpYaIiMgDQ02IcV3UkpUaIiIiDww1IYaVGiIiotYx1IQYo6NSw0slEBEReWKoCTFGR6WmgpdKICIi8sBQE2JMrkoNQw0REVFLEUp3gLzjnFNz7Gw95ry2G717RIpbz0ik9IhEcpweescCfURERN0JQ02I6d0jEgatGharDf/e8WOrbUzROvTuGYk+PSKR0kOP3j1E4OndUwSguEgNJEkKcM+JiIj8S5K7yZURzWYz4uLiUF1djdjYWKW70yVHT9dhx9EzOH62Hser6nG8qgHHz9bhRFUD6psufE0og1btCjkpjkpPnxaPe8XoEKHmyCQRESnPm+/vTlVq1qxZg6effhplZWUYNmwYVq1ahbFjx7bZ/rXXXsPChQtx5MgRZGRk4KmnnsLVV1/tel2WZSxevBh/+ctfUFVVhQkTJuD5559HRkaGq83jjz+Od955B7t27YJWq0VVVVVnuh4W+hqj0NcYdd52WZZxtq4JJ6rq8ePZepyoEqHHeX/8bD1OW6ywWG04cKoWB07Vtrp/tUpCUqy+xbCWHik9IpESF4mkOD2S4/Ss9hARUdDxOtRs2LAB+fn5KCwsRFZWFpYvX46cnBzs27cPvXr1Oq/91q1bMXXqVBQUFOBXv/oV1q1bh9zcXJSWlmLIkCEAgKVLl2LlypV4+eWXkZ6ejoULFyInJwfffPMN9Ho9AMBqteKmm27CuHHj8Le//a2Lhx2eJElCvEGLeIMWQ3rHtdqmocnmDjqO4PNji+BzsqoBzXbZUQGqB460/rMiNWokx+mR5LiJx5FIcT2PRM8oBh8iIgocr4efsrKyMGbMGKxevRoAYLfbkZqainvvvRcPP/zwee2nTJkCi8WCt99+27Xt0ksvxfDhw1FYWAhZlpGSkoIHHngAc+bMAQBUV1cjMTERL730Em655RaP/b300kvIy8vzulITTsNP/mSzy6ioacTxqjrHsJYIPCeq6nGyugFl5gacsXRsjRxdhMoVfJJbVHmS4yJd2+OjtFCpGHyIiKh1fht+slqt2LFjB+bNm+faplKpkJ2djeLi4lbfU1xcjPz8fI9tOTk52LhxIwDg8OHDKCsrQ3Z2tuv1uLg4ZGVlobi4+LxQ01GNjY1obHSf9mw2mzu1n+5GrZJc1ZdRF7XepqHJhnJzA05WN+BktSPsVDe0uK9HZa0Vjc12HDldhyOn69r8eVq1ColxOo+gkxyrR69YPSI1aug0Kug1augj1NA7Hkdq1NBr1NBFqBiIiIjIxatQU1lZCZvNhsTERI/tiYmJ+O6771p9T1lZWavty8rKXK87t7XVpjMKCgrwxz/+sdPvp7bpNWpcZDTgIqOhzTaNzTacMje2EnzqXQGoorYRVpsdx87U49iZ+k71RRuhgj7CEXw07uCjj2gRiDRq6CNUiNS6H+tato9QQxuhgl2WYW22o9kuo8lmR5NN3Dfb7LDaZDTb7Odsd7Szy2hqtqPZfqF2djQ1y2i2i9diIyNgNOhgitYhIUYLU7QORoMWphixzRQttnH+EhFRx4TtKd3z5s3zqBCZzWakpqYq2KPuRRehRmp8FFLjz5/Q7GRttuNUjWeV54Qj9FTWNqKhyY6GJhvqm2xoaLKjscmGhmYbmmyyxz6szXaYG5oDcVg+VV3f1KEwp1FLMBp0MDpCTsvAY4rRuoKRKUaL+Cgtz1wjom7Lq1BjMpmgVqtRXl7usb28vBxJSUmtvicpKand9s778vJyJCcne7QZPny4N93zoNPpoNPpOv1+8j9thAp9ekahT8+2g09rbHYZDU02cWu2ux+3CD7OQNTQZHeEIpvjNc/2zn00NtmgUasQoZagUaugcdxHqFTQRkiIUKlc291tHM9VKmgiVNCoJNc+tGoVIlrsx3O7BLUkwdzQhIoaKyprG3G6Vtw7b6drraiobURNQzOabDLKzGI+04VIEtAzSusKPcYWAcigVUOtViFCJX6+WiWORa2SxDaV4zXXc/G6ShLHeH77FttVEtTqFvt1vM4KExEFklehRqvVYtSoUSgqKkJubi4AMVG4qKgI99xzT6vvGTduHIqKipCXl+fatnnzZowbNw4AkJ6ejqSkJBQVFblCjNlsRklJCX7/+997f0QU9tQqCQZdBAy6sC00ujQ02XDG0jLwOB7XWHHa0uh6XFnbiDN1VsgycMZixRmLFfvLWz9lP5DU54YkR3hSq+AZiFQtQ5Y7XKmlCwSpFsFLF6FGjygNekZp0CNKi55RWvSI0ji2aRGlVTNkEYU5r78V8vPzMX36dIwePRpjx47F8uXLYbFYMHPmTADAtGnT0Lt3bxQUFAAAZs+ejUmTJmHZsmWYPHky1q9fj+3bt2Pt2rUAxGnIeXl5WLJkCTIyMlyndKekpLiCEwAcPXoUZ86cwdGjR2Gz2bBr1y4AQP/+/REdHd3FXwNRcNJrxEKJKT0iL9jWZpddAciz8mN1DOfZYLPLaLbLLe7FnB+bXYZNdmy3OV+3t9LefXO+3nI4sLU+2ewyguGa8lq1yhVwWt6LANRiu0GLHpFie48oDTQcziMKGV6HmilTpqCiogKLFi1CWVkZhg8fjk2bNrkm+h49ehQqlftDYPz48Vi3bh0WLFiA+fPnIyMjAxs3bnStUQMADz74ICwWC+666y5UVVVh4sSJ2LRpk2uNGgBYtGgRXn75ZdfzESNGAAA++ugjXHbZZV4fOFG4UaskJMTokBAT+GFXu0f4cYche2shyiM4ybDLFwpS7QUv9z7rm2yormvC2TorztY1uR5X1TXBarPDarPjVE0jTtV4dzHYGF0EehicoUcEnp5RGsRFalxVJ1WLIT1JkqCWxL+Hc7vn63BVoVpud7cFVM5tktSirahuRaglaFQqqNUSNK5qlRjqVKvEazwrkLorXiaBiMKaLMuos9pcAafKFXZE+HFud78utpsbmhCqn46SBGgcAUjtnOvlGLKLcD52zAcT9y0et2irkkQIkyRAggRIInBJcG4T1XYJaOU193vheKxqud3xXmd/VZIEWQbssgxZFgHWLot/P7tdbLfJsquNXRZhWjw+9znc2+3Ofbr34dyvBHFSgzZCBV2ECjqNClq1qpVt4mxKXYTKsb3F6y226Vzbzt8nJ/B3nt8vk0BEFCokyT0Hq0/Pjr/PZpdRXX9+2BH3Vpjrm8UXpN1dRbLbZdicX6iO7XbZ+To8trW13dbii9l27j4cyw3Y7DKa7GL5AHsrwUuW4ahO+e73SF2jVokTBTRqCdoIlcfJBhq1qsU2x3Pn6xGO96hbvCfinOet7NP5unO7M2Q5H2sd+9Wp1a7H4RC8GGqIiFqhVrkvOxLMnEN8zS2G9ppt7sdNrrlPYhiv2RGGWgYj1/vsdtd9k01UTGSIkOTxGI7nMiBDbrHN/Rwt2tjPaQePfbnbqBwVG5UkwqgYghOPndudQ3yutirJ430qZ1tVi8et7FMlSa61qRodS0M0NtvQ6Hje6HjufL2xSQxhNjbZHPeO112PPffhXPPKyWaXUW+3ob4p0P+FdJxKgisE6SIcwcpx32o48ghIYnv/XtG47dI2Vm4NAIYaIqIQplJJ0KokaBH6f2WHG5td9gxLTY5FOG1iIU6ra6FOcbM2y57PbWJhT4/nNrtrm+t5W+9vdrdxrunlfNzouG/JLsOx1IUdNZ085p8NSGCoISIiCjdqlYRIrRqRWrXSXWmVLIvKnUfYcQUmdwhyVp7EcxlWm80VmM4NSxcZvVt3zNcYaoiIiLohSZJcc3jCRfgcCREREXVrDDVEREQUFhhqiIiIKCww1BAREVFYYKghIiKisMBQQ0RERGGBoYaIiIjCAkMNERERhQWGGiIiIgoLDDVEREQUFhhqiIiIKCww1BAREVFYYKghIiKisNBtrtItyzIAwGw2K9wTIiIi6ijn97bze7w93SbU1NTUAABSU1MV7gkRERF5q6amBnFxce22keSORJ8wYLfbceLECcTExECSJJ/u22w2IzU1FceOHUNsbKxP9x0MeHyhL9yPMdyPDwj/Y+TxhT5/HaMsy6ipqUFKSgpUqvZnzXSbSo1KpUKfPn38+jNiY2PD9j9WgMcXDsL9GMP9+IDwP0YeX+jzxzFeqELjxInCREREFBYYaoiIiCgsMNT4gE6nw+LFi6HT6ZTuil/w+EJfuB9juB8fEP7HyOMLfcFwjN1mojARERGFN1ZqiIiIKCww1BAREVFYYKghIiKisMBQQ0RERGGBoaaL1qxZg7S0NOj1emRlZWHbtm1Kd8lnCgoKMGbMGMTExKBXr17Izc3Fvn37lO6W3zz55JOQJAl5eXlKd8Vnjh8/jttuuw1GoxGRkZHIzMzE9u3ble6Wz9hsNixcuBDp6emIjIxEv3798Nhjj3XoGjHB6JNPPsE111yDlJQUSJKEjRs3erwuyzIWLVqE5ORkREZGIjs7GwcOHFCms53U3jE2NTXhoYceQmZmJgwGA1JSUjBt2jScOHFCuQ576UL/hi397ne/gyRJWL58ecD611UdOb5vv/0W1157LeLi4mAwGDBmzBgcPXo0IP1jqOmCDRs2ID8/H4sXL0ZpaSmGDRuGnJwcnDp1Sumu+cSWLVswa9YsfPHFF9i8eTOamppw5ZVXwmKxKN01n/vyyy/x5z//GUOHDlW6Kz5z9uxZTJgwARqNBu+99x6++eYbLFu2DD179lS6az7z1FNP4fnnn8fq1avx7bff4qmnnsLSpUuxatUqpbvWKRaLBcOGDcOaNWtafX3p0qVYuXIlCgsLUVJSAoPBgJycHDQ0NAS4p53X3jHW1dWhtLQUCxcuRGlpKV5//XXs27cP1157rQI97ZwL/Rs6vfHGG/jiiy+QkpISoJ75xoWO79ChQ5g4cSIGDhyIjz/+GHv27MHChQuh1+sD00GZOm3s2LHyrFmzXM9tNpuckpIiFxQUKNgr/zl16pQMQN6yZYvSXfGpmpoaOSMjQ968ebM8adIkefbs2Up3ySceeugheeLEiUp3w68mT54s//a3v/XYdsMNN8i33nqrQj3yHQDyG2+84Xput9vlpKQk+emnn3Ztq6qqknU6nfyvf/1LgR523bnH2Jpt27bJAOQffvghMJ3yobaO78cff5R79+4t7927V77ooovk5557LuB984XWjm/KlCnybbfdpkyHZFlmpaaTrFYrduzYgezsbNc2lUqF7OxsFBcXK9gz/6murgYAxMfHK9wT35o1axYmT57s8W8ZDt566y2MHj0aN910E3r16oURI0bgL3/5i9Ld8qnx48ejqKgI+/fvBwDs3r0bn332GX75y18q3DPfO3z4MMrKyjz+O42Li0NWVlbYfuYA4nNHkiT06NFD6a74hN1ux+233465c+di8ODBSnfHp+x2O9555x0MGDAAOTk56NWrF7KystodgvM1hppOqqyshM1mQ2Jiosf2xMRElJWVKdQr/7Hb7cjLy8OECRMwZMgQpbvjM+vXr0dpaSkKCgqU7orPff/993j++eeRkZGB999/H7///e9x33334eWXX1a6az7z8MMP45ZbbsHAgQOh0WgwYsQI5OXl4dZbb1W6az7n/FzpLp85ANDQ0ICHHnoIU6dODZuLQD711FOIiIjAfffdp3RXfO7UqVOora3Fk08+iauuugoffPABrr/+etxwww3YsmVLQPrQba7STV0za9Ys7N27F5999pnSXfGZY8eOYfbs2di8eXPgxnsDyG63Y/To0XjiiScAACNGjMDevXtRWFiI6dOnK9w733j11Vfxz3/+E+vWrcPgwYOxa9cu5OXlISUlJWyOsbtqamrCzTffDFmW8fzzzyvdHZ/YsWMHVqxYgdLSUkiSpHR3fM5utwMArrvuOtx///0AgOHDh2Pr1q0oLCzEpEmT/N4HVmo6yWQyQa1Wo7y83GN7eXk5kpKSFOqVf9xzzz14++238dFHH6FPnz5Kd8dnduzYgVOnTmHkyJGIiIhAREQEtmzZgpUrVyIiIgI2m03pLnZJcnIyBg0a5LHtkksuCdhZCIEwd+5cV7UmMzMTt99+O+6///6wrLw5P1e6w2eOM9D88MMP2Lx5c9hUaT799FOcOnUKffv2dX3m/PDDD3jggQeQlpamdPe6zGQyISIiQtHPHYaaTtJqtRg1ahSKiopc2+x2O4qKijBu3DgFe+Y7sizjnnvuwRtvvIEPP/wQ6enpSnfJp6644gp89dVX2LVrl+s2evRo3Hrrrdi1axfUarXSXeySCRMmnHcK/v79+3HRRRcp1CPfq6urg0rl+TGmVqtdfzGGk/T0dCQlJXl85pjNZpSUlITNZw7gDjQHDhzA//73PxiNRqW75DO333479uzZ4/GZk5KSgrlz5+L9999XuntdptVqMWbMGEU/dzj81AX5+fmYPn06Ro8ejbFjx2L58uWwWCyYOXOm0l3ziVmzZmHdunV48803ERMT4xq3j4uLQ2RkpMK967qYmJjz5gcZDAYYjcawmDd0//33Y/z48XjiiSdw8803Y9u2bVi7di3Wrl2rdNd85pprrsHjjz+Ovn37YvDgwdi5cyeeffZZ/Pa3v1W6a51SW1uLgwcPup4fPnwYu3btQnx8PPr27Yu8vDwsWbIEGRkZSE9Px8KFC5GSkoLc3FzlOu2l9o4xOTkZN954I0pLS/H222/DZrO5Pnfi4+Oh1WqV6naHXejf8NyQptFokJSUhIsvvjjQXe2UCx3f3LlzMWXKFPzsZz/D5Zdfjk2bNuG///0vPv7448B0ULHzrsLEqlWr5L59+8parVYeO3as/MUXXyjdJZ8B0OrtxRdfVLprfhNOp3TLsiz/97//lYcMGSLrdDp54MCB8tq1a5Xukk+ZzWZ59uzZct++fWW9Xi//5Cc/kf/whz/IjY2NSnetUz766KNW/5+bPn26LMvitO6FCxfKiYmJsk6nk6+44gp53759ynbaS+0d4+HDh9v83Pnoo4+U7nqHXOjf8Fyhdkp3R47vb3/7m9y/f39Zr9fLw4YNkzdu3Biw/kmyHKJLbxIRERG1wDk1REREFBYYaoiIiCgsMNQQERFRWGCoISIiorDAUENERERhgaGGiIiIwgJDDREREYUFhhoiIiIKCww1REREFBYYaoiIiCgsMNQQERFRWGCoISIiorDw/wF++AyuNdiWLwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['loss'], label='train')\n", + "plt.plot(history.history['val_loss'], label='test')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(20831, 1)" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lstm_pred.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(20831,)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_y.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "test_y1=test_y.reshape(20831,1)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.52189913e-01],\n", + " [3.12516873e-01],\n", + " [3.25310588e-01],\n", + " ...,\n", + " [1.08522631e-04],\n", + " [1.18219088e-04],\n", + " [1.28327022e-04]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_y1" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "results1 = np.broadcast_to(lstm_pred, (20831, 6))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "test_y2 = np.broadcast_to(test_y1, (20831, 6))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "# 反归一化\n", + "inv_forecast_y = scaler.inverse_transform(results1)\n", + "inv_test_y = scaler.inverse_transform(test_y2)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1.78428369e+01, 4.82409691e+01, 6.37156385e+02,\n", + " 2.97801603e+02, 1.07621239e+01, 9.90052500e-01],\n", + " [ 1.07562527e+01, 3.44305945e+01, 4.40440713e+02,\n", + " 2.05929459e+02, 7.43790432e+00, 1.80780551e-01],\n", + " [ 1.14053667e+01, 3.56955916e+01, 4.58459395e+02,\n", + " 2.14344726e+02, 7.74239484e+00, 2.54907916e-01],\n", + " ...,\n", + " [-5.09439462e+00, 3.54076535e+00, 4.44428011e-01,\n", + " 4.37940726e-01, 2.58283957e-03, -1.62932764e+00],\n", + " [-5.09390265e+00, 3.54172410e+00, 4.58084512e-01,\n", + " 4.44318723e-01, 2.81361533e-03, -1.62927146e+00],\n", + " [-5.09338980e+00, 3.54272354e+00, 4.72320538e-01,\n", + " 4.50967376e-01, 3.05418424e-03, -1.62921289e+00]])" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "inv_test_y" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test RMSE: 0.223\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQoAAAKTCAYAAABRkzVdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d9w0V13+f52Z2XrXpyZPeqUETIAQIHRRiiBF0a8iiqiABaSIPxX98lVBCYqCIBBBwKggIkhR6TUYIARCgIT0Xp48/bnLtqnn98fM7s7MzuzO3jtld+/r/XqFZ3d2duZwn52Zc65zfT4fIaWUIIQQQgghhBBCCCGEbGuUohtACCGEEEIIIYQQQggpHgqFhBBCCCGEEEIIIYQQCoWEEEIIIYQQQgghhBAKhYQQQgghhBBCCCGEEFAoJIQQQgghhBBCCCGEgEIhIYQQQgghhBBCCCEEFAoJIYQQQgghhBBCCCEAtKIbMAzHcbB//34sLS1BCFF0cwghhBBCCCGEEEIImSmklNjc3MRJJ50ERRnuGZxqoXD//v049dRTi24GIYQQQgghhBBCCCEzzT333INTTjll6D5TLRQuLS0BcP+PLC8vF9waQgghhBBCCCGEEEJmi42NDZx66qk9nW0YUy0UdsONl5eXKRQSQgghhBBCCCGEELJFkqT1YzETQgghhBBCCCGEEEIIhUJCCCGEEEIIIYQQQgiFQkIIIYQQQgghhBBCCKY8RyEhhBBCCCGEEEII2Z7Ytg3TNItuxkxQLpehKJP7ASkUEkIIIYQQQgghhJCpQUqJAwcOYG1treimzAyKouDMM89EuVye6DgUCgkhhBBCCCGEEELI1NAVCffu3Yt6vZ6oWu92xnEc7N+/H/fffz9OO+20if5eFAoJIYQQQgghhBBCyFRg23ZPJNy1a1fRzZkZ9uzZg/3798OyLJRKpS0fh8VMCCGEEEIIIYQQQshU0M1JWK/XC27JbNENObZte6LjUCgkhBBCCCGEEEIIIVMFw43HI62/F4VCQgghhBBCCCGEEEIIhUJCCCGEEEIIIYQQQgiFQkIIIYQQQgghhBBCCCgUEkIIIYQQQgghhBAyMU9+8pPx6le/uuhmTASFQkIIIYQQQgghhBBCMkZKCcuyim7GUCgUEkIIIYQQQgghhJCpREqJlmEV8p+UMnE7X/ziF+Pyyy/H29/+dgghIITAZZddBiEEPvvZz+LCCy9EpVLBFVdcgRe/+MV43vOeF/j+q1/9ajz5yU/uvXccB5dccgnOPPNM1Go1XHDBBfjYxz6W0l81Hi3zMxBCCCGEEEIIIYQQsgXapo3z/t/nCzn39W94OurlZNLZ29/+dtx888146EMfije84Q0AgB/96EcAgD/6oz/C3/zN3+Css87Cjh07Eh3vkksuwQc/+EH8wz/8A84991x8/etfxy//8i9jz549eNKTnrS1/0MJoFBICCGEEEIIIYQQQsgErKysoFwuo16v48QTTwQA3HjjjQCAN7zhDXjqU5+a+Fi6ruNNb3oTvvSlL+Hiiy8GAJx11lm44oor8J73vIdCISGEEEIIIYQQQgjZftRKKq5/w9MLO3caPPKRjxxr/1tvvRWtVmtAXDQMAw9/+MNTaVMcFAoJIYQQQgghhBBCyFQihEgc/jutLCwsBN4rijKQ/9A0zd7rRqMBAPj0pz+Nk08+ObBfpVLJqJUus/2XJoQQQgghhBBCCCFkCiiXy7Bte+R+e/bswXXXXRfY9v3vfx+lUgkAcN5556FSqeDuu+/ONMw4CgqFhBBCCCGEEEIIIYRMyBlnnIFvf/vbuPPOO7G4uAjHcSL3e8pTnoK3vOUt+Jd/+RdcfPHF+OAHP4jrrruuF1a8tLSE3//938drXvMaOI6Dxz/+8VhfX8c3vvENLC8v41d/9Vcz+/+gZHZkQgghhBBCCCGEEEK2Cb//+78PVVVx3nnnYc+ePbj77rsj93v605+O17/+9fiDP/gDXHTRRdjc3MSLXvSiwD5vfOMb8frXvx6XXHIJHvzgB+MZz3gGPv3pT+PMM8/M9P+DkOGg6CliY2MDKysrWF9fx/LyctHNIYQQQgghhBBCCCEZ0ul0cMcdd+DMM89EtVotujkzw7C/2zj6Gh2FhBBCCCGEEEIIIYQQCoWEEEIIIYSQybnnWAsv/9D38P171opuCiGEEEK2CIVCQgghhBBCyMS8+iPfx6evvR/Pe9c3En/n1kObeNm/fBfX3beeYcsIIYQQkhQKhYQQQgghhJCJuetoc+zv/PL7rsIXrj+I51/6zQxaRAghhJBxoVBICCGEEEIImZiSOv7U4sBGBwCgW07azSGEEELIFqBQSAghhBBCCJkYTRVFN4EQQgghE0KhkBBCCCGEEDIxJYVTC0IIIWTW4dOcEEIIIYQQMjFbCT0mhBBCyHTBpzkhhBBCZoJ/+sYdeP0nr4OUsuimEEIiYOjxNucHHwFu+O+iW0EIIWRCtKIbQAghhBCShD//7+sBAD99/j48+qxdBbeGEBJGo6Nw+7J5EPjEy9zX/+84wDB0QgiZWXgHJ4QQQsj08fk/AT7084AzWAl1o2MV0CBCyCjKdBRuXzpr/deSFawJISQJhmEU3YRIKBQSQgghZPr41juBW74A3P3NgY8sm5NQQqYR5ijczvhFYqaHIIRsT5785CfjFa94BV7xildgZWUFu3fvxutf//pe2pwzzjgDb3zjG/GiF70Iy8vLeNnLXCf2FVdcgSc84Qmo1Wo49dRT8cpXvhLNZrOw/x98mhNCCCFkerH0wU0OJ6GETCN+oZC5RLcx7HtCSNpICRjNYv4b8572z//8z9A0DVdddRXe/va3461vfSve97739T7/m7/5G1xwwQW45ppr8PrXvx633XYbnvGMZ+D5z38+fvjDH+IjH/kIrrjiCrziFa9I+6+YGOYoJIQQQsj0IiWuvXcd7/3f23ubbAqFhEwlJV/osWE7qGhqga0hhcHQY0JI2pgt4E0nFXPuP94PlBcS737qqafibW97G4QQeOADH4hrr70Wb3vb2/DSl74UAPCUpzwFr33ta3v7v+QlL8ELX/hCvPrVrwYAnHvuuXjHO96BJz3pSbj00ktRrVZT/b+TBDoKCSGEEDLFSDz7nVfgv3+wv7eFjkJCphO/6SIivSjZNvAeTQjZvjzmMY+BEP2Fs4svvhi33HILbNsGADzykY8M7P+DH/wAl112GRYXF3v/Pf3pT4fjOLjjjjtybXsXOgoJIYQQMr1EOFOYo5CQ6cRmyOn2xTcppqOQEJI6pbrr7Cvq3CmysBB0JzYaDfzmb/4mXvnKVw7se9ppp6V67qRQKCSEEELI9BIlFNJRSMhU4k8LIOkq275QMCaEpI0QY4X/Fsm3v/3twPsrr7wS5557LlQ1Oh3HIx7xCFx//fU455xz8mheIhh6TAghhJDpJUIodDgJJWQqCQiFvEy3Mex8Qsj25e6778bv/d7v4aabbsKHP/xh/P3f/z1e9apXxe7/h3/4h/jmN7+JV7ziFfj+97+PW265BZ/61KdYzIQQQgghJArbcRBe1zRtTkIJmUaCjkKyvWDoMSGEAMCLXvQitNttPOpRj4KqqnjVq16Fl73sZbH7n3/++bj88svxJ3/yJ3jCE54AKSXOPvts/MIv/EKOrQ5CoZAQQgghU8utBzcArAa22aySQMhU4nf7SloKty/se0LINqZUKuHv/u7vcOmllw58duedd0Z+56KLLsIXvvCFjFuWHIYeE0IIIWR6YY5CQmaGSRyFihi9D5liWMyEEELmBgqFhBBCZpvOOvDhXwJ+9ImiW0IyQETIDTcd2MQz3/6/+Nx1BwpoESEkjkmyAiiCSiEhhBAyDTD0mBBCyGzz9bcAN33a/e8hP1N0a0jKRK1ofur7+wEAv/XBq3Hnm5+Vb4MIIbE4ExQzoVA4R9BRSAjZpnzta18rugmpQEchIYSQ2aZ1rOgWkAwRcKAyJpGQmcAfejxu7DF1wjmCOQoJIWSmoVBICCFkxuHscp5R4KCkso8JmQUCxUzGVArpKJxtvneXb9GOjkJCSEqwMNZ4pPX3olBICCFktuHccu7wD3IEJMoqhyuEzAL2RKHHKTeG5MrrP3mt7x0n9oSQySiVSgCAVqtVcEtmC8MwAACqqk50HOYoJITMPbceauC1H/0BHn3mTvzxMx9cdHNI2giKSPOGI4Hu8EZIibKmArCKbBIhZAi3HtrEu796G2493OhtG7/qMZXCWSZg/KYDiBAyIaqqYnV1FYcOHQIA1Ot1CD4nhuI4Dg4fPox6vQ5Nm0zqo1BICJlr/vPqe/Haj/4AAPCDe9YoFM4lHDTMG46UfaEQEmWGHhMy1fzCe67E0aYx0TE4/5ttypoC2N4bhh4TQlLgxBNPBICeWEhGoygKTjvttIlFVQqFhJC55l1fvbXoJpCs4exy7vDnORNCuhNQQsjUEiUSjpsnSWHs8UxTK4m+UMjQY0JICgghsG/fPuzduxemaRbdnJmgXC5DUSYfN1MoJITMNbXyZPkZyAzA0OO5w68vKFKOrHrsOBJCgCEphEwRDD3eXlT8uWTpKCSEpIiqqhPn3CPjwdkVIWSuqVMo3AZwcjlv+B2FJ//vH2CPczh2X8t28JNvuxy/8N4r82gaISQhLGayvahovg5kjkJCCJlpKBQSQuaaWpnG6bmHjsK5w185FQD+tPXm2H1vPtjA7YebuOqOY1k3ixAyBnJMTyEdhbNNNSAU0lFICCGzDGfQhJC55bJv3IGv3xzvRCJzAoXCuSOkE+LBkrlGCZl3KBTOKGv3ANf8K/Yqq76NdBQSQsgsQ6GQEDK3/Nl/Xz+w7cB6ByVVYNdipYAWkUzg5HLuGLcIAiFkCmHo8fbgX54LHLsNr1AWe5u+ccsRPO7RZxXYKEIIIZNAGwYhZFvxmEu+jAv/4ktwwpYlMsNwdjlv8PIkZPYZ9zJmMaIZ5dhtAIAFp9Hb9H8/+cOiWkMIISQFKBQSQrYldx5tFt0EkhYMPZ47HDoKCZl5xr2MqRPOD4Khx4QQMtNwdkUI2ZZct3+j6CaQtODscu6gUEjI7MNiJtsXAYm2YRfdDEIIIVuEQiEhZFtyeFMvugmEkBjG0QnHFSMIIfkwrt6vMknh3CAg8Z07j+GDV94Fw2IFZEIImTVYzIQQsi1pdKyim0DSgqHHc4fjbG1iKaVknjNCZhReuvODAokXfeAqAIBuOfiNx59ZcIsIIYSMA2dXhJBtSdOgUDg3cHY5d7CYyfZCSomr7zqG9ZZZdFNIiox7GTP0eH7w5yi89t614hpCCCFkS1AoJIRsSzbpKJwf6CicO7buKEy5ISQXvnLjITz/0m/h/7znW0U3haSIHPOCpEw4m+goDWxTfELhYpUBbIQQMmtwdkUI2ZY0dAqF8wOnl/PGOPqCYP/PPJ/8/n4AwE0HNwtuCUmTcYV7OgpnE0sMCoV+R+FiZfBzQggh0w2FQkLItqRJoXB+oKNw7rDHcBSymMns45eHnva2y/HXn7uxsLaQ4qBOOJtYEY5Cf1cu0VE4N+xfa+Nn3/0N/NcP9hfdFEJIxnB2RQjZlrCYyRxBoXDucLYYQ0zJcDbxC0Q3H2zg3V+7rbjGkNRgKoDtgSnKA9sE+os9ixUKhfPCX37mBnzv7jW88sPXFN0UQkjGcHZFCNmWMPR4jqANZe6Qcms5Csls0jLsoptAcmK9beLfvn031lpG0U0hKWFGhh73qZXV/BpDMuXQRqfoJhBCcoJCISFkW2LYFCLmBwqF88ZWqx6PWzyBTAeHN/Wim0AyICotwKv+/Rr88SeuxW/+69UDnwku+swkUY5CxecoZO7J+YGPWEK2DxQKCSHbEotC4fzA0OP54J7vAJ/5A6CzvuWqx2Q2iRIKKfrOPlFd+LWbDgMAvn3HsYHPKCfNJtHFTPrwWp5d7jnWwp/9149w7/EWAOC7dx3vfcZ+JWS+YdIIQsi2xNqqZYlMH363gpQMRZ5V3v+T7r+OCedh/3dLh+BVPVvcemgT19+/icObOvZgDb+hfQYftp+Cu+SJ6JgOQxZnnHGvR966ZxNHDE4n/Y5C3pdnl19+/7dx19EWrt+/gZc98azAZ5u6heUqK1oTMq9QKCSEbEssm0PX+YFC4Vxx+GbICEfhW0vvxjXOOfhX+2kFNIpkwU++9eveK4n/rbwKVWHiOeo38Vj9nWgZFoXCGWdcxxFv3bOJHNVxHG7NJD+8dw3Hjx7CHpi4+m6Bj19zb+Dzu4+28NCTVwpqHSEkaxivRQjZltBROEcEHIUsijD7yMiQxZ9Vr8AbS5cNbP/GrUeybxLJlKcp30VVmACAk4QbksoCJ7NPkqesX0wUDD6eSRwMCvpBRyHHW7PIn37qOnyp8ge4vPJ7OLVu4aYDm4HPo9IHEELmBwqFhJBtxw5sQNpm0c0gaREQCpnbbuaRDpwx+vFNn7mx/1XOR2eSp6vfGdjWNikUbgf81ywdhTNKRJ7gYI7C/JpC0sM+egf2ijXUhY5zzJtx2+EmAOBnH3EyADd/ISFkfqFQSAjZVpwqDuKa6m/hvc6fF90UkhoUCucKKeFwZjn3+J1khhzMc0VH4eyT5DJ2Ao5CMovISKHQ16+2DlhGnk0iKfAgeWvv9fvEGwEAjzpzJ87eswgAaBlWIe0ihORDpkLhpZdeivPPPx/Ly8tYXl7GxRdfjM9+9rNZnpIQQobyLOXbAIALxQ0Ft4Skhn+S4lBcmH0knC2mBmCI2+zgdwyaESmzOQmdByQ6po3XffxafOXGgzF7kFnHiZhOqsJdtNNg4flffDzwtw8EWM1+ZpBSYsk8GtimwcKvP3In6qrbj1zMIWS+yVQoPOWUU/DmN78ZV199Nb773e/iKU95Cp773OfiRz/6UZanJYSQWA7J1f4bvVFYO0h6rHd8ggIdhbPPPd/G+f/xmKJbQTKm0bHwaHEDflf9OJZFc+DzjTbTQ8wCHdPGr7z/25GfSQl84Bt34MNX3Y1fv+y7kfsEHIWMPZ5JohyFHy7/JfbiOPaJo9CcDtA+BlidAlpHtkLbtLGM4H35QeJuPP1zT8bPX/kzWEYTbQqFhMw1mQqFz372s/HMZz4T5557Lh7wgAfgL//yL7G4uIgrr7wyy9MSsiVuPriJN/z39Tja0ItuCsmAJbRwgbg14FyRx+8osEUkLd73jbv6bygUzgWavlZ0E0jGbOoWPlJ5I15b+hiep34z8NkyGjjWYKjiLPCxq+/F/94SXVBIAti/1h76feYonH1kTND472v/EfyMz+eZYbNjYQXBxfQX7rwRwmxhsXUvnqx8H026vgmZawZjPTLCtm189KMfRbPZxMUXXxy5j67r0PW+SLOxsZFX8wjBz777m2joFu5fb+PSX76w6OaQlPl0+XU4TTmMz9iP6m1zWscjavWRWaNlOEA3xRknItsapjacHZp6/CTzh9WX4Yc//AXgMe/NsUVkK4wKER91TTJH4ewTFXoMAA9Q7gHsQFmTfBpEJmazY2Il5PR+QfODvdeni4O4i45CQuaazIuZXHvttVhcXESlUsFv/dZv4ROf+ATOO++8yH0vueQSrKys9P479dRTs24eIT0a3qTlqjuOFdwSkgWnKYcBAM9Ur+ptsy2Gts0DdCwQMntsdoYLTOfv/0hOLSGTMEwIlHK0NERxf/aJEwpPFkfgSD6fZ5G1lokVDKaE6HK6cgi3HGL6HkLmmcyFwgc+8IH4/ve/j29/+9v47d/+bfzqr/4qrr/++sh9X/e612F9fb333z333JN18wgB2seBO6/ovWW1zdnmFf/2Pfzmv343UFEzDodC4Vzgr67Iicj8857SW/FgcdfoHclU86UbootbkNli2JM2SXEh5iicfeyY2IwFxQou5LHY2Mxw97EWVoUnBD7uVUB1NfD56eIAWoaNy28+nH/jCCG5kLlQWC6Xcc455+DCCy/EJZdcggsuuABvf/vbI/etVCq9Csnd/wjJEst20PnAc4DLnoU/0y7Dv5ffiJ9zPscl7hllvW3if354Pz7/o4M4tDk61+RVtx1Cx+TAdfbxXa+ciMw9T1e/i4+X/7ToZpAJuP1wA5d94/aim0EyRsokocf915QJZ4fv3X0cn7n2fgDxOQpLMINSMcfWM8MfffzavqPw3KcBv3Ml8BtfAl76VQDARcrNOFvchz/5xLUFtpKkwbduO4qDGyw0RAbJXCgM4zhOIA8hIUXyoW/ehurhHwIAXqx9AY9RbsCf4P3A3d8quGVkK/hdhEnGox/61m3400+xCvtMY7bxu9on++/1TcChq3DeqYnoQhech84GX7z+ICoYdHTrshR4v9Ex8b7/vR0H1jmJmVZGhR6PCj6WAUdhOm0i2fOz7/4mfudD38O1965DxnRcSYauccmFvFngnmMtGJbTr0ZfXQWW9wGnXgTsPKu335tK7+c1O+N8585jeME/XomnvvXyoptCppBMhcLXve51+PrXv44777wT1157LV73utfha1/7Gl74whdmeVpCEvPBz8bcGNfvy7chJBXGrZ6owcFHvssUBzPNV/4Cq/6E2++6CPiPXymuPYSQkRzY6KCOwUXjDoJC4Y+/5Wv4i0/fgBf/Uz+3LL7058A/PgUwh1fTJfkwLLw4Sehx4LlNT+HMcc09x2NzFAIhlygd/zPB1XcdByCxR3hFRWs7+h/WVnsvd2EDa02m8JllrvAq1m90rEQpm8j2IlOh8NChQ3jRi16EBz7wgfiJn/gJfOc738HnP/95PPWpT83ytIQk5uE7Y1wpraM5t4Skgf8Rl2S6oYKD1lnnwLVfHtx44//k3xBCSGLWWiZqEUKhERIKjzbdZ/SNBzb7G694K3Df1cC1H820jSQZo+aW41Q9pk44G/gFhcOb+tBODuYQ5phrFrjjSBO/p/nurz5xEADwq//tbhY6NnULbVY/nlmqpX5+0SQpm8j2Qsvy4O9///uzPDwhE7PkHI/crm8eRTXntpDJsX3JjpKsi5UoFM40N9y/gaXNw5GTyxvuOoAHn35i/o0ihZLEwUSK5V1fvRWfuOY+nCMGJyV6SCh07+Qx6pEdvdBHpodxcxTy8p0NdKuf3uNIY7i48O7y3/XfsNjYTLDRMfGn/pQupXpwh70PAQCcLI5iN9ZxaLOD03ct5NdAkhprrf5z9Af3rOFpD+G4mfTJPUchIdOE1o52Dn70imuhWxSRZg2/UOh/fRKORO6vCvbxLPOla27BKSK6b7//I+ae3A5cKG7CH2ofRgUUjWaCT74cZ3/ltwBInCwGn7/hHIVlWPHHYpjUTDBKvA/kFqZSOBP4i8B9+Kp7cHgzPofowxRf0SKGHs8E6+1QOHE4l099Z68K8nerv41D99+dT8NI6hz2uQi/etOhAltCphEKhWTbYlgO6ma0o/BXxGfxC+/+35xbRCbF9k04/OFMH638eeT+dBTONqfc/C/xH972lfwaQgqhCh3/Wflz/Lb233iJ+hkA1I6mGscBvv9BPEP9Ds4Td+Gfy381sEs49LgOFjGZdsJ5rRQ4vs8SfD/tBpHM6ZhbdAbSUTgTbLZ89909DxrcQQhg1zn999d9IvtGkUxY84nC19y9hjP+6NM4448+jc9dd3+BrSLTAoVCsm050tBxigiuntzinNx7/YCD/8PErjOG43MR+gvfRjlXAOYonHXUjfhCND939B+Au6/MsTUkbx6l3Nh7faZyoMCWkGT078/niOiCYXooI85pvmc0n8fTzyniMH5YeQn+RPsgANchGO42BQ4+Uf5/eEfp7wEEF/XYxbNB2wyPnRJ23PWfSr0tJH2s1nr/zUtjFl2X+iGqB5scS88qTb3v2vfnAv6tD36viOaQKYNCIdm2HN7U8WDhCg2XWs/GB3a8Ehu/9lV83zkLAPDXpX9Ee42Tz1kiEHqcYMZBR+HscrSho24eG9jeVhZwtXMuSrDQ/s6/FtAykhd/pv1z77Ut3eHMD+9dx3fuHPxdkCnAd09eFq3IXXSUA+///Zn9Yao/L5p7PLqTpgH/o/bl6iexKDp4qdZ3+IafxBeI2/Bw5VY8R/0WgGCOQuqEs0EnJBSKpD335X50x7u+eivec/ltaTaLpES73QQASKEC5Zjcg768hWsbG3k0i2RAi4VoyBAoFJJty+H1Bs4R9wIAnvVrf4IX/Paf4cIzT8BfmL/c28f64X8W1TyyBSwnOvQ4DjoKZ5fb7rkfFyk3DWyvPvFV+FTlOQCAY3f8IO9mkRw5y+citL3hzAv+8Ur8/D98C8ebzFk4ffTvyX9R+qfIPcI5CivHb+5/ttVwR1Io4UdxWFTyRwLQNTobhIXCcTnWNPCWz9+ESz57Ixr6kDykJHfaho17j7iOQqmW43fceWbvpbPJ3HazStPg9UfioVBIti3W9z6EsrBhQcNpZz0ItbJbIv4aeW5vH6O5VlDryFbwi4PdyYc2JBm+RqFwZunc9V2sRLiSxONeifMf/hgAwNLmrbjx/vWBfcj8YYeGM0ebwytxkgJIIAIZodBj9fgdUBU3kX4nXGCMotJUMKwXoj6TcVWsRxyLTA/h0OP4Ho3GsvuivxF2CpNC+Z0PXY0K3Lx1olSN3/HiV/Re1oxj2OiY8fuSqaU5RKi/7XAjx5aQaYRCIdmW7F9r4ydvezMAwFTrgYpe7/rlR+FS69kAALsRXVGVTCdRocfDxEANHKDOKo21wwCAu5y9vW33nfV/gFINp537YzClimXRxn//73eLaiLJkbBQSKaR0TKQHipmgju+jldrbqL8QUchZaVpQA4JHZZSjqxkzByFs0f4WkwceuzRFf8BwHI4DpsmGrqFalco1IYIhdVl4DluntFdYgO3HaKoNIu0dBvPUb6JN2nvQxXBBdY//vi1BbWKTAscWZNtyY0HNqAJd3Cy/8znBz57xkNPRGlpj/umGV0Eg0wnAaHQe60OEQM1Qcv9rNLZcEX841jybXUnH+efsRd3SDfR9pPue2/eTSMFMMylRKaEGBXoPrmr9zqcoxAAflf5D5wuDkQ4CikwTAPDhEDZ+x//tuC16sR8/eaDm3jxP12F79+zNlH7SPr4Q49LsLBHjOfc9wuFdtwPgBRCx3RQgZe6Q6sM33nBnSvtEhu4hULhzCGlRNOw8I7yO/FL2lfwe9rH8LtPOQe/evHpAIDr7ltnOohtDoVCsi1p6VYvF9LpP/Xqgc+Nyg4AgGhTKJwlbGfQmTBUKKSjcGbZ9ByFbW2lv9FzBldLKupnXgQAOGfzKtpUtgFhR6HNS3sKCV2H+y4AnvoG/JX5gt4mQ2qI4p2ldzBH4ZQSvL2KIZ9520LvA45C3/bf+Ofv4Gs3Hcbz3vWNSZtIUuZIo+88+lT59XikcvOQvQcRvt+JZfP5PE10TBsV4YURD3MUAgGhkI7C2aNjOhCyL/o/TfkunnWKjj9+1oOhCKBp2DjSYL7n7QyFQrLtcByJP/3P7/YehNriroF9zKq7TetQKJwl/JWOu6KhMkQMZDGT2aRj2jA23WtTXdzd/8CXQqD9tLcAAHY6xyAP/ijX9pH8CQuFT/+7r+PNn72xoNaQSMKq0d7zgMe9Ck30XSuB0OOzf6L38seUO5mjcCYZFXjs70aJp7Y/Bxy4DgBw7/F2lg0jE3CPr2/OU+6a6FhJCs+R/Gibdi9HYVJH4W6s49aDmxm3jKTNh6+6GyfiWO/9GcpBPOg/noDK/u/ipNUaAODOo82imkemAAqFZFshpcSv//N3UDbcMAkLKlBeHNjPqe0EAOgbR3Dp127LtY1k6ziROQrjhcIShcKZ5GjTwJJ0V69Ffafvk75QePoJu/EF55EAgNaVH8izeaQAbKgD2/7hct67p4pwqHDJnYj4PWiGXyh8/KuBp/0lAOCQXI2otEqBYRqQgdeDKQBGha51P/9p5Uq8ovEO4B8eBwDQFKYTmEZuPdTAe79+OwDgmcqVWzqGXz62GHo8VXRMG6cIN2JjtKPQXaitChP3HWZO91njjiNNnCQiDDEfeBrO3ek+i+88QqFwO0OhkGwrPnfdAXztpsP4OfVyAEBDWQ64kLqIuvvw2yHX8VefuwEtlo+fCaxA6DEdhfPKWsvAqnAHLx1/6LGPsqbguoWLAQDN/Tfl1jZSDCxmMguEBIFSfWCPgKNQ0YCH/RIAYK9Yg9kJOczoRJp6pBwt53Yf2w9R7gxsVykUTiU/8243FHwZDby7/I6h+16587kjj8cchdPFKcYd+IvSP7lvRjkKywuQ3n28c/z+iMUcMs0caejYIaKdoO864KYEuetoK88mkSmDI2uyrbhvzZ1o/IR6DQBgA4NuQqAfzlgVJurQ0Tb48JsFAo5CTx+MylFoS3cCQkfhbLLeMrEqXEdhu7Ta2x6eVp542rkAALl+T04tI0XhcDgz/YSFPc9R6MeQfqGwBFRXe337hx/6Ohq6f9GOAsNUMESwjfok4DqUshd6GnYjagqv6Wlks+NegytitNPoR8tPiNzu/8kwR+H0IKXEY52r/RtGf8kLP96JDdx+mO6zWeJow8CyiBYC6/Ym/kp7L0OPtzl8CpNthaoI7MEafky4YRNv3/uGyP2q9WV0vAnLTrEJ3WIS9VkgKkehKgb7rhveNqzQCZle1tsmVuAKhZ1StKMQAHaffDYAYNk4RPfRFHP74QY+ec19Ex3DlhzOTD/RQqHwhyH6Q8gVFVAUtJQFAK4w8bHv+kR/XtNTgYx5DXiOwmFVj6WM7UY6CqebGkYXORARETth6CicHkxb4rBc7m84dMPI74hunkKxjtuPsKDJLHGkqWMZ8Y7BX9C+RkfhNie6vBwhc0pTt/DT6regCombSw/CK37u6ZH7LdVKOIplnIyj2IkN2ulnBP+As+tSiAovNqGhBgOaYEj5LLLWNvuhxz6hUISmqTv3nQkAqMk2oG8C1WWQ6eMpf+umgnjeiHRIw2Do8QwQVoS0QaEw0I+KO0TdwCIWsYkVNNEOVD6mwDANDNNrpRxVzMTvKAxSUikUThv+qI069CF7usiY+7K/ry2HC7bTQqCQCQC0EuQdXNwLwK18fM8xFiCaJY5s6lge4Qzef/Q4pJSJRH8yf3BkTbYVm7qFc8W9AIAHPPa5OHP3QuR+y7USjsslAMBOsUFH4YwQLRRGOQrdCag7IOJkc9ZYa5lY7ToKtVXfJ8G+PHnvTrRlGQBwxQ+Zp3CeoVA4C8Q5CvtECYVt1U0RsiKaWGv7XEx0FE4FfikwHD4sMaKYic9RGP4uHYXTh38sXBOjhcIk2gKrHk8PHdNG1e8UXdg7+kteQZNd2MDdx+g+mxUMy8FGxxrqKASA0/VbsdYyh+5D5heOrMm2oqlbOE0cct/sOCN2vxOWqzjmCYWXld8CZ32ysDiSD3YgR2F8MZMOXPHop9Vv4x9Lf5tP40hqNJoN1IQ7mO0My1G4XMW6cF2E//Sl7+XUOlIEFAqnnwHByEuC7/iu3IBY5AmFu3efAABYQRMH1jv+I2bSTpIvzFE4O+hWP0KjmiD0OA7/vYA5CqeHzY6Fmt8p+ksfGf0lL/R4l9jAvccpFM4KR5tuP6+OcBS+SPsC1toUCrcrfAqTbUWjk0wofOCJS6iI/o1x8eZPZNwykgb+lelhjsKW7Fdye6pKAWmW2L/Wxo1XfREA0NZWYKjRrmDAzY+0sutEAIDdOMLq5XMMi5lMP1feHgpjq+8EAFzuXIAbnFPxH9aTQo5CN1/hyk53Ivq28qU4dnyt/zmdSFOBvxsGHIURVY9l6J2M3E5H4TTidxQmCT1OYilkjsLp4Yb7N1D1FmHx6N8GTn7E6C95QuEesY6DG50RO5Np4WjD7eeTtfWh+62iiXUKhdsWjqzJtqKh29glNtw3SyfG7rdY0bALG/0NenT5eDJdWL4BpzTdh6AWJRSiMrCNTD8d08bj/+oreKbzVQDAPSf+ZE9McBmccNRW3LCYHdhkUuY5ho7C6efOw6FE9ye5k1ADJfyU8Wb8gfWbkaHHKC/2Nj3h2Ed9B6DAMO1ISCyZx3B5+dX4XfXj3rboqsdhNAqFU4dujhd6HDfNDOYo5HU8LVx333q/SE1EVfpIuo5CbODQZpLfBJkGjjR0ABLn4fbgBzvOBC58MXCGW7F8UbQpFG5jOLIm24rNZhML3cFNdXXovief/WP9NwYrec0C3ZXpN2n/iJ/4z4fiLLE/MvS4LeOrJty31sZjL/kyLv3abZm1k2yN6+/fwANwN56vXgEAOHT6szEYcByivguAW738vuNMtD2vUCicfgbKWizs8r1xr2MnUijsu4ZLnWMZtY5slaEyjwSedvzfcLpyCK8tfSxyBxkTekxH4fQxbuhxkhyFdBROD4c39X6/JhYKvRyFYh1rLZPFH2eE/Wsd7MMxLMmG+6z9rW8Aj/wN4MWfBp79duAJrwUALKKN6+4b7jok8wtH1mRbcfzoYQDegLS6MnTf2nN9uesoFM4EXWfCL2mu4+yl6qdxujg4sN8wR+Hbvngz9q938FefuzGbRpItc/9aB49U3KIkNzinwTr1sRC+yaSIEg2X9gEAThTHsKlzVXReYejxDJBAD/DnK4Racv/1TVhlMM6VTAFDa5UAUGQ45UPYURixHRQKp5Fu6PGvqF/AX5T+KcE3ovvQ/5uho3B6ONYy+qHHiYVCt+DJbi9a6zBdhTPBDfdv4CThpQNZPhk48aHAT78VWDnZ3VZx83svijbe8nkWA9yucGRNtg0N3YLd8twIleVQyGIEq6figzt+BwCgGMOTvZLpwI4oTv3O8t8PbBsmFHJqMr3sX2vjFG9g8y3nPCzVygg+xiImHCunAABeqn0Gtfu/k30jSSHQUTj9DK1+290nopgJSn1HofBf4zLihk+mjrBTMPxpv+pxEE3tf2+zw0WeaaArFL60/IVkXxCj78u2w+t4WjjeNPrFTMYMPV4VDaiwcay59SI3JD9uOrCJk8VR983KqYM7VNyCnkteVeSGzhzf2xGOrMm24f61NlbgCn6iviPRd2zNnaAIi7nNZoGkA87mkNDjksbb4rSyf72NU4TrCt6snoQHnbgEIfyOwgiWT+q9fOCt78+4haQoHEr8008CYU/xy0XdxTzfhHU5UKGRTqRpwB9SPlC4RAJyxFSjV/VYBq/hxYrWe/3pH94/WSNJKnRDj/1F4r5oXzj2cfy/GZNVj6eG4y0TC/AKkmgJhcL6TgACCiR2oIHjLQqFs8C9x1t9R6G3oB7AEwoX0QYgcc8xzoO3I5wRk23DWtvEwxQv79yI/IRdHM/JoJp0FM4CUY7CKNoxjkIpJcoqb4vTSlO3ekLhK3/2x7FQ0QDF118iYsJxwkN7Lxfa+7NuIikIyoSzwGhBIJBTtuso9LmSuvlJyRQxNPR4IDNl8L2vmEnYeVgr9aM+jtKlNBV0HYWq96x9nv4GXO6cH/8F5iicKTrNDTxSudl9s/vcZF9S1F4u6N1inULhDGDaDg5sdLBTeIU6vTyTATyhUBUSe7COWw4xBdd2hDNism1Yb5l4ivI9980Zj0/2pTKFwlnCDoW2xQ0/o0KP3/Df1+Mxl3wZaxzkTC1t08HJnlAodpwOIDi5jJyT7Dob3zz1ZQAAGhfmF0F32fSTIPQ4gKIN/3zc45FMkIHXwbvw6C6KDz32565j2Nt00K16XJNuYbAm4qMzANdnFglzFE4dpu1g1bgfdaHDqe4ATrko+Ze98OMTxVEcazJNwLRzYL0DRwLLwnOPevkIA5QXAM29vl+gfgWf/iEX2rcjFArJtmGjY2JJeFVPvbLvo9Bq3ooKQ49nAnvAUhi9nB0VevyBb9yBgxs6Pvl9PgynFavTwh4vYTZWTwOAQOhxHEdOeCwAoGTzOp5XKBROP4PeskEC/dgTCmO+xxyFU0Fc7skzxP2QGEwLIEPFTOLERMf3QaNDoXAa6IYe16QrMLRRGZ6DMsHz2UoaCkIy5XjL8MJMAVFbTVayustJDwMAPFu9kovtM0DXob2z5PVVZXFwJyGAC34RALBPHMU3bz1K9+82hEIh2Tast03Uu0l6ywvDd/Yo191VFo0Cw0yQ1DE2EHrMZNozwULnAADAVOu99AHCF5YYJxaV626F8zKvY0KKI8EkI3ANjyyEwEnLtPBr6mfx8fL/w5Lo32O/VnkthNUZWcwkLvTYpqNw6tAtBwoclOEKDE05RCh89G/HXqH+7XQUTgfHm30zhfDCThNz3vPcf8RdLGYyA3QXXpYVz1FYjhAKAeBkN//oyepxbOoW7jjC8OPtBoVCsm1Yb5uod23W5Xqi71QXXKGwQoFhJnAcifPEnb33ccJRKxwuQ2fKTKAZawAAs7qzt9qdZNF79043f07V4XU8rzBH4fSTxFEYKGbSvbi14eGNpFikBP609K94hHLrQA7JUufIYDhyyFGYRCjcpKNwKtAtB/VusQsA7/71J0KJewj/1JsTOf7pUpoOjreMXoXbyFDUYew8CwBwijiM40095ZaRNGnoFt7+ZTcP5VIv9DhGKFxyiwGepKwBADZ4H952UCgk24a1lt9RGHNTDFFfdB+WZdmh62wGsKXEZyp/3HtfFtG5UkypBjdIO8tmkZQomW7iZbvcH8QmEYj27XUTNZdhwja52j2PMPR4BkiQUzCyHy/4xeh8WcxROPWoxuZIR2FcjsKgo5B5z6YB3bT742ih4uJzT8IpO4csvMcIhf5L12To8VRwvGlgsZueaVxHoZcKZkm0YW0eTbllJE3e/dVb8Z07jwMAFnrmmZj+XnaFwhPlYQASbYNzpe0GhUKybdi/1u6vhJaSOQpri6sAXJeDNOlGmnbCK9NlRK9+2eFbX4yjkCvd00XZdPMTyspKb5t/HhInFp24Z0/v9aGjR7JpHCkUCoXTz9iOwi7lBeAlX8JHtOcMHJEUz7Be0IzNBN/vHiHkKPQdmKHH00FTt32ROQveA3hYjsLR00yOs6aD4y2zl6MQ1TEdhaUqjKq7IKu2DqTcMpIm19y91ntdl10HaYx5ZtfZgFrGIpo4RRxGk/fhbQeFQrJtuO/oBirCu8klzFG4urwMR7qDoJ9/x5d6iZzJdBIecJYQ3V8ydOtz7OiHn2FxpXuaqNjupFNWfUJhAk+hWiqjgzIAoHn8cDaNI4QMZ6uOQg9HhKog01E4FQzrBtXciAg9Dn45LljD9n3QrbZLiqVlWFhB033jhafKIeHF4U86Xn5o/6IBcxROBy3D6hd8HNdRCMCuuwuypdahNJtFUuasPf35b6Wbjieuv7UKsPc8AMCPiTvQoqNw20GhkGwLpJQ4trbW35BQKDznhGW0vIHN4WNH8cN71zNoHUmLQaEwWgAMV2H8uy/eFLkfhcLpomK5iZRFNdpROMzZcKfihsY49/8A+NEngOs+nkUTCSFxTCwUhoesFBimgWFOUU1fG9Htw3IU+vci00DTsHCicMMWsXTi6C8kyA1iJa1CRzKlZdhY7onA4wuFYvEEAEBVPxJbCZ0UT1lzn6MKHCzYbpQOajviv+BVtD5fuZ1C4TaEQiHZFhxvmXB09wEoFQ1Qy4m+Vy2paHuFLxbQYS6VKccJDU7KiM5rFBYKL/vGbZH76TYfitNEzXEdhUptNfLzYSLDnZUHAAAq+68CPvpi4GO/BnQ20m4iKYi/KP0TFPD+PNUkKBpFR+HsMawbSvr6gMA7WMykuz2IzbzQU0dTt7F3QCgcpgYG+757fft/M+zn6aBpWNgtPDPEwt6xv19acX8PO+Q6NtoMUZ1WunkGT8BxaLABRQOW9sV/Yd/DALgVrVsG+3W7QaGQbAvuPtbCDuG5kXp5VZLRUdx8hktoY63FhNrTTLgyYlkky1EYmRcLdBROEx3TxqnSzX2jLp8w9vfXK25S5tLGXf2NZjuVtpHp4InKD4tuAhlCQFAqRbv6h5a9EGp4y6RNIhkjpD0gJA4WNxld9ZgOpemgqVs4URxz33iFDoaOp0OfRS0EMPR4OmgbNvaKNffN4vhCobrkfmePWMPhBisfTytt0xUKTxZeGp7lkwEl/Gz1sXIKAGCn2KCjcBtCoZBsC+4+1sIjlFvcNyeeP9Z3qwtuHpbXlD6GY01WTJ1W7jzSxGXfvDOw7dHKjZH7hickqudEenvpnfiX0iUQ3nsKhdPD/WttPEa5AQBQPfvxve3CNxEZJjIYVTd/jtpijsJ5pRLjICbTgeKvLv8rn4jeZ4j4J0OTGYpH08/IHhriKKR+NH20DBt7sea+SeAoHMwhLH3/60KhcDpoGTb2DPTtGHihx3vEOg5vUiicVrpi3x8+3HseexWrY/FS/Syjhbd+8Wb27TaDQiHZFhze1PEQcaf75tRHjfXdXedcBADYgU0KhVNMWCQchjPgKHSwD0fxXPWbeKJ6LU4TbjJmk7lzpoYDR4/3XcEnnNfbPiRNfgCz7q52O5sHE+1PZo+4VANkOnjudS/vvznt0ZH73CpPiv2+RDD0mCGLxSOlHP7slU6EgzCwQ2yOQsvXv7xTTwcNPSo8dZijcOhbAMxROC20DAt7un27OIFQCDoKp5mO5yg89cjl7oZzfnL4F7yiRUvCLXzyn9+7N7O2kemDQiHZFmx2zL6l3rNRJ0V58h8AAM4W+7HRZKjitHFwo4NffO+38Jlr70/8nXCOwgcq9+KRSr+gyS64uevCOQ9JcRw54joBHShAebG3PWkWgdW97nXfWzEnc8ffl9+Ji0S0i5gUi5QSy/qBkft90bkQrzdfjJfX/3rwGEpwyGoxZ3DhHNwYJQjIgedtmL6jMLhfQAfmo3gqaBkWdgkvt++C69If3r1xOQr7HUrBfzrQdb1f9bi+c/wDLLq/h91iHQfXOym2jKRJ11FYM71co3vPG7I3Ao5CQPZyHJLtAYVCsi3YaFvY003AvDhmfrPlU6Cri9CEgwcf+K/0G0cm4v9+8jpcefsxHBrDDh+euHywfAn+vvzO3vveijmZGlqbbl6kjlIPqIP+nhxWCOE5j3s4AEATnJTMM28oXVZ0E0gE7/zyLQn3FPhX+2m4QX3gwCcyVMzEYrGpwhm1UCPloAAoQzvEhZDbDEmdOpq63R8fecLQ0NDjgR/IYJ+a7OfpwF/czXORjYU3t9or1nDfGk0V00pX6NMcb85Uqg7/QtX9LWjCQQ06i3puMygUkm3BZsfcuqVeUXD7vmcCAE5sXJ9yy8ik3H20lWi/g3LV92747Ga3t2JOQ+H0YDbd61fXFgPbAxORIf2lLeyCiVDCZnZwoXzx+oP4uy/dnOoxh4c5kqL4ly99Z+JjhIuZ0FFYPKoy/Hpz8/2GC1r4kb3bcPhu7M9dxzv1dNDSzV7ERc9RODT0OLrvA1WPGXo8FSiGO8aytDqgaiP2jsCrnLsqmjh89GiaTSMp0i1motpeKi1thFBYqruVkeG6ClnQZHtBoZBsCzbaRj/kcAvVvFo7HgQAqJt8+E0bDT26snGYXzBe73s3fGC6C+veXhzATgt2ew0AYA4IhQkPoCg4LlZDG9m/RfLSf/ku/u5Lt2AJLfyp9s+pHHNUmCPJn4Zu4Z3ld0x8HKmEHYUUCotGTWApHHqXDSzWhEKPuZAzdSjGJirCG3N5QqFM/BAOuv4fIW7Gu0p/h8UEKQlIDniOQqe8BTchANRWYZZ3uMc4dkdarSIpIqXEwQ03LLznKBwlFAoRyFPI0OPtBYVCsi2QreMoC+/mtgWhsGupX7KOpdgqkgYbndEFDL5pn4cjcqX3/hkPGe4qrQp3pY3zlOnBabuDWLu0FNieNPQYANbVUN4dSaFhGvgj7cP4Ne3zqRwr/At46xduityP5MedR5qxFejHIewoNBl6PPVIDLp8g/dp2VuQGyhm4hOCWeG6eAzLwbKzBgCQ5UWgVPM+Se4o9Fc1/3jlz/As9Sq88N4/T7mlZCsI3Yuk2UrYsYe94wwAQGXjTl6zU8h62+w5AlXHyyPZu46H4OUFX0AHTSOZOYPMBxQKybag1Paq2JZXAa0y9veVJVdcXLKPp9kskgKbndEPLQOlQKXjvUvlofuroIA0bXQHsU54EOufiIwwNqyXQ/lJKRQWhuMLKzxXSa+KXlhseMdXbmWus4K593iy9BCjGMxRyH4tmiQ9kNRRGN7Pf9myp4unbdi9aIt+xeNRjHYb7jbu23qjSCpIKaEaDQCAqG5dKNR2nwMAOMG6H+vt0Yv4JF+6uSN3L5YhrK6jMMGcuFwHANSFTkfhNoNCIdkWKE1XKLTqW3ATAtCWXQfaqsMiF7OICQ2273YnRgxeS3AfhFwQnR6E4eVFCgmFIuZ1FJu7HxbcQKGwMFpmf7CZZl7BqGMx+Xax3HOsjbucrT17/UiFOQqnDSklfl792rAdtnx9U+CfLpqG1cvfLHqFTEbcv6PCksMDKw60Cqdp2FhAEwCg1lZG7B2PtvtsAMDp4gAuvfy2VNpG0uO+465QeNJKFbA8R6GWwFHouQ5r0JmjcJtBoZDMPZbtQGsfBgCoy2NWPPaoLu0CAFRgACarec0aOrTgYHbEvEUFH4TTRtdRqNRWg9sDfTl8wlE56/HBDRQKC6OZMLfouET9AiwKDoVypKljRTQnP1A4R6HD67doJIC3lN47ZAdn4JocCD3uFTPxF6aSAaGQWlLxNHWrX/F4oS8U+h/Cxx75GuC0xwIv/oz7UdRgS8pAfwpGcBTORtvEElzntzKBUIidZwEAzhAHcevBRhpNIymy33MUnrHiW3QbVfUYAEoLAIAajMAiL5l/tlDWiJDZ4uCmjh3YBACUlvaM2Dua2tIKbCmgCgm015LldCBTw5YdhQx4mgo2Oybs1jqgAcs7gnkGR/WlH2PvjwU3cPZZGDcf3MzoyBGOQssBxs84QVKio5tYxuThx+EchbbFXEnTz3BH4R2HN3HTAcfbMyQU8v48VTQNO1oo9PWbvvshwE//me+jwb53QgL/qNzCJHvW2/17tKhOIhSeCQA4XTmIww09jaaRFNm/7roIT132+cRGFTMBfKHHHWwwpHxbQUchmXsOrLex7LkZRMiNlJTFahkbcFdUzCYLmswahiwFqqGOKtKnMvR4qvjhvetYEu5K6MJSSChMbhSF0CpwpH8ySidDUfzK+6/qvc489JjOs0KxO5tQRPzNdN+KO1F5+Gmrww804CjkDbpoRj4jZVQxkz6/9I/fxnu+fnt3V99xnaCjkGJS4bR0C7vgpQCJcRQODq4G78e2dAL9KTjQKpyNtokl4S3mTJCjsOso3IdjWN/IajGQbJW7j7p9fMqSd10KFVBLo79Y8oRC6LjjSBP3HEsn7zCZfigUkrlno21hCV648BareS1UNKxLVyjsbB5Nq2kkJ4xQ6PGoFeyS6DoKyTTwvbuOY9nLnxMexI4jMSki1KcOQyimASnTEwqdyByFvJKLRG0Pf2Z+5GUX42VPPAv/8MsXDt1PhoVC5igsnNECngwuzoTwP4v9z+iw64xaUvEEHIWL0TlHB2RCJUIotMOOQl7HRbPRmXyeBACo74JTXoIiJOrNewJFy0ixWLaDK+9wn8UP3u2Jg0nchABQdue/py25b287zLDy7QKFQjL3bOqWT2TYmqW+pCrYFO6NUt+ko3DWMKEBAaFwOH1HIQc508CNBzZjB7Gj3KF+lPDOdBTOHVGOQgpKxVLuHBn6+Wm76vjjZz4YJywPn7SIkFBo0ylaPCMekXJEMZO4RTv27fTR1C3sEl1H4W7fJ/5ojbB7NOJ+7DihHIUcZxXNesBROEHosRDACQ8FADwCN2CjwzDVaeHOo02stUzUyyoeusvbmCQ/IdBzFC6rBgCgY/L+vF2gUEjmnkbH6oUtTvIAbIhFAIDZOJ5Gs0gKhIW8BUQXmjEQstaPEJc0FjOZKjY68YNYMYYATKFwerj4rF2912lOE6OORUdhsVT14UJhUsJVj22b9+miGX1lDVa49QtD/lty0FEY7Fuu2RVP07CwG90chT5HoYgXCqPMpGFHIWM3iud9/3t7r5jJREIhAOWcnwAAXKTciEZGRcvI+NzlhR2fsbMO7TOvdTfufkCyL3t5+RdEVyjks3e7QKGQzD0N3ZzYUQgALdX1XFvMUTg1hFe1rqi8KnI/PVS3aZSgpKGbXJ1MA2ZrA+eKe903O84IfjhG1WM39Jg5CqeNzHMU0lFYKAtGOkIhQkIh+3UGkKG7cozitxfH+/d40AU8jbR0G7tFRI7CwGJdyFEYYfm3nWAlbIUqcKEcbxq48cAmlruLsZOEHgPAyikAgJ3YpFA4RdzpCYUP2imB/d9zN/7Enyb7ctk1yuySx6DAoVC4jWDVYzL3NDpWKg/AjroE2MDd+/fj1JTaRiajHXpY7RDReTNMGbzVjVoh0eAObjh+nQ7Oa30HFWGhvXQGarvOCXwW8i8MPY4SzpdEobAwHN/Fla6jMCr0mBdykSxaW1hci+gyERIKDYvXb9E4Ix6SAhKO/4krnVCoqfv6qurLA99j6PH00em0+mPpxb5QGLjnDgiDg6Mty7bR1H2uUuYoLJQjXnXilRQMFQCAultwblU00KRQODUcWHcjrs5a9PpEqwKnX5zsywtuBMijm1/F35eaOGS+N4smkimEjkIy9zR0G6tdAam+c/jOQ9A1V2S8+c57cMP9G2k0jUxIy0g2CDHCayIxBqZr1fMA9B2F9BROB4/QvwMAaJzxtIGJiN+xMKp64kBedQqFhZHnlWXQnVQoy1sRCqMQIaHQ5CS0aF7kq14ehYQTchSGC1nE5Ci0w6HHfBYXjWwcBgDYQgOqq/0PhoQeRzkKb7h/Az/991f09+E4q1CONNxw0h3Cq1I8wTwJAFDb4R4PDWx2eI+eFrruzt2qJ/Z7/ZQIX6qBZ6lXMUfhNoJCIZl7GrqJHZj8Adj2Qo+XRRM3H9xMo2lkQpLa381w6HGMUNgRbmJfOgqni332/QAAedLDBz4bJ2hVCBEKPWYHF4b0v0yx6rGMcrBwUFskK/YW8vpG/CTUkNJvWAx/KppbDgVd/AMVjuXwdA9xVz6rpU4fSttNIdAq7YwdRCUpLnbZFXcEj0tHYaEcbepQYWOl6xatTSoUut9fEQ00dd6jp4UNT7TdIbrO0dXkXw5VOQ9Hc5H5hUIhmXsajQYWhGutR33X8J2HUVsF4NrzqyV1+L4kF5IOQsLFTFr10yL3s4S7nyY4cJ0WpJTYC3eCUtoxGPQfnJgMn6WwmMn0IOEPPU4zR+EgLGZSHJsdEzvkFoTCiC5TQ/dlhh4Xz65ucQuPgW4byFHoBK72ODfZQDGTrTaQpEbJEwr1SkhIEkNCjyOUw/DCDR2FxXKsaeCR4ub+hnGcZlF4318WbTTbrcmORVKj6+5c7gqFYzkK9wTeMkfh9oFCIZl7No4eAAA4SmmiHIVPv/BBAIBV0WTejSnh/vVOov10Tyh8tv4XeInxWjRWzonczxau87Bb9ZjD1+Jp6SZOgBu6WNs1KPAG5igJipn4Od6MrpJNsidPM6fJfGeFcWC9gz1iffSOCSiFnEeW7eBPPnFtKscm42NYDt5WendgmzMwrZChhYDghR93z6YLePoQLVcoNKvhBXcR8cp7LwanmWYorFzhSKtQDm508MHym/ob1AnLF9RWYXlRPM7mwcmORVKj0TEBAMvwXOCe+SURK6cEUn90EqZ9IrMPhUIy1ziORHPNfVA51fhwiSTsPv3BAIBHKjdj9Z4vp9I+Mhn3rfmFnvjBZltWAADXyrPwJefCyLw5gM9R2BUKOX4tnEMH7kNZ2HCkQGXHvoHPw1UWh6GI4LSUg53iyOrScqKqHtN5Vhj3r3f6qT/GIeKyLqvhXSQ+9O27t9YwMjEtw8LjlOsC20oinFvQiQg99heyiMYJift8FheLlBKd424KkPLKCbH7RQmDYVioZrq4+1h74LqdCEXF8bI7Viuv3TFiZ5IXXUfhkuU5/MdJxaVVgNf07/X/ceUtvSI4ZL6hUEjmmmMtA3vsQwAAdfnEyQ524o/BFGUAwKn3fXrSppEUuO94XygsI170aaMceB83ORkUCjk7KZrb7r4HANBUFiC08sDnIhjHNhQhgmGuhmWm0USyBaTMKvQ4ItSN+c4K4+jGJqpiC9dZRJeZlWCoFEMWi6WhW1DFqKrHg6HHSXDCxUzY14Vy/3oHNdMVGFZ2nxT8cEgxk6jFeQqF08XdR5u42TnZffPo30rlmOs1N01MrXFnKscjk9MVChd0tygRlk4asncEi/0Fgjp0fOhKLtJtBygUkrlmo23iXHEfAEDsffDEx/vcya8EAChmc+Jjkck51nRXtFbQQBnxk9HX/NT5gfdxxlLbC5dQGXo8Ndx7n3v9GuXVkfuODj0OdrzJPCuF4dfushYKTYYxFobZ2ui9bnnO7q2ysfLAwPsJAgRICrSMJPdPCSnDjsI+saHHFPenimvvW8cu4V7L2lLYUeibSg5ckxQKp517j7ex3C1kcsELUjlmq+Y5CtuHUzkemZxu1eNaxwsHXx6M0BmKosJR3Wd4Xeg43jLSbB6ZUigUkrlmo2PhHMUVGrDngcN3ToDjVYlSTCbonQZ0y8GjxQ34QfVl+MvSB2L3e8DJe/HEB/ST8Q4UtfCwFddRWAIFpGnh0CE33CmuEl9cGHkUbr/7HYUMPS4KGfM6C1jMpDjs1hoAoI0qrAmHnGVVwVfsh/Xe01FYLIlyNcuQF1DKQL/F9aEMFzNhVxfKt77xNfyseoX7ZmmYwBC8xqOez8w/OT0YloOjTb2fHmKSgo9+KgveCThXmgZsR/aEwnLLzds/tqMQgFKuAwCq0HvHI/MNhUIy12y0TeyC52gYOrhJhlpdBABoNh9+04BhOfij0ocBAM9Vvxm/Y6kWeDsq9FhljsKpob3mpg4oL0UPYMcxFYWLmRgmBzqFkdHFNVhMgRPTIrHb7vO3rSxMfKyyNlgoA2CKiKJo6qMX1CRCLt+EfUXX2fTgOBI/d++b+xt2nBHcwScGhp+xkaHHvB9PDUcaOpbRREV4Y6Fx8tYNQSm793vFYvTVNOAX9dSmJxSO6ygEgJLbr3XoLOq5TaBQSOaajY7pKwW/OvHxSnW3arJmUSicBnTLQQ0JEuqWagFBKc6E5nhCYTexM/MiFU/FcoUGdSFGKPRXPR7RXWF3g0VHYWEEHYVphh4PYnBiWhhO26143FEXMJ6sP0hJDQ5Za3BDn3QWqymEZpJiUFIOFDMJppWNvmk7YUfhFtpH0uFIU8cp4lB/Q0go9Pdv+Bkb5SikUDg9HNrU8TjlR+6bnWcD5ckXdABArbimCsVqj9iT5EFXKFzQHIjmFnMUAoDnKFwUbToKtwkUCslcs9G2sIquULhj+M4JWFx0hcISHYVTgW7ZyYTCcshRGKMUOl7o8SniCL5R+V3svPsLE7eRbB3dsrEs3ZCYWKEwMO0claMwuIdhMcS8KGSOOQqT5VIjmaC7Qr+hpuAoVJVA/+4U7r2BQnAxtBJVjQ+HHodzFEZjh9IF0DRaHAfXddwufe6jhd2Bz2VI+g2SLEchXcHFcHhTx4MUryjFmU9I7bhq1b3fl2iqmAo2O24O9zPKXoi5UtpamPnuBwAALhQ301G4TaBQSOaajY6Jla6j0MsvOAlLy+4xKg5XyaYB3XJQF6OFQqHVg+9j9uuGHgPAyeIoHnT5b2O9ZeLQZmeSZpIt0tRtrHq5c7TF0Y7CUYRzU1oMPS4Mv3yQ5hQxSijsDpJJ/iy13KrlrfLuifu5rCmBY3Tzahl0FBZCI0HosYCE8IuDCaseM/R4erh/vQ0VXn88911DH7qDRY+jqtAP9q3N4jWF0DIsrKLhvlnYM3znMSjVvDRNnCtNBQ2v4vEZZdfhj+V9gLIFCegMV0x+qHJnotQTZPahUEjmmqObbSyn6ChcXlkFAFRlh0vcU4BuOqhidOUtUa4FQ1RjHYXawLYL3vAFPOovv4wNig2509Qt7BDuIFZdSJI7Z8yqxww9Loysbp+niUP4Y+1D2IvjvW3v+uptFJMK4ozmDwAA9688bOJjhUOPe45C9m0htBIWMwltSFbMRIYnoRxvFcXxltGreIzdg0UB/VefEKFpZdRQK+LmzyrXxWBYDlZTNFN0qda70VcUCqeBTU8oPE1bczdsJewY6M2j6+gw9HibQKGQzDWt4wehdhOXpZCjcMeqK1aUhI1Oh5b6otEtu7/SPQQlYTGTYbfE2w8zKXPeNPTRqQPGCVoVIug40ykUFoaTUejxucp9eJn2abyr/PbA9v/+wf7UzkGSs2ocBAA0l8+euJ8roWImrhNGUigsiGaCkP6BPL8DocfRAhHz2E0PDd3GSvc5HFHsIqD7haqZiIhrXpMGXqN9LLCNQmExGLbT79sUzBRdVlfdY1UcCkrTQNfosE/xFlC3UsgE8OUo7CTLUUtmHgqFZK455cjXAQDrKw8CtMrEx1teWUVLusc5dPfNEx+PTEbSJPZCBIersY57RY09BkNj8qepW1j1XENx1fgCTtERx1NCk5i2TpdoUQRzUqUnFHa5UNwSeB8V7kaypWPaUE3XEbx7996Jjxd2FJaEjbPFfhYzKYhEOaokQglJnZCjMBrHu16793cGcBRHo21gSXjOsMpyxB4i4lV3w+Bg65fwObxK+3hgWzgnJckH3XSw6kVtpGGm6FJbcH8ndXSwf42uwqJxxVqJF228x92wVUdhyRUKH67cikca30mncWSqoVBI5ppufqT2vkencjyhqLhDOwsA0Lj9qlSOSbaObjmxjoQuf27+ymDenLjpiQgKhZbWT8DvcKaSOw1f6DFqcaHH4xYz6e/fZDj5VJDFleWErvG9y9UMzkKGcdOBTSx5bpUzTjlpYkehm6MweIyLlevpKCyIpMVMAld4QkdhVyhUvYc3n77FYbQ3+m8qSwOfS98AayCtS0Sal3Nw78A2LuQUg2E7qaZn6lF2cxQuijbuo1BYOJsdCyfhaH9DaYvjIV9V7Pdpfw2dBQHnHgqFZK5RTPcBWFlYSe2YRxbOAQCYh25K7Zhka+imDQ3DH1QWVNdRmMB6JsNCYWmx/5or3rnT7FjY0U20HRd6PI6jUASnpd++/UjCyS5Jm6x197CgpI5T9YakwtFGB0vwUnRUlicWe0rqYB+uoAnD5mSlCBIlsw9f6ElDj6UDQOJvtXfh9dq/brGFJA2sllsAwRZaZGTOsKrH0fmgmaNwWjAsB8vCu0dX05sndQuj7MAm1pssBlg0mx0TdeHrh/N/YWsHCqVxYkGT+YdCIZlbpJQo2e4DsFSPCpfYGtaCm9tBNA6mdkyyNaSloySGP6iiXCyxkkEoJlmx+4VS6CjMn067gYrwXH8xocfjEJ6zKHCYu64gglWP0xfxwo5CXr/5c3x9HZpwhSGnMvkktKwpCN+9K8Jg6HFBiNaR0fsMOAqHyUp9HMvBmeIAnqtcgd/QPgs4nJAWhdV203+Y2kKkQ9Cv8YULhiVNK0GhsBgMy0ENuvsmJAJNxMJuOFCgCglz41B6xyVbotGx+oUfl08G9gwWJUpEaSHwNlH6CTLTDJb4JGROaBo26nBXUCopCoX2oisUVtsUCovEsh2UndEhDd1pyVm7F/AVb9vgYNYjlE9nbef5gBd1wxyF+WM13FAJCxq08uKIvUcT7ncFTmwFbJItXd2uhk4mQmH4mLx686e1cQwAYEMFSrXJQ4/VwbXtCkwKhQWx2rwjwV4SQgaFQj+Xlt6G2+RgvixHOlB8hcpK4IS0KKTuDoIsLe4ZHB96nNRRyByFxaCbPgHJyz+XCoqKpraKJesYnE3OlYpms2Oh1uvnCQThcvA3wkI18w+FQjK3NDoWFj2hUKsN5lXZKopXLWrBGL2aTrKjYzlYFKNDGrqT01c/9QGwHIlnnb8PHTPGnRAKPe6UVnuvbTqScsdpukJhS1vGcgJBL1nocX8vBRKaQqGwCCSApynfwXvLb8vo+CGhkNdv7rQ23OvXUBcgYitIJSdczARwhcJOguq7JH20VgIBICL02B9ufJpyGKfh8MDXHMeGhf7zWKNQWBwd11HoxCzWBe61oee0jHpuR9yKTeYoLATb1KEKr0PSdBQCaJZ2Yck6BtGko7BoNjoWaiIF52hITKajcP5h6DGZW/w5GUQKbqQu5VVXKFy0jqV2TDI+x5tGzzE6jO6YdLGi4c+e8xBcdMbO2GImMlT1+Dt39pP/OnQU5o5su9eYriUNWxxdzCTwHpKFEArCkRJ/U3pPZscfFAozOxWJQay7RQta1b0DhYS2gqoMZrSrwESLQmEhSH1z9D4DG5Ldbx1Huk5Uj5Jk4amisJrHAQAiopAJMPy6TnrFM2KjGKTpi8rR0hUKjbI3bmtzrlQ0Dd3sO0cn6edyMPSYjsL5h0IhmVs2fI5CVNITCusrbq60mtPk7LNAjjR0nCRGuzojcxTGRR6HQo/9u5kMjckd0RUKy6vx+/jfjLgelZBSqAiHYYtFIQE7wyFI+JfAeWj+VBt3AwA6S6fHV5ofg6j7dkWYaMc5xElm2I6EZo4WCiFlUBxMKBS6DuD+RcvQ42KwHYlH6FcCANRdZ0Tv5LsulZBzOCr0OKqAzUabQnARdIVCR6iAWkr12E7ZS/nUSXCfIJly7/G2L8R8AqEw9BtpdnhfnncoFJK5paFbfcdZio7CxVW3mlcZFmCOzpFHsuFY08AjlFtG7jeOUIiQo9A/oLUYGpM7lbYbkqZXdyf7wggtIpyjUNBRWBgS2QqFTujYDD3On+WW6yi0V8+AEOPliYzaNyq37M+qV0DZYEGivFlrGVhAkvHPYLbQuErHfgQcqL4chRooJBXBkYaOM+BeX5WHPCdyn2G3VhFxj4/q/5/7h28xjLEIvDmMpVSHDIy3hvQcqIqX45IUw1rLwL3H26iJlHJRvuZH/WOvr012LDL1UCgkc8t628SycKseIyZkYissLi7Dkt6l01lP7bhkPI42DJwlDozc76nnnTCwLdbdMuAo7A9oTZuCUt7UdFcoNOqDfRjJKEdhKPxRgYTBfi0EKeWAmJfq8VnMpHAq5hoAoLS8L5VyNSImfPnht7wD+PIbgfc+GTBaKZyJjOJ4y8QyEvytZejaG8NRqPi+WfaEwpZhUfTPkcObOire316tR6cA8fdG2EEox7jwbzxAQSl3TPcattVq+seuur8XNYnzmGTGnUfdPt5b8+69pQn7evlk2MItcXH8GPNPzjsUCsncsnb8KHaIhvtm+eTUjrtcL2MD7oqM3mDujaI42jSwitEDkMees3dgW3zR4yGhxxYnJ3mzaLhCob1wYqL9kxQz8fPm0vtgd5pbaRqZkKwdheGrleJCvkgpoVnutVVbWvEuzsnkwnAxoi6rzduA//0bYP81wA/+baJzkGQ0dAuLiR2F/qrHyYRCEVH1+Pr9Gzjv/30ef/CxH47ZWrJVWobty20WJzD4qh6Hrs/oqsfRRDmGSbYolhd6nIFQqFTd0ONEKQpIZnSduqua59id1FEoBPSSKwI31wYLUZH5gkIhmVvMI3cAAJraKuA9sNJgsaxhA25C19YGhcKiaOhmXwgeRmSOHOCPzJdE7BsfeqzTeZYrtiNRbrurlUu7Txm670G5CgCwHvisoftFzUMeeOC/ttQ+Mhky4xyFK6KF95b+tic2UCfMl42OhQXpOhnqS6uZ5SgEgIrlm4jaDFHNg6ZuYVEkEArl1oRCIOgoLMHCpZffBgD46NX3jtFSMgktw0JFeNeUVoncx/ELheFrVCS/x1MozB/H8ITClAuZAIBaXwUAVCwuxhZJVyhcVLzrOIXq1nZlFQDQWT86fEcy81AoJPPL2l0AgEZtuMgwLooi0PCEwrvvuy/VY5PkNDoWVhMIhVEr2ooi8O/2U/Ap+7GhD+KFQpO57HLljiMNLDmuAHDKyacO3fcZ+pvxIuMPYZ//S0P3cx1JQSSFhUKQkHDGiUvbAk9Tr8aTle8DYDGTvDna0HtCUrm+Ghs2PA5xQkKgb6kI50JDt7CUJPQ4zBYdhWVpQguXrSeZ0zHtXuhxnKMwGHocjspI3mcq+zd3mg033FupTOgyi6DkCYVVJ8GCPsmMpuEKhTsUT7BNIxVXbQcAwGhSKJx3KBSSuaWy6VZcNJaHiwxb4YDj2q4/8pWrUj82ScambmEH3AGILrUhe0Y7Ct3vhaq8DTgK+zBHYb6sty2seEKwurBz6L7HsYyvOxcMhI6HiRIaNJOD2CJwnGwdhV26k1zJLIW5crRp9ENTK4vp5CiM2a5IfxEE9nMeJHYUhvtDRheziEINhB6bFJIKoB0QCqMdhYHeDBcMi+izuP6nozBfrE4TbzHfBAAoVRZSP35lcRUAUHOaTP1RIE3dBgCc6Bx0N6yeNvExtUVvTN46BoersHMNhUIytyx5FRexekbqx75PulVYTxbMz1AUnVYLdaEDAI5iSGh5VOixt8kJ59MZEJpYzKQo2oaNVU8I7q5ejmKUe0GJyJNWNY9voXUkDbIsZtI/h9vfHMvmi+so7LhvKkuRbt5xiRMSarZP7E8c2komwXUUjhYKxRZDj2XoeyVYdBQWQMsY7Sgclns06pOoO4EGCyPW+UjKrN/wld7r0kJ0oZpJqC6tAgAW0ULLsFM/PklGN/R4j52eUFhZ3AUAWJINHGnqEx+PTC+8LZO5Zad5PwCgvPuM1I+tL7jFUU5XjqR+bJIM0XHzQzpCxbqMXw2NTqbtiQfhYeyQHIUGQ49zpdVpYcETglFbTfSdUYYEESFW7OrcM3bbyORIKXNxFHavdToa8uVIw+8oXBp5bSYhTmysSV8ILPs5Fxq6haWEjsKwUJhEMhbSCToKpQmFQmHudDo6SsITeWKEwuA4KjymStZnC+hApaMwVw40+teXiBWBt05lwV3gXRJtNHRrxN4kK3rFTEzP2LIyeZSdUncdhauiiUMbFArnGQqFZC7pmDaWnHUAwOKudHMUAsBPPOphAICTSqzmVRRqx3WCWeUV2FCH7BmRo1DEfDaQo7CPYXMCmieWV1HcgQAq6a92d3lA62qgxaJEeZN11eMuA4sBJBea7U7P8Y3yEgSiKxaPQ7guwnXP+2LEXrxP50FzjKrHwbdbK2ZShkkhqQBMo9N/Exd67M81Gw49jikmF+YpyjVQJPMF58k9G9mmbBBVd9y2jBY2O+zbomgaNgCJiuMtqFVTGE97UT4raGCzQxF4nqFQSOaSw5s6lr1E2/XlZGGL46DV3FDXqrOFZN4kFTRPKLSrO4cKDlF567qD14HQ4yGOQoYe54vVdPu3pSxiWExStGM0OSocYPPARMcg4yNl3qHHFJDyxOr4FtEqi8OiExMjECyIUjv5PDRlSLxgP+dCyy8ED0PKYJ8kFQpDxUw0WMxRWABGxycGJyhmMkiyPntb+VLs/t//l7hdZHIOHffdo7O4b1bcedIi2thoG+kfnySiqVuowOzfT0spFK7xonxWRYNu0TmHQiGZS9bbJpaEK+KJhGGL46B6QmFNJllRJ1lQMl3HqKztGCo4ROWt624Jf08OVOzrQ6EwZ1quUNhWh+SfDJFEM/QLDZ1uMRujOVbTyORI5BN63O3v79x5HHccYT/nhfSEQkuUAK2SWuixn10LZegIFaSiozAXmptrifcN9loyX6mADFY9Zo7CQrAMd4xrC20g4iKacJRG8nv8yo/+dYyWkUnZbGSc29WrrqsIiXZjPf3jk0QcaRiowbeoU06hcI3nKNwhGnSLzjkUCslc0jLsnqOwu6qVJpUF95h1CoWFUTXX3Be14Y7CcYqZDAqFdBQWhWy74cCd0hhC4Zi2pTvkPveFwcrHeSMlAqGFWdG9xv/t23fjx//ma5mfj7h0hUJDdSclaUg84RyFy9USdJRDJ+Z9Og8ecPTLCffcWjGTcOhxHR2oKoXCvNE77jjaVqLDjgFADl0FSF71mORLo5XxwlmpBstLC9QZY2GBpMvhzQ7qXaFQrSQU/EeweAIAYA/W6CiccygUkrmk3W6iIrybVxr5GEJUvAphdXRgUUDKHct2sGBvAADUxV1BofCEH8N/7fr1/vuIQWxc9Uw5JPRYZzGTXFE6awAAQ0vXUeinCS+Uio7C3FEcEw9V7szhTBQXCsFw78+mtgigW0howhyFA2YlAUcJC4UUIfJgX+vmZDuGuyNhMRM4DlTRf+buxBpzFBbAqfd9BgAgY/ITAqGK8uEchUMiOkixtP1C4b6HpX8CIdBW3IUiw0slQ/Ln4IaOWi9fcAphxwCw4ub+P1kcwWabjsJ5hkIhmUvMhvtQciCA8mLqxy/XXaFwAR20Da6m5E1Tt7FDuC4wdXEXHOm7lf3cB3Bn5UH99+NMLgYGuX1MFjPJFaG7oSpmeTX5dxLs4xcrWl5+M6PNokR583z5hVzOM6k4RbaG8Fy6tuZOTNKIGo1c4BnIm8b7dB6optu/l9vnj9jT2aKjMLhQtwdrgdBjVjHPHlNv4ZdbbjhwRR9W8GtI1WPOMqcSx5HQ/fknH/u7mZxHV935l9Fi6HEROI7EkYbedxSmkZ8QAJZPgoRAVZiwGkfSOSaZSngLJ3OJ2VoDAHc1a4wcKUnphh4rQqLTpMiQNw3D6gmF2sIu2P7BqVYJhBBHVt3zNoWdDVJooT19ocd0FOaK9CoRi3ryYkTjFjZpixoAoMX8OblzisyngAyrHheD6gmFlrdQJ1IIOIy6vGu1WnAD9aPMcRyJiu327waSTDwnDz3ejXWovrGc5bCjs+aOu+7qvZaP/I3Y/YYtxkQ6CgX7rmiOtQxo0i0w4jz4uUApulDNpBieo9xuc4xVBJu6BcuR6QuFWgXN0i73kI170zkmmUooFJK5xPaEwo6SQtLWCESpDlu6AyC9uZbJOUg8jY6FVXgCbW1nsChJqQZH+genEVWPvcFrOEeaBHMUTg1t1xVcWdyZ+CvjSkKW53ZqNzfG/CaZlBZ8E5PznpvZeegoLAbFEwqdkpvQPq1iJuH+XFgIRQwwR2HmbHRMLMB1I23I4WMsEXL+SZnwinSkW5HeY7dYg+bLUcjncfbcdXdfKBRPfUPsfoEuDnVu5EIt1fzCObDeQRluyKiSkUgIAGbJvT87FAoLoZs/cFn1qk6nFXoMoFU7EQBQad6f2jHJ9EGhkMwl3YeSri1lcwIhcFy44cfOoRuyOQeJpaGbPUch6jsDE4qwoxBi8DYXZzKVSnzVY4MTk1ypGK5QWF09IfF3klU99r0uuZNcnUJh7rTgy3n18F/B31vPy+Q8nJIWQ8lyF3Jkuf8MHke0jQotdSNPQwWoBnKnscez5kjDwJJXLC6Jo9DfY9IZJ/S4v28VOlRf6LFpsZ+zpnn8IABgf/UcoBKfwkcOCT0et8AYyYdDmx1UPKEQQ/JPTortLRShwzFWETQ9ofCUkvf3L6VnnunU3WKA9TaFwnmGQiGZTzquUNi1vWfBN9WLAACVO7+a2TlINJsdC6vwhMLaTpSEL0+kVgtU4Yte0Rbev+HJRryj0GDocW4YloNFaw0AsLjzxMTfGzf0GGUv0XaL6QPypu0XChU1M3nH4TCnEOqW+wyWddcRnIajMPL6VlnMJG+ONQ0sCddRuIlRE8/BqsfJQk+DjsIKTC7c5YzTOAwAMCrDXf3Dqh6ragoVVknqHNrQURGeUKhmJxTKipemSecYqwg2O+7c6CfFd9wNKyendmxr0T3Wop5PGhlSDBxBk/lE9youljJyFAI4ormrKV1RkuRHQ7ewLLyKbdUVlOETCtVSoLjJ8ByFQaRg6PE0sN42sVO4A8vaCEfhuEnt/e4HxXNJ2B0OYvOmW0gGAGAZA2H/acHQ42JYtFxHsKy7eYzcHIXJ+yKp6C9VFjPJm2NNvecoXB8RehwWbuUWcxRWYAaq6/J5nD2idRQAYFVHCIWBLwWv21N2Jg915L06Pxq6hUp33JyhoxBdodCko7AIuqHHp+CQu+HBz07t2HLRHZsvmKxoPc9QKCRzifBs7k55ObNzWJ6FW+qNzM5Boml0LCyi476pLKIi7P6H4QlmxIQzrgKnFMHVb1Y9Lob1toFdwr2G1cXdqR7bPxlRq55QyGs4d3SU+m+sdmbyjpScfBbBgr0GANCW3MnEuI7CpAsA2vFbQl+kgJQ1xxoGFtF1FNZG7C2xtWImgBJyFDqSC3e5oruL4KK2OnS3YXVlztg1RlRPRJoYkg0d00YFXt66DIVCUV8FAFRMGiqKoOE5Che9hR2snpbasdUFt9BgxeJC+zzDuzKZSxTDFRlkdSWzc9iaKxQKkyJD3jTbHdRENznvEs7aGQw/C1Q9jlyljg49pqNwOlhv6djRLVZTHy4Ujh1u7KObo1CzWls+Btkail8wMDsBF3CasOpx/kgpseK4E8PKyl4A4xcaij126L22fldoBy7oZE27uQHVCx8eWcxkIPRYRqT8GETKsKPQCIjHTAWSPYoXmaPWd4zYMz5HYa2iRewd3f/h8RfJjpZhY7fwxLsRY6yJWDoJALBqHsnuHCSWhu6Gly9ILwKrkp55prKwCgCoOxQK5xnelclconlCoZKhUOh4IkO3uiPJD92fUy7sKERQHBAR9sG+thQcsAol7Cj0TUwoFObG5sY6NOH9vTMV+92wqJLdzuwcJJrAZHHf+dk5CsPvKSRlTsuwe1Xpqyt7ALgVi8ch6QKAsI3QFvZv1phesTgbarAoURTh6y2ho1CEQo9LwoZ0+ilGdAqFmVMy3Wu47AkCiUhw3cYKxRQKc6Nt2tgr1tw3S8nzQI+LturmsdthUygsgs2OBQUOqtIb46Y4ni4vuWlFFmST46o5hndlMpeULFe8U2rZiQyy7IZUqGYzs3OQaMy2KwTbQnPDJmwz8Hkw31lUMRMXJTRgdYYMVOlgyI/mpjsRdaAApVGhbePh73GrKxQ6dBTmjSJdcd+u7ABOeEhmRUfCxx0WJkfSYaNjYkm411RlsV/MZJww8C1PPDhhyRyr5RWLUxfGvm4T5yiUwWImQFAU7ubeItkgpUTZG0dXl4Y7Cp2U0jvQUZgfHdPGCfByyy3ty+w85R2nAAD2yKOZnYPEs942+2HHQKqOwu59YQktLtzMMbwrk7mkmzOhtDgqZGLr9IRCi0Jh3lgtr1iN6oU9OWGh0O8oHKy6F+duCRdUYOhxMbQb7kS0o9TTKZfq4z2Wm8z50/ajeq7gMh2FudO9tvSTHgUgPx8YV76zZ7NjYcnLYSeq7sRkkhQBfsIFD9afeenAHiRbnHa3WNxior92uOpxEiQAERIKFVvvvW4ZFAqzpG3aWIQ7tq0vDS9mEmSC65xCYW60DRsniK5QOLxg3CRUVl234i6xgW/cchhNCvy5crxlYNmrUA+tBmjl4V8Yg9qSG7K+gmavujKZP3hXJnNJ1XEHOGOFTIyJ8CqmligU5o6ju0Kw6eWJRCj8zBnlKNxS1WNOQPPCancdK8krJiblffYz8Uz9TXiV+Ype6HHZoVCYN71rS3GvuayqHl+k3ITHKdf23tNRmD2bjSaqwlu8qSz1tmfxp9cf+JzgBhYzyRzpFYuzSosJHIWhnIRO8tDjsKNQsfpCYVO3w18hKXKsafQqW1dGLLg7gRSFSUKPo6GjMD86htHP811dzew85Wo/h+mvvf8b+NUPXJXZucggx1smlj3BH9V0i3t2I/bqQkejxTH0vDKYZZaQGcdxJBacBqAA1QwdhaLqToDKNsMW88bxqtQ6Ja+i3kDosW8oGjEq7RY4GciVMyAU9jFprc8Nu9MVgseomJgYgevlGQAAp+SurlIozB/RE3S6QmE2vK70YQDA0/U34yZ5WqByKsmGdmOt/ybFUCdg0FEIocKRAopXXIOhxzngFblwykuD/RFmoD+SFTOBlP0+9VAcv1BIB0uWHGsa2OEJhWJkXrO0XP8sPJUXpuFbXFfTc5mFqdb7QmEFJr571/HMzkUGOd40cLo46L5ZOSXdg2vV3stmqwlgNd3jk6mAyzdk7jjaNHr5kZZWd2V2npK3OqNJY0CoIhnT6U5Uuo7CMXMUxoxHpYgvZsLpZ37YXmibpQ2vqDkp3dDjCnMU5o7SdQt5qQGyrk68TxwDQB0pD7pCYUdUe/0LRIh8KSCEAhP++zY7OGuEV8BNlpdGOshEqNcT5yjE4EKe4oscaBp0FGbJ8ZaJZdF1Ig0XCoM5ClnMZBawjU7/TYZCoaqVe7+PKsKFp0jWHG+ZOEfc577Z/cB0D671C1m1moysm1d4VyZzx6HNTi9kQqtn5ygs1X1OCZ3l4fNEMb1K0+WuozA4AJH+yUvERKYfehwcsA4KhX1sxizmhvSup66QlxVCcU313cIaJD96+cdE11GYrVBY8SYpdBRmj9FcAwC0lWyvX8C9l5v+4Bj2b+Z0q+Gispwo9Ngv3krHSeYoBAZCj1Wfo7BFR2GmNDsGFtGtlDrcFRyM4Ni6UBgef5HssE2/UFjK7kRCQId7/IqgoSJvNtomThWH3Te7zkr34Irae/a22lxsn1coFJK549Baq5+8NeWwJz8LtSo60nvAUijMFcWrNN0N/0ZI6Bmdo9ALPQ59NFDMxBf6RIEhPwKOlSzPo7nXrwonce4skg69yaInFGbtKKxSKMwN0ys2ZahBoTArMdjyOwrZv5mjedVwldry6JyfMhhqLBJXPXagDDgK++JGg8VMMqXT3IDaHf+McBSmd8Ux9DgvLNMV3R2lnHrBuDC6cB2LFToKc6dlWL0IO9TSN85Ywh1DtykUzi2ZCoWXXHIJLrroIiwtLWHv3r143vOeh5tuuinLUxKCtbVj/TcpJ2/1s1DR0EDNfeMJGyQfupWm1Uq0kDRqhVv0/g0NcZX4Yiacf+aH0r2eKlnkKOzTdRQCAD78i5meiwRRPMFA9MLNMnYUem4GGoOzR2m4OZE65fQnJuHuEwg5Chl6nDndAm5abWV8gT9x6LHspyfo4vQXBFssZpIpVmsNAGCKUiAXWRTBBYDRv4ewANw7Dh2FuWEbrlAo1cqIPSfHhCsUVkFHYd60DLvvDM5g4d1S3L7ttBl6PK9kKhRefvnlePnLX44rr7wSX/ziF2GaJp72tKehyVh2kiF6w02Wa4hyIIdC2ixUVDRltXvSzM5DgkgpexMVtRb94HMCoceDt7n+x+FiJvEDVTqR8kP1QsuVDIV+AFD9ITe3fD7Tc5Egeeco7DoKJa/jzKk09wMAmrWTAtvT+MuHXYlCiGCOQvZvpjiORNV2789afSWBGylcvCS5rzQsFPrzG/J5nC22JxTqysLIPpZyvHv3gADcPQ5zFOaGtLpCYYZhxx4mHYWFYDsSuuVgUXhO7BhjxUTnUNw5ttHpjNiTzCqZVj3+3Oc+F3h/2WWXYe/evbj66qvxxCc+MctTk22M014HAHTUJWSXohdYrGho9hyFDD3Oi5ZhYwHuQ6lU80JiTngocPA6YKebg2PUCrfSDT0ObQ8PVLsTHAEHtuQgNi80yw1jUKqjBzaTyEsih0EyiaYfeuz2YPY5CukozIt62xUK9fpJI/ZMB1NqvhsBOzhLmoaFRS+1S7m+EnvdfmvvL+DiQx8ZEG5l0hQPUg7kKPSL/OzlbOmOo3VtCWP5+hOEscY5CrMOgSV9HKvjWoXycBQqZcD2XP28cHOjbbqu656jMIMIHUdxx9CG3k792GQ6yHXmu77uPnh27twZ+bmu69jY2Aj8R8i4yI77OwvnR0obN/SYjsK8aehWb4VM6zoKX/Bh4DEvB37lk95ePofJOKHHEULhM5UrcV3lN/AUcTXdSDlR7jpWatk6ChU107UyMgyZbzET5ijMjwXDTZ5uL+4LbM+k6jHCOQqZazRLGrqF5V6xuJVQxVuXGy54HQ5XzwAQsZAjww7DeMKCksM8srkhdC/PqDZaXAj20uhrPCwA94/Dxdg8kFLCsdznodCytFO4WMIVI+kozJe2Vxl+oZezP31HoeMJzabOHIXzSm53Zcdx8OpXvxqPe9zj8NCHPjRyn0suuQQrKyu9/0499dS8mkfmCKF7QmEpW5FhsaL1Qo8li5nkxvGWgQVvhUx0V8hWTwOe8SZgx+kAgGD2ooiBa9xYNiQqCgDvLr8DC0LH+8t/y6i2HJBSouJ4jpWF4UnUJ4VCYXGoodDjrC+tfo5CXsRZo1ru9RsW+m+TJyc+RtJeEgIwWPU4NxqdvqNQVJcjxV8311x3u4Tw90nSCvNS4gXqV0KbmDM4L7oL7lZ59Dh6zMjj2NDjqDQxJH10y0FZusWAchEKvfBU5ijMl65QuJRhjsJujkvTYOjxvJLbXfnlL385rrvuOvz7v/977D6ve93rsL6+3vvvnnvuyat5ZI5QvJVQq5RtIYQ9SxU0hOtaPH78aKbnIn2ObBq90OO4FbJACHGko7AbetyfbTy6887e9v5+EpYv5JgiQ/Z0TAd12Q1tyzpHIScmRSCl7LuFcpoc9nMU5nK6bY3qVactV+uB7a8zX4KPWE/Gxy/8ly0fO0qYCjgKGduWKZu61Z94VpYjc4sKIfrPXSkR6JMxHJ/nKPuDG3jx5oZquONouzRaXAjkKJwg9Fgy9DgXOqaNsrdwJjLM497FVpijsAhapgVAYiHDHIXdOgCWTqFwXsllhP6KV7wC//M//4OvfvWrOOWUU2L3q1QqWF5eDvxHyLioXr5AO8FK6CRUSypKC25Vx0OHDmZ6LtLncKPTczSgHC0Gj85ROPjJQQymRBCQOIh+5U7mN8ueTd3Ekte/lYwdharCiUkRSAkowsv/mVPocT9HIS/irNEcN1F+pRZM/3EEK/hD62U4uBQdVeIn6a9BQASqHjM9RLb4HYXuxDPCUQgR2O7fQyYOPR7cxwmIjOznLOkKhbI6+hk8btXjc5X7oo/Dqse50DZtlJGjUKh6QqGgozBPWoaNZTT7wnwWxQG9iui2SaFwXslUKJRS4hWveAU+8YlP4Ctf+QrOPPPMLE9HCABAM12h0MnAZh1Gqa0CACyvQhzJnsOb+sjkvIFcN1GOQjHoKIzaVQC4T+7uvXc6zJuaNY2O5QstH30N71na+kBXCwmFls0cWHkgMVj1OL8chZmehgDQpCsUVutbzxOcuJsEAkKhbScMbSVboqFbWPJyFKIa7SgMFgUL9WRSR2GU4OvLUUg9OFsUL52OWhstFKb31KTDPw/aho1SN0FPDsVMLMUVk6p0FOZK27BxkjjmvqnvAkq11M/RDV13DBYzmVcyTdD08pe/HP/2b/+GT33qU1haWsKBAwcAACsrK6jV0v/BEgIAJU8oTLISOild12I33Jlkz9GGMdJKHxAdIkIbY4uZDOwnsS59k937vgs88CfHaS4Zk82OhT0jHKN+Ljh1FX/yzAfj1J31kfuGUUJC4Y33r+Ohp+yI2ZukhRt67E4vRV6hx8ITCqkUZoqUEmWpAwKo1dIvKBbVe6bsO5EcFjPJlGZb7xUTiws9hlB6q24CIQeh3PqSAN3A+VEy3TGtWl8duW+gWyYIH5Z0ieZCy+g7CqGWMj+f1Qs9pqMwT5q6hZOFW1gMK/HRnJOgeOKjY+mZHJ8UT6Yj9EsvvRTr6+t48pOfjH379vX++8hHPpLlack2p2J7hUUq2QuFXTGyG6ZBsmejY/UdhTGuUWeE+CAiQo+jkcHBTeNQojaSrdPQLSyiPxFNwkufeBae8dATxz5X2FG4/+j62Mcg4+M6CoM5CrN2FHYdFNQasqVp2L2k9fWFrbv6E4ceC8DyrXlTCM6Wdss31qksxVy3Sn/7QKhxUiF3sB9ZzCQ/ynbD/Xdx9MJZ0tDje8pnDT2OcCzceqiBWw81ErWRbI2OaffDgHMIPXZ6xUzoKMyTzY6Fk4SXP38lm+KwSsl1i8Kko3BeydRRyFwxpAgqljvIEAlCJiZFeEJhd/WVZE+jY/qKmUQ7zhx/cu2I+5CIWfUObxcAysLqH8phWFvWbLbNXuhxXP+mhRrq7yNrrF6eB47PUZhX6HFXrKBrJVs2OyYWvAlhpTa+y7dLfC8N3qNt35q37dBRmCVWw11MMUUZJa0SfdUKf1mwYE/KxP0TJRSyb/PAsh3U7QagAtXF1QTfSHbvNsVwUUo4Jn7yrZcDAG7+i59CWWMocha4OQq9ca2afdVj2wtvZo7CfNnomNgJb0y7uDeTcyhL7nFXbBb0nFd4FyZzR9VbCS3VcxAKPTGyYlFgyAuj04ImvAlDbDGTITmS4I+OGR167HcUStsasjdJg3ZrE6pX6CKTKm0+wsVMjqzzOs4DKaMchdnSFQppOMuWzY7Vq24pMsiJFEaIkF+NQmGmWO01AIChDgkrD4Qeh2UkJ1kxEymDC34ApO/ipeCfHettE6vCHUfXV/aM3D9wxQ0JPZYjIj0cqz/WMpkvODPaho09Ys19s7B76L5p4HSFQoYe58pmx8Ky6OaTzWY+rK6cDADY7RyFzcHVXEKhkMwdVafp/rs0WMU2bbS6G5ZBoTA/7I7vbx0nFIoRjsLevzJyO3yfl/1CIR0NmWM0XceKAwUobd2RlARNDfb42iZDnvIi79Dj7rXOCWi2bLZ0VLoubG3rQuE4vwb/b4dCYbY4Hc9RqMW7vaUQoes5mKMwKQ24v5916T4HmH8yH9baJlbhPgvVhV0j94/MUxnBqHv8WqkvSlJyyI62aeNEeEUulk/O/HxSZehxEWx2TCzDnQ9nJRSWd7khzfvEUTQNGinmEQqFZK4wbQeL0r0x1payL0qgeYme6w4Fhrw4oXULAMAsrwBK9C0sdpLiIXxuh2EIoB+iAYYe54HZcieihlKbKDF6EpTQ8Tsd5lnJA9dR6BUzibmG06YrFD7tbV9HQ+eANiuaLd+zsJu/aAskFQrCd3IKhdnieAt1VmlYWgiln8YjnKPQcZCod6Xs7ed4UxXmKMyHtZaJVeEJDLX0xtFxQuH3So8AABwR/cV9pq7Kjo5p93PX5SAU2qr7HKCjMF822j5HYcJ83+NS8hyFJ+A4mhxXzSUUCslcsd42seTdGOvLo1dCJ6XsuRbrsgVQRMqFh+pXAwDWT3tq7D6jVq67EacDjsLQ1wYchezjzDG9iejQ0LaU0EIilUmhMBck/FWP88lRqPiu9S/fcDDTc21n2s1m/02Mo3CSsNHw70SIoOzEHIXZInQ3H7MdU0jM3WlI6o/ErkA5+IriUS5sNFt9gSGRUOi7JrcQenyHdiYAwLD64yv2dHa0DRt7u6HHy/syP1/PUSjoKMyTTd3EMrINPUZtFQCwLFpodCgUziMUCslcsd7u3xjVHIqZBBI96yxokgea5Yk5Q6p4OSNubd1U6++1fhoA8D/2o73tQR6i3IXTlX6lYwqF2WO33evI1LIXCsNmNtPUMz8nKTZHIcmWdssV+k1Rind8J+iKOLkh6rt+8dBmaHmmKIaX+sMTCiMFfuHPTBjaI7HY1/9e93nuSIlHihuxjAav5gxprh/rv6mujtw/aehx3LjMgbdYxPFVLrRNBysZOEbjkBpzFBbBetvEcrefE1zHW8ITIJfQQqPD/p1HMq16TEjebGxu9vMjZbWC4mOhvoCWrKAudKC9lstDd7uj2DqgAFolPv/VyByF3sfXyHNxQee9WEcyUSp5xUayVaTnKLSHhrZlg6XTUZgHEj6hUMknR6HfURgOOSfpYTVckaGlLmOSJ3Dy0GMREgopNmSJanih5dUhoWxC9J7BwhdCDACQSWUl31e8fy9qXo5XV76K++VO/I385JhHIUnpbLhhqW1lATV19DQxaZiwjBEKe+O1raWyJGPSNu3Mc9cF8JzlzFGYL37jzND79SR4Ic2acHBsbQ04PfvaACRf6Cgkc0Vrw52k2FBiC12kyWJVwwa8ggtekm+SHZbtQJXuYKM8TCgcUfXYzzoW0ct0NUJAkA6t9VkjdXci6pSzdxSGdd+eW4ZkiiP7ocfwQo+zRlAozAW75T6DO1pGE5MQ4dBji4s5maJZ7v1ZGTLxdJ+/fUdh8MPk/dO9ZrvP80e1rwAA7BPHYr9DJsdsukJh8mt4+MJs76PYqseKdxS/Upjw1GRsDF3HgvCiJ7JymvnpOgoFHWd54k/FlZkgXF6A7TmCf3jr3dmcgxQKhUIyV3Q2j7v/inps2FOaLJY1NKQrWJkthh5nTcu0e+ELpWq8UOiMGLhuWSfgJDRzFnQvf9ywHFgpYYd+GxWTYn8e+EOP8ypm4oc6YYa03GewUcrBqRIBQ4+zpewJhWp9SP8qSuAiU/3ioHQSpQEQvu/I0L/uaypJWWE3XKEw6TWc1A0e6yiMEJXZv9nhdHxzlUr24yzJYiaFsN4ysAgvSiajYiYQolfY6ujRI9mcgxQKhUIyV+he2FNbzSdscaGioo0yAKDTZuXjrGnpfaFQG1JRc5SjUEQMbJ/3sJNGCgh0FGaM2cYLNz/gvq5kfw3bTvC3UbM3BraRDPBVPe7nKMw69LgvPCgUCjNDdFyh0K5kIxSO+p2wmEl2SClRsd2QxZKXAzr6mdl/wp65eTWeY37Gd4zxHYX93Ha8cPPA8cR+K+E1nLRH76g9OHJ732nIqtZ5IHR3QdRUaoBayv6E3lidocf54TgStt6EJryrM0NB2Cy5ImTZZkTOPEKhkMwVRtN7AGr1XM6nqQp04drqdQqFmdM0rJ5QKErxjkIkzFHo569/7oKR52eOwoxZu6f3spSDmnPSalBsXkUTTYNicNZISCjeAFYoXiJ7mW1/+48+KsUA2TqqNwm1K6u5nM8NPWaOwjzQLQercCeDpaVdABCd31f4Q4/DJFSApN9dFvFNCkmZIfQ1AIBTTZZze+S9+7U3Ab91BQ6VT4/+vicUiog+J+nTFQqNUvZuQgAQmmumKIFjq7zY7FhYlG7YsRQqkGEqn66jsGJxDjyPUCgkc4XhiXV2DhVTu5hKNXBukh0t3e7nOfHynkQhR8wotJAIVSupKGvKSL+ClJyEZopPwKnY2V9P+1aCYvOqaKCpczCbNYHQ45yqHvuLmVAmzA7N8ML388h9FQEdhdmx2bGwR6wBAMor+wAADdTxAuNPcLl9vm9PJVhQzE/C0OOoqsd+Qfjj19yH577rG9hgpc3U0TprAACRsDjfSDf40onAiT8Wm/OhW/VYBByFlAqzQtVdsd/KSShUvLF6CRbd/Dmx1jZ6+QlFZSnTfCt22XUUViw6CucRCoVkrrA7rrggS/k4CgHA6gmFzdzOuV1pGhbK3TwnWnzo8SiEEPjhnz0t6oPhX3QoFGaJNPtVh0sFrE6uiAYaHQqFWROoepww9Pij1hMnOqcQLGaSByXTnSwo9dVMjh/+nYTTSFAozI6GbmGvJxQqyyf0tn/LeQiuch7Uey+FiH+WTtA/4b7/wT1reN/Xb9/y8Ug0qncNa8PyUPqQCYuZxH4/KvR47KOQpGimm6PQKudUcKorFAoLKpXCXFhvm1jq5ifMquKxh+3lE89jcZ/kD4VCMlc4XsVUmUPF4y6W6rqSLJ1CYda0fKHHUMvJvhQzcF2u9nOzJNUNxsmvRMbH0PtCobJyUibnGOjrl361VzhlFU006CjMHOmretwLPR4hFP619Ysh19J4BKoec+STGRUvT5GamVAYJHw9s5hJdjTaBnbDc4wunhD4LNAvQonMA+zu6CRz9EpfjsIhoa1Hmsx7ljaa1c1DmbbAEN2P3Xu//1MaCrOju5jj5CQUKpo71i7Bwmo94bidTESg4nFWhUw8uo7CmkOhcB7hcJnMFcLybow5OgodzRMKOxQKs6bpK2aS3FGYfMQ5MvSY+a8ypd1u9V6rT3tjJucY6OOTHwH8zKUA3NBjCoXZ4/iKmfSFwuFMWuzELxQyR2F21DxXQXkhWdhi2jgsRpQZ7c0j/eT4C3tCn/avKSmU+Os18WKb310mAv/6oQM8XdyCNe5zuFRPJjBIn1t76KprzGe9MPVAjkJex1lR9oRCmbGA1MWQmnteWDi8qeO6+9ZzOe92JuAozLifu7+jqs058DxCoZDMFWpPKMwvR2FXKLSN1og9yaS0DCtRjsIAaS5NM0dhpnRa7jV0gzwjQ0dhxGTFy8W0CuYozAMJ6Qs9jhcB0oQ5CrPHcSTqnqugupSPUCgQFJkdpofIDH1zDQDQQWVEtVQxRC9K+jyWvqrH8VcsF3bSxbAd1NABkFwoDDg+h4y34u/xg6HH1Amzo9wNEa1lU5k+zOGW25kluPfmF33gqlzOu50JOAozDj3uOlPrdBTOJRQKyVyhdYXCSn5CIbzqu5JCYea4jkIv1CgLR+EoBYH5rzJF91y5lpJdeEpkF3tC4YpoYpMOleyRgzkKE3xlIgKhx3QUZsKmbmEJ7nOwtrwrl3OGhX+bjsLMMFprAICOMji+CohAQsSKQlJKJCpmIukoLIK2YWNBuEJhOWHoceJFnph7vSO6xUz64ytexdlR9dJDiGo+QuEZJ6wC6Fc9PsZ0AZmz3jaxmJOjsCtE1hw6CucRCoVkrtBs98aoZFgKfoCeUMibZNa0DAtlb7Ax3FHoG2bufcjI4yaVDVj1OFt0L/TYVhK6RbdApEbkdxSyimbmuMVMvEmhN0nM2ucXcBRSJ8yE9ZaJZc/FUJkw9DipETzclSW7HbkfmRyz5RZB0NXB1C6DOQpjGCPPb/cYw4TCTToKU6Vl2D2BQa2mXRU35lfh3ZD9EczMUZgd3VxySm01l/M9+pwTAQAlYQfEYJIduToKF9z+Pdm5P9PzkGKgUEjmiu4kQanmV8xElN1BszA5Qcmapm6hBt19M8JReFHn3XiK/jfA8r7Ex49NwN6FYW2Z0i1mYqvZCYWR1HYCADThwGwczffc24hv3XYUv37Zd3DPsVZE1ePhpJGjUOEkJVPW2gaWke3kZNTvYNk5nsl5CWC1XaHQUPvjKxEl4gnVV8k2hHS27CiMoqFzYSdNWoaNuhd6jEqycXSw2MyQ0OO4tJURocfMUZgdNce9R2u1tIXgaITWjxB5mfrpXM653Wkbdv9ZXMm2n/V9FwIAHiDvABhZN3dQKCRzRcVxhQYt4QAnDbruRWFRKMwao9OC2l12Lg8rWCNwGKu4XY6X526k04iOwkwxdXeQ4WQoFEaKwaUq1squoFw9flNm597uvOAfr8RXbjyE3//oD3yOwq5QmK3N72HKbfhB5aU4W9wHRqdmw/pmo59DdkhYm6qM7uu4e/HZexcH9vP/dlYcJsrPCqfjCoVmRA7ooKOw9z+DjFXMJJij0In4UbQNPpPTpGVYWPRCj1FOKBQmvnePKGZCcTBzTNtBVbqL7XkJhVD7QuHrSh/GMhqQtIxmStuwsSTyCT0WK6egI0vQYAPNw5mei+QPhUIyV5Qdd4Cj1fITCrUKhcK8MP2VpYcWrBlvEDKqCuotypnuUccImyLjY3mOQmTpKIzp6mNL5wIAljduzu7cBACwf60DtSsU9qoeD78G05hWLIk2/kj7MBxOUjKhteG6cR0IoDw4CX3lT5yLB524hBc++rSRx4rroovO2Bl4H75375AUCrNCdtzcZk5pcHzlv37lsKnFFq69/rGZMyBrWoaNhTEdhYF+Gdq/0b+L7u9F+F2kvEVnQsfs56AspR5aHoMazDmtwsEXrz+Yz7m3KW2zn0Ig69DjkqZCh1fcymb+yXmDQiGZGxxHourdGEs5hh5rVVewUu1Obufcrti6m1vFFiVA1VI/ftQ05OaHvgZXaI9x3zD0OFMsw71+ZeJCNeMTN9U06q6jUOscy+zcxEUIX3GRhKHHcXzAegauds7Fzc7JifZX4dC4khFmcw0A0FYWAGVwePl7T30APvfqJ2KpOqxi7nCir9/+Vk04LCyWEcLwhMIIETgYeqzEOkKFTOg/k8mqHpN06bTbqAsvvUvCYheJb6cxP4p+mLo/9JhkQduwUffS95TyMlQoauBtCTauuPVIPufepnRMu1dYLGtHoaYqMLpCoaVnei6SPxQKydzQNm0sdB+A9YyrPPkoeUIhk6hnj627jkJbq+V2Tkep9MSM1fsuz+282xHbcMV2Ucq5mAn6iduF0cjs3MRFESIiR+EoR2H054flKp5v/Dk+bj8h0blVOHQUZoTdrYqrTj4BjTV5J6hEo7c2Jz4/GUQzXLemHDXxFMqQqsfjhB73DjiwhWSD2XRzfDoQQCWZUJg0lUPsPd57BvhzVzI0NRsautXLQSkShpanzZcq/x9OWM5uMZh4jsKcQo9LivA5CikUzhsUCsnc0DZt1LwHYDlHR2Gl5gmFDh2FWdN1ijgpC4XduWfUHFQqai80ptLcD9z/g1TPTXx4lcNFaVj+ycmIK1ijevcMxWT18qxpm/bYQuEokn5fgcOwtqzouEKSnoJQGNtH5zzV/df3DAjv2m5uTHx+Mki5KxTWdg58FsxRKCBiipkI6YT3jt7Pd0V3HYUyrhoGSQ2r5Trq41zBUSS+d8c5ChElFCY7JBmPpm73HaND83xnx7JoYc9SzgXrthltw+cozDr0WFVgSDfCyzYpFM4b6cfuEVIQbcPGgvcAzLPqcdmz75clb5BZI7vFLrR0BzjKMJeKUOEIX+jEgeuAfReken7iopiemy/DKm1xXd11IasWwxbzQBHBYiajiHUojXleOgozxBMKDS3D3FcPehbwov8C9j44vhktuoKzoGq5/avUB4XCQFC4EPGiUMJrTwZee0KhW7kmdLxEhyMJMRuuUNhRFzEsC3Sa9EKP2ZmZ09At1NAVCvPq4UEqGn1KWdI2HV8xk2xzUWqq6IUe20YH6oj9yWzBK5XMDa6jMP8HYK1OoTA3PLeXTNlx1nMURogRUtF8OXQAfOp3gDuvSPX8xEX1+lfJK8m2j/qCKxSW7CbDnnJgsOrxZCT9viocVj3OCEV3hSQrIoddaggBnPUkYHFv7C5Gm0JhFtRtN6RbXYxyFAaLmcRfYglDjyUGchTytpw9lpc+QNeSu5AS90t8PgHvf+kozJpmx+zlKBxeEDBb2L/ZkmeOwpKqwAAdhfMKhUIyN7R1q1+tLccHYLXuToqqUqfAkDHdytJiRMjEuN2g9JXCiJOqg66nj//meCcgidCsrlCY3cAmbqqytLwKAKjKDjZ1K7PzE5eelNBLdJ591WPAK2bCbGeZoHjFLqxSfjmCozDazFGYBQu2G9KtLewa+CyQUVAosSkekLCYSUA08jsKSaZITyg0S8nF/qD0u4Wqx5HFTHiPzoJOuwFFeH/bAh2F7N9sMfUOqsJ032TtKFT6jsJmi6l75g0KhWRu6LRbhTwA64vuTbgmDOgmBYYsUU13hUyk3L9Dpx+KCjEwQeEgJwvKtjvI0DIsRjTYl965627i9jo6OLTBVdGsUVNyFG54AXJJ82S5ocdbPBkZima4QpKTsYNhFGaHk5UsWJKuAFtd8gmF3mUXcBQKJf6hmrjwRb/qce/YzFGYOWrbrUZrVgfF4DgC996FPfE7jshRGNjGe3QmBPK3ZpgLehRO0ppGZEsopm+xLOPnsaqIXo7Cr99wX6bnIvlDoZDMDWa7mAdgfaG/WtNs0MmQFY4jUXPcPlZqq6keuyseRQ1jpaJCgx3clrhyIxmHiuMKweVa/o7C7uLCAjo4tMnCRFnTcwwlLmYS/PwPzZfif+zH4KP2kxJ+30VhjsLMKHmTk5FVcVMm3PcmQ49Tx7IdLMJ19FeWdgx8HuwDBcOUQpFALRQyylGYtLVkq1Q6rlBo1+ND+wcQAk/X34zn6G8EIvNXusTmmfWeAYrPm8g7dDYY3iKKIcqJi9WkwdWPf2/gPaOvsuPWQw1I3XsWl+qAmm05CiH6jsIDR9cyPRfJHxYzIXOD1XbzI7VEHfUcH4BqeQGWVKAJB+3No8DO+IES2Tody8YeuH2sLp+Q6rGHRjSJCKHQsSes0UqiqHlCYWVhJbuTxHVcVygUHWx26AzOimcr38TN8pSIHIXjXVEfsX8cH7F/fOzzq6x6nBlly1soq2Z4/SbANliQKG2anX5ql9rCiFA2Jb6YyTgXH6se50/NcIVCuZBcKJQSuFmeNnrHOEdhr5iJ/5i8SWeB0XHFfkupoJzjeY/se1Jwg8MxVlZceftRLHuLOiKnRbvdq0vAJrBvkf6zeYM9SuYG28ut0lZyzruhKDgiXHHQOE7bdVY0dRu7hScULqUrFCrdFIURA9koRyGVhmyoSXdwU81QKIydampVAEAZJrs3Iy5WfoS/L78Tn6/8UT9HYcLQ41FCYuJiJnQUZkbFK3ah1FcLbYfN0OPUabRb0LxK5ZWaTyiUgX88hjsKkzHoKNzaccg4LJpu1WMxxhhrfOk3vDmimEniY5JxkIZ7b7SUSq7nDfe8oFCYGYc39Z77O+v8hF1qtZr7wmLannmDQiGZG5yOKyJ11MXcz31UcfO5WBQKM6NlWNjtOQrHGcQmQRlmKRQqDq2HQ9k4jE0bw3Kw4A1uaourmZ0nLkchNHd9vQwOYLPifHF77/WkjsKtoiStukrGpurlGC0vDIam5oljUChMm1bDl9olIkdw4PoVIv56lslCjwH0ck73Qo99xxxYvCOpsGi7Y6zS0pBcg1tlZI5CVj3OGsdwx1i2Wsv1vAPjLslxVlYcaehYEp6rPsPCgAFUV3iWNoXCeYNCIZkfvNBjvQChcE3bDQCQG/tzP/e24fbL8WT1B+7r+u6hu447xhShfwMoKrSwuMBRbOo02h3UhAEAqC+tZnaeWE3YG+hUYIJCcPrYjoS/3mlPkA1XFI8hQVazRMehozA76o67oFJdzFcoDItSorPm3qPZz6nRLYJgQAPUUv+DiGImEMrwdB5JiMpR6Pv4L7QPTHgCEkXFyXKxLs5RqHif+nuY124WSNNNH2Cr+ToKB9pBR2FmHGn4HYU5CYWa93uyjHzOR3KDQiGZHzreQFbLx2rtp6F5eQlbR3M/93bh9E+/oP+mlO5qaK+YSdQ4VqhQB4qZcBCbNs2Ntd5rrYhiJt5ApyRsSJbkSx3DcvrhxgB2Cc+hpKgA8nUUsnvTx3EkFqTr5KstTZ6n98SV6pa/W+kcBv7hCcC/v3DidhAXo+Verx0x+tkroUDEOXdlsivdLxo5EY7CX9S+5u7HtIWpYTsSlaR5KH0kHQ/J2ByFESlfOMTKBtN1mjnq1u+vW2Eg9NimIzgrjjSMvqMwp9Bj4Y2fhU2hcN6gUEjmBumFHtvl/B2F3XPKzsaIPUkqaMNXQ8edOwydbCgqSgM5Cqk0pE27uQbAc6xo2aXZjg897v+mhMPBTtoYtoMV0Q8JXe2+TpijcBRJhUYVDr0qGdA0LCzDnZwsrOza8nH+7aWPxk88aC/e+n8u2PIxzlj7NnDwWuCmT2/5GCSI3nLdooaIFhgC158ioMQqPVu5+gYdhSR9Gr6CNfWl5HmCX/PUBwAAfu7CU4bvGBt67C4WKRxXZY/lOs1yFwrDXc/Q48zYaJtY6joKcwo9diru/aJuHs/lfCQ/WPWYzA+eSCcr+VdcdEruqo0wNnM/97ZEHS4kjTuhUIY6CjU85QE7gdv9GzllSZvO5hoAt2p5ltX4YuUkXyiOwlXR1JFSYhUR98de6PGoYiXpWIdUwdDjLNhotnGycPMTlScIPX7s2bvx2LOHp5YYRc1an+j7ZBCj7V67ekxus+D1KYY6CpPgd6lFOQpJ+mx0TJwA7xquJl9w/+nzT8JFZ+zE3qVR4azDQ48BiRo6eJhyG6Tz2MTnJ2PghR5LLd8chQM4dBRmRVO3sEesuW9ymg9bK27V873W/bmcj+QHHYVkbrAN182gVuq5n9vx8kAIPVz0gmTCCEfhuAx3FCqoqaHJDYWG1NHHCG2bhGdfcBIA4Lx9oZVWX94thk+kjyOBBRGR6FqkE3o8TtVjpg5In+b6sd5rkVdeJI9wb5Zh5nr+7YDVccc2lhK8P0detUIdUrAkWTETv9AYVcyEpM9Go4my8ASciII1wzhhuRrv1u8R4yj00k8IAO8pvQ0fLv8ldlzzD2OdnyRD8RyFKBXrKFQc3qOzomnYeJr6XffNaY/J5Zz26pkAgBNsCoXzBoVCMjdI030AlgoQClFxV19Vi0JhLqSciLnnKIwayAoNSjhMgiEyqWO2XaFQV8eboIzLH/3Ug/COFzwcH3rJo4MfCAEDrlioOJ1M27AdcaSMrjicMPR4lEgwTujx//3kdTjSYHW+NNEbrlDYQhVQpyhYhaJwKtieUGjHOJECf2WhQJExjqGE/eEXE6OKmYx5OJKAdtPn+B5TKExCvJDYHX9JPFG9FgCwcuOHUz8/AUS3Km3OjsKBsTWLmWSClBKG3sHJwsuXf8bj8znxyqkAgN2SefrnDQqFZG6Q3kpZuZq/UNh1UJRMhh7nwogcduM6hoZJDFJRsHbGM0MbKRSmjdVywwUNNdvrt1pS8ZwLTsKOhcHfkCU8oZCOwtRxZIyTSOTrFhJwoNlt/O2HP5vL+bYLupdjtCWyFfrHhkpSKth6VygM3p9l79/+9SuFCBQuCu6fzFHo7zY6CfPBaLnjVzNc2TolnLgpp+gLhV2s6tbznJJ4VNtbBC3nHHocvoQpFGaCbjlYdtyxtFQ0oLqay3lLXrqRMqxeeDuZD6Zo2ZeQyRCWu1JWqeUvFCpelday3RyxJ0mFlB2F3YXuuByFzdN+HJuyhiXhhW0wR2Hq2B13kmJpxQkNhiijLlsQNsNi0kZKRIsHCaseT+o47KLCwefLf4jT7jsM7L8cOOlhib5HhmN5Oew6SgGO/mFIB1wTnxypu2MbWYru35bsP5OlVoOIcxQmJMpRSLJF957BHVFD+jJhfIqXqP61q5NXTieDqLY7hlVKzFE4jzR1C7uFV1SzvgtQ8nn2VesrsKWAKiTQWc89tJ1kB0dPZG7QHFcoLJXzn6honlBYoVCYDyMchaNz5QRRhu2vqFAVBd93zu5vo0sldaQ3SbFL+Vct77XBeyQubdxSWBvmFTf0OMpRmE7V46RocHCacth9cxNdhWlhekKhEVPsIkv8QkNDhiYodH+ng9EVCqMXcr7oXIh3WM/Da4zfhlXdGV/BViaU/eRgjsI4lyJJB8tzFBpKRpN8ET3lFN52f2oKq0ZHYRaoXuixyFkoDF/zky4kkGiauo1dwnUUioU9uZ1351IVm3Dn3u3NI7mdl2QPhUIyF0gpUfaEQrWS/0SlVHcrS1WdVu7n3paMcBSOHXo8bOYiVKiKCExGBSef6aO7kxSnQKFwh+PmWbvwu79fWBvmlQPrnRE5CifLQZj0ig+0obKU8FtkFN0cdlbGqQNGYVVCFZd5r04FYXpjm1Duuu5V2UYVb7X+Dz7hPAECgBDxxUwSnc+3n9PLYce+zBIr8zzBw3MUVkXfyW9VVjNqw/am1Jsn5XufDi/eC4YeZ0JDt7ATXgqsen5i+0JZxSbc+8b6MeYpnCcoFJK5wLRlr9JhEcVMyp5QWJNtWurzIO2qx92JSJRiqLhCoR24XdLZkDqGKzTIcnFCIcmOn3n3N2MqpOY7DFEDQiF/a2nh6NMhFOrl1eAGOldSQbFcoVAkvGZiHUNJF/EichTSUZgtsuPlCdayuS/GSsfeg6EEn3ikMDNWFnQjr9QCIq/8UCjMhoZuYUV4kW21HcN3ThEhBFqKe9/YXKejcJ6gUEjmAt2yURVuAQKtAEdhZXG1/8Zg5ePM8fKapcVQR6GqRQiFJG0U77oRdHnNLZGOIJE0R2E6VY9rwleohr+11JDe9WvH5LDLC6sU6lM6ClNB84RCtZLMbSZiBUGJZAttvhyFvQc0hcIskXo3T3BGCyixAy13bKWhLy5LOV76GDIaKSXK0i00kXfk1WDoMYXCLFhvm1iC5/6uruR6bt27b7Q2juV6XpItnPmSuaBjOqgW6Cis1+vQpbcCqrPy8ayh9KruRSAUL/TYd7vk5DN1NMtdBVWqFG/mlWE5Cu9wTsy5NQA0JtxODa/YhROTwy5L/CLxwPl5r04FrVsEIYGjUAgRnWYASOwoFMxRmDui44YeD4jtqRG9wNuN5PD/ZuSYeabJaAzbQcWbJ2kJBf+0GOhOOgozYb1tYll0hcLlXM9tlNzzWc3juZ6XZAuFQjIX6JaNClynSN5JegFgoaz1ErnCG2yR2WHYmFQoKrSQo5A5CtOn5BUCUmvFCYX/vvISAMDh3Y8qrA3zTLRQ6F58B7ALP6P/Of7TfsKWjr2lyqgsSpQawhxe7CJL/L3olOkozIKS4wqFWjWUozDmsosvViAD+QfjGax6rPB6zRRhenmCs0r/EVf12PsRaRgUh0l6uIaKbuRVwaHHTAmRCettE8vwQo9zdhQamvfs9VIYkPmAQiGZCzqmg0o3EXIBLpGFioaGdAVKh0LhzNGd7ERNeqTQoCiil1AdQMKJDhmHsicUarV8Bzd+jmh7vVfs3yyIdBn50ghcI8/Fbc6+/BpEESk1FLObwy5/odCPpYUmwBSXUqHcEwqDIlLcn3fyZ+SgUMhiJtmiGa5QKLNKyRCjKncdhSr84hGv27TRTRs14eYozDtFkwgLv3QUZsJ628RS11FYyXcs3XUiCwqFcwWFQjIXdMy+oxClIoRCFQ24D16jyZtk0Yw7xFSGWQo9R6HD22WmVLyJaGWhOKGwB+comRApHgwUM4m+Fl0fUsouEwqFqaFaXo7RgosR2RpDj7Og6uU2K9dHh7MJASgTFzOJEgr7rMliBel5pJv+A5WsQhbjhMLBHIUfv/oerLfMyP3J1vCnaMo78io8xK6ZDE/Ngo22ieWCchRaZfd8qsE58DzBmS+ZC3TLwRJcoQEFTFRqJbUXeqw3WBo+C66TZwMAzKVTUz+26OUojK56rIigo5CkT81xBzfFCoXeI5EupEwYlqOwyzAxcJhLaWuhxxSR0qLULXZRLVYotEqh87OPJ8aynb5QmLB/N+sxz2mZ7EoVIxyF3YVZkh6lrtifs1DYRRW+PpcO3vP12zJqx/akY/kNFcWGHp978HOFnn9e2egUl6PQ8e4bXWcymQ8oFJK5wOi0UO2GHtdWcz+/EAKbwrVdmxQKM6EpywCAxhNfn/qxu8PXKGOhUFj1OGss28GCJ/TXChQK+4UWKRRmQbSjMJjgPr5WagZCPUWk1OgWu1ALKUbU/21YdBSmTsu0UfdCFisLo/tXANi/67Exn47vKOwu0vkXGjQwx1naVDyhUK1n9AyOidyQA65y9zfUMXntpknHF3qcd4qmcM8rkm7RLNBNBzvgCXX1XbmeW3oOxpLJ9FvzBGe+ZC6wW245dgcCCCczz4mG6t4kbQqFqWM7Et0JhqZqqR9/aIE9oUJV6CjMkqZu94TC6uJqgS3pOlcoFGaBIiZzFG71szgsm2JDWsTlsMubAaHQYR9PStuwUYfrKCyF+jf22SkELrOeFvHBVoqZuPcIv1CoUihMnYrn6tdqGTmRIgRBoB/R4UeBREnjmCtNOqaDWlGOwlBXCkZtZIJu2dghXME/b6Gw60QuewsOZD6gUEjmAtlaAwC0xAKgFPOzbmnuTdLxREuSHobl9AohlLT0+1fphR5Hfai4QqHk7TIrNtsdLHgr3eUCHYW90HMOYjMhSY7CeEdh+gLuZttI9XjbmW6O0VKBVcsBwA47ZegonJiWYaMO9/4sKsmEYCFicoomvLcKGVUBt//dkicU8k6dHnXHKyiWkaMwMrUL4hZ5JMoqx1xp0jH7C7JIeB2nxWDf88rNAtvsYEl4fZyzUKhV3UU6zenkel6SLbwLk7nAarmJcZtKcZOUjrYKABBtCoVpYzpOz02gKOqIvcdHGbJwLZQSi5lkTHPTl/y4wGIIDD3OllFVj4GthxhvpcfWW/qWzkUGqUmvGFGCYhdZ4qih3HUUCiem2db7qV1Ko4uICOH+N0m6AP83JUOPc6Euu3mCd2RyfBnzc4hzFF51xzHcv97OpC3bEb3TRll4101Wla2TwvtyJpR1dy7sCDX3YialnlDIcdU8wZkvmQushntz1LXiHn56yb0pKxQKU0c6fTeRksAxOq4hrLvaGRlG5RUzsRl6nBltr1K4BRXQKgW2ZNC5QtIjuphJ8LqKC/HPIkfhBoXCVHAciZoXmpokh13a+H8bjhq6f3BCOjF625ecvpw8ZDHyWpZbCD0WXaGw35ddoZBP5XRwHIlFr1pqZTHfHIVRU1EBiW/fcQzPf/c3s2nLNsRqF7cgG+56wftyJlTMNQCAWdkxIqdS+tTqFArnEQqFZC6w22sAAKNUnFDoeA9exWwW1oZ5xZGyJzKIDByFw3MUCmiK6OVJIumjN9YAAC1Rz31wE6Rb9bjAJswpZZi4ULll8IOBvFVbdRSO/70Nhh6nQsvs57ArshgRADgMPU4dvekmp7ehDBRBiA4ndbdO5ML3rfbRUZg9bcPCoheWWsksT3DM7yGqiJzX1/vXGcaYFp2GKxR2RHXAyZ81FPTzQfPmn04Bc+EdK6sAgLKkUDhPcOZL5gKn46542wUKhd2QHMVsFdeGOcXxuRCUBELSuFpT/5gRX1Q0KKx6nCl6y52I6kptxJ4ZI7r/UClMm9dp/xb9QUgoHFY0KO1iJhQK06GlG70co5V6wTkKlbCjkNfypJhtNzm9LioDD1cZd68UMQXAZLIrVWB4jkJNOOCKTnq0muu9YlO1jITCuMXWKLE50n1OJsJouUKhoY5OH5A1dBRmg2K5Yr8s5VvVGgB2rbqLhBVpoGNyIWde4MyXzAWy4woNssD8Zqi4D1/VolCYNo7shx0lcRSOHXosgv8CwH1yF56uvxlCcasss+pxdpg9obDYAWzUhJSkwwvUr0R/IJLlKJQQqQu4jTZXvtOg0+xXOUxa7CIrJHMUpo7Z8YTCsRdyootUJML3EHciHIVR78nW6WyuAQAsqUBkVRE3NvI4OvSYpIvppXgxCxAKB/NQ8r6cBYrtjWm0nKtaA1hadJ/9FWHi0BrnwfMChUIyFyiGN1GpFJdIXSl7QqHN5MtpI32hx1mEpkYd8jrnTNwkT+t9xmIm2WF7uXNMrVihkLVMsiPWRzRQ9Xhr1/dWJpYdw9rSuUiQjif0OxCAVqwr2AnnOKVQODGWF7FhJhQKhYAXejyBUBjYL1ooJOnRaa4BAJoZpv+IKloCZJN/lgxitt37tFXKfzFnMEchr+Us6M0/C3AUCl/+2qPrG7mfn2QDZ75kLhCmKxQq1eLcDIrnpChRKEwdR/pEnIGcZpPTDT2OzLbUEwo5mM2KbuoAq2ChsD+a5SA2NxKGHkukP6F0HIbHpIHhCYUdVCLdQVnjn3M6ajhHIft4UuyOm/fKCLs1hyDEkGImYvT91f/NnqMw9D26ztKj6zZrieycSPGLRVGhx77Qc4pKqaB03EKLdoGGij7s0yxQPUehKBWwYOdbJGy2NofsSGYJCoVkLlAN96ak1YtLpK56peFLTpt5kVLGkRL7xFHvXRaOwv4x32M9CwDwt9bPe2dzP2OOwuxwdFfot0sMPZ5XYieJSrLQY2C4MLAV0cC26TZLA8ObFLQzFBmSwmIm6ePorlBoq4P9G13MxCX6Wk4aeuzvt+hzUChMD7O1BgBoZ5j+I85RKCKrHvexHfZzGiy27gMAGIun5n7ucM8zR2E2qF7FYTFGdfrUUBQYKAEAWg0KhfMCZ75kLtAsdyBbXVgtrA0lz82oQAIWK7WlSe3af8UO4YWXZ+Ao7JUyEQKXWC/EOZ1/wc3yVG+b+xmrHmeH0N1BhVMuthBCv7M5MUmb2L/okNDjPzRfGrk98jBbaBMdhelgeo5gXck/3CmMozL0OG2kl9rFTpj3SsAVEOOLmSS5vw5WPY46D0kH2wtL7WSaJzimH6NqyPkchW/+7I1ZNWhbsVN3hUJ75bTczz0Qeswchalj2Q4q0p17KkU4CgFYXjGxVqtZyPlJ+nDmS2YeKSVKtntTqi8V5ygs1XxhzwZvkmmy8rXX999kEnocfG9B65/O+9fmtCQzFNO9XmS56Gp8dBRmRdKwM/9+4V7YqtswDsdmjsI0sLtVcZXiHYVSKYc2cEI6Md54xo7IP7l7qTywDXAv60lSBYgEQuFp4iAUhpanQjdPsJFh+g8ZM3ZTIouZ9HnfFXdk1KLtxap1CAAgVvMXCgfgECt1OpaDKkwAgFIp5llseouFxubxQs5P0odCIZl5NtoWFuHmBVxY3lFYO2rlMtrSGzRTKEwV4Ri+N6NvW+OOQUSCHIUMPc6OkuW5RYt2FHowpC1/fvkx7uQlPhdo+kK9QxEpFWyvKm7SYhdp4xeSBtxJ7OPJMb0KlhHVcN/3oovwyNN3oKL1n4/d56mUk4Qe+17GPPO/XPn/cInztmTHI8PxXP1ZVsSNCz1WVW1gG5/B6aN5YanVehHjLBF6x/ty2rQMCzXh9rFaLuZZfGjxgQCAPUe+Vcj5Sfpw5ktmniNNHQtw7dalWnGOwnpZRQte2JPJ0vBpEshnkkFFvq6jMPrQ3qSHt8vMUC33ehGV4ooRuQ3oxZmTlBnlLvqzZz8En/idx+ZaAdOx6UZKg26OUSthaGqWDPx6mEZgYrqObycih+wDT1zCx377sXjs2bsC22OrHifuj9GOQgD4SVyZ8HhkGEXmCVY0dWAbhcJ0kVJCdVy3Wa2e/316sOoxhcK0aek2qnBNFSJiUScPDu+4EACw3KALeF7gzJfMPE3dwqLwKg0XKDRUyypa0svRREdhdmQQejzMrdRzFEreLrNC8yqFq5WiQ4+7fcxJSt5oqoKHn7Yj8JcPCwRpFzNxHE5W0qCbw24qhMLwjJQT0olRLPf+rAy5P0e5xZyoKUZCoVDIZEIhSQnDXayTWQoMMWM3VS0N7spncKo0dAtlLyx1oQChkGRPy+gLhSgVlC+46lbU7tYNILMPZ75k5umYTi/0GJXlwtpRL/kchRQKsyPDHIVRjsLupviQSDIpJU8oVKoFC4W9FIWcpKRNch9Rjo5CCoXp4D3vnCkQCgegUDgxXcc3yskWYgW6OQqjSFbM5LS1fugahcLsEWb2QmFcP6paVOhxEFY+noyNTl8oLJXzF5EGqh4z9Dh12mY/9DgqTUQedKOCSjaj6uYFCoVk5mkbZi/0GJXicpzVyxraDD3OnkyEwmGOQvezSHcESYWS416/WrXYHIXdiQzdDFmQbLI/TBRIWzCQrHqcDl2RoSChMJCjMPwh+3hituL4FhAx6TqS3Vt3t273fYNCYdZ0hUJRLsBRqA06CpWQkNQyWHhqEhodC2Xh/g2FVhmxd/qEHccMPU6flmFjAZ5QmHBRJ20Uz1FYtmmWmRc48yUzj9nehCK8wWdBN0cAqJVVNBl6nAPpTxq6YxgRcWw6CrOnIl2hsFy4o7CbjxK47Bt34Np714ttzzbEiSyAkNG5KCKlQt+NVEwCdT8sZpI+Xce3Wo0fX/n/7N0+iHpmii2swVAozB6lmye4nGUxk+jtUcVMfl77Op6sXNN73zJ4r54E3bJ7jkIUIRQOvOdibNo0dRv1rmkmw+t4GKonFFYcmmXmBQqFZOax2xvuv1CAAicqgWImFAqzI0ExEzlm6OhwR6H7L6seZ0dPKKwVW8ykKxRvdkz82X9fj2e/84pC2zNPbCX0eByBYCsTDyElLJtC0qQopiskZepGSgiFwvQpO27/auPkgBbRQqHE+Et9XKTLHtV2n8FqhgJD3P1ciwg9BoDLym/pvW7qdBROgm45KMP7G6rlYhsDML1LBrRNCwvdfP0FmWZKNTcqqOo9M8jsw5kvmXnsjisUdpR6JhVxk1Ivq73QY1unUJgWA6JfiqHHjzpzJwDglx59mnfswX264hEnK9lgOxJVL1yiXCs29LiLadG9kDZJRb88rzNFSBgUCidG9fIRKQW5GPxPiAFXOIXCial4k77SkIWcgaqmiL7mxVb8gQWO67YLvfDyLF39Mf2oJhCumjqfyZOgm06xjsKB+wPvy2kTCD0uqLBnqe46CmuSQuG8EL2MQ8gMYbfdiou6UkeRgYvVUj/02OxsQi2wLfOE5UgEMtikKBR+6CWPxqFNHSevuk7UqGFsP4yK6ypZ0DIs1L3BTbVerKNQCuYozIJxHL4BR+EYYchbchTCgWE5qE+BwWKW0byquKKgquVDpScKhRMhpURVdgABlOvJFnK6Ym1Uv7j3gvGuVYYeZ0+p6xodEl4+KXFpJbTS6KkoF3Qmw7BMlIUntqpFhB6HcxRyjJU2bcNGXRQbelxeWAEA1NF2XaNc5Jl5OPMlM4/j5UcylYLKwXtUNAWdrqOw0yi0LfOEYYUGiCk+eEqq0hMJR0GhMBvaht0TCosOPe5KxRzapE/yyX78fh+3Hw8AOFI/K4UWAQok9PD9hYyN5hUjGqfYRWYMhB5zQjoJuuWg1r0/JxQKAbd4QbQ7ePz+oFCYPWXvGi5l6CiMK1ysReQoHPwur+NJMHW9/0YrfmVMgc17c8o0dbtf2LOg0OOqJxQqkEzBNSdw5ktmHsdwhUJbLVYoFELAVF3RyerwBpkWg0Lh6NvW48/ZDQDQlPEmGOHKbO4299+BHIUshJAKrY6BinBDYkSBxYhc3M5WtpJxn8QiZXJ5wC8uhL/zX85jgZd+Bf9xwWWptEuBhEmnysR0q5YPK3aRFwN3cDoKJ6KpW1jwXCqVoakhxMC7yNBjOb7sR6EweypON09wduk/4kZMJU2FPcI9bsepjCQRltnpvynCURjq3iXrGPD+p+XejnmmZZg+obCYRbtafbF3LTudzULaQNKFocdk5ukKhVbBQiEA2FodsOkoTJOBiXwCofDXH38mdi9W8Oizdk58fiFiwqhsE1AYYD4pnZZvMFF0MQRBR2EWjDPFGy4KCODkC2HecEvUJ7E4UkSKvwokLJsT0EnpupEKr1qOiMUeCoUT0TJs7PAchUkdo8OqHrtXOEOPp41KzzVaQOixKmBBhYrBgiXPVK7EF5xHwqFQOBGW7hcKi3cUAgDuvYrhqSli6B2UuuHlRQmFFQ1NVLGMNvTWOmor+wppB0kPOgrJ7OOtlDlqcRWPu8iSK3TYOoXCtBgIDUwgFJZUBc+/8BScsmM84SkyR6H376Cj0Bzr2CQa3RMKHQhAK1rs9xyFzFGYKlLKLRUzifuOHFtoiEbAoaMwBSpydLGLwpB0fk9CS+/nkB0WzjZQrEDEpevYSugxpypZ0stDCaA2Rnj5uDgxt9qyqsSmdnl3+R14kfpF2AxTnQjLdK9hCxqgTNH1xIWc1LD9Dr6ConPKqoImvMi6Nh2F88AU3S0I2SKeo9ApoJJXGOGt4jisepwa1sDfMt/Vx1h3hE2hMA10bzDRQbX4leWuo5AL3Knili9I9kfdqntomEsp7phu6DEnoJNSlcXmGA1WPQ5/yInoJLTbjb4bdwzHd+w9dCuXG2/ImWJYNmowAACVDB2FcbdaTVVgDSn/9yTlB7H5DUkybMNdzLFEacSe2RB/P+D9OS2kvgEAbgqsgqKdNFVBwxMKzfZGIW0g6UKhkMw8wqu4KLXiHYVKtyQ9k7imht06HtyQYtXjMFGDmW61toEVbwqFqWC23WtFL7gYkR+/6MTcSJMzjhlEJnAUpoUCCSvO5kISYTsSNS8vUqW+XHBrBu/hNnPJToThTw1RihcKo67U9ByF/z97fx4nTXLXd+KfiLyquvs55h6NNKORhMQg0H0hTgECGYTAsLACbIxkfCBWXJIxko2lH7ZY2bv4tmwMGAQ/bMx6eeE1sAabwxgMGAssjLkFAp0z0sw8V3dV5Rn7R0TkVZlVmVVdnRGZ3zevQd39VD8dT2dlZMQnPt/Plzgki7NCDD6oo7Dl667D1is2SpxiRqXHe5Im8jAn5cOUHde7HueQUHhusFDO1Yk7rLN/oYTClByFo4CEQsJ+Yi0UDpxvBsBRGU1MdWIm9idbXK9+4YDugqbFTO4orOXrXD+la3weJGpxEzEThELtKCyuNZWm7o/oUSwsWj6uvKbhD3ZzFGbkKNyTRZRgptxIs+PhS4/rc3iSkFC4DzoaIkTQy6XC0NL1eKcSUnIUHpLlWeH8cQ/YkKhtqvUdvlEoPBNzOrDbE6bKUkNn+H1SBRIKzw9lUEm9YZ/DS6aEwhU5CscACYWE9TipCun1hncU6owmnpCj8LwQi8erXzigo7CJtozCr/uXv3qh4xgr2lEYG9CMiOXNTIpNCQmF+7Oro/Dcfn7L1xkEErq+e7FchQiYbEKwuSvuxVA/R0qS9QYJRHdi1Zitj+NbX4Pme7l/M5PmpijEebFayGu8gn/QkkUhmtdu0lHY/nNPMaeMwj3hsTqQdYYRkaj0+PA4kcr7HiifULNSQiF1PR4HJBQS1sNT6ShkQ3dMBeDO5EbJVeXQxP6Ies7FIR2FG7qZ1MuoPvgYnZadBzrPM+HDC/16Y1t+G5Dj7Lzo38zkvP72TRmFCTlV9mJxVmwG2IbS1MPSfvWTlByF+6AD6cMt83NzM5NzchRe8OHg1AhzofCwOd9td6K3xVFIpcf7w3XlhjvMYQ4JhYfHieV9LIYWCrlcB2TU1HMU0NOXsB5XOQqZAY5CXbbhZauBRzIesnre44U7CpszCt3WZS/RhyyUJdyJARmjGnIUni9C7NbM5LfFgwCAR8X27Lu+LiVAlx7T9d2HcCEPTFJwwISGYrXPYyo93gvdTCzu4yhUV6Gvo/CGewd+MPmshu8gDkm0lBv6iB1YKGwR+zy+vfSYdML9cGPV6GKgslTKKDw8XqKEuWDYrGB9qCQoq38UuEMPgCD2xVWOQm6Eo1BmFPoZ5dedF2sPm0M2M2n6mvpifSH7be73A/iag41lKmTqFDRzDBAKG0qPo4QWsvvSPaGw6kJaiADPXH0v4gMtVajr8f5okWGFAMcmdKel0uNzRajysWRLtlmTEFDP9VV/48a/ZYEmQdKA99WIiZRrNDqwqz9tfD/Ix24qeOtlTuBQ6fGe6EYXmT98PEQFEgrPDTeR+042G/Yax3oeIaFwFJCjkLAeV7n3eHA88EiK0mNPxAB1WzwXzs5qORcDZRTW3REvdX77QscxVlgkFzfZYGWLBfk1FuQoPE+ko7Ar1a7HC8w6CoX9N5KUUbg/WigMjWhG1NDMhEqP9yJV83Pa0/HNWEsn2x0En0N3P586hWv0sI7CTZc+2ZBRyCCo9HhPeKiicoIrg/z89tJjuq7nRZDK+9gZWih0SCgcEyQUEtbjZSEAwAmGFxr8cpg7TZLnwtmtehbgxW4adIOLTaUxxO4ItRE1oWt54SgsIMfZ/gh03+wfonFBW6kjh0BMG9C90M2I+jS7OG/K7y1qZnLO6E6abveDWMbkHFqP68j/vOX7+rc5Ic6DOJRVOemBhcI2c77Ms2xfX3Fk1PV4TxzVzITPhylLbX2qk6PwXIjTDEdCrqWdga6xJlFCIYtpDzwGaOdLWI+vhELXAKFwNpsX5RUkFJ4Li7NaIO4BHYVNS1G9wKHOi4eBq3IJYUB0AGOFf1RDpcd78tgfwv8Pb8K97Fqnl4uao7Aru9ydHBk5CvckUV1x+2TYXSRJEg89BLtRbrNsSwZ0k2OoUfzZovc03fNiW0k7uZL2IgllVY5w/IP+nLY1FGMMyUahUFDp8Z5w1WBR56gbAwmF58IiSnECdY3nw7hGNYk69NfVQoTdUEYhYT2BWAHMjAfgPHBxhhkuYwnENEmeB+nQzUxauh4DgBCiJC4Ru6CFQhO6lmu5qZJRSKWL+/EDXwj/xvs7v/wQZYZtfyNnAgk5Rvdil2YXh6R+rbOYGovtA9MHOV5PRyFrc+G3+wbX/dzVP2lFZABrL10lNpPEFyMUihaxjwFIN5Qecyo93huWSkOFPxtmnUVdjw/LMkpxwqRQOHTpcarybPXanrAbchQSVpOkGQJEAAB/NnxG4ZHvYAlVvkGOwnPBSWsbvUM6ChvWokXX4+pKZyl8hOQ22xtHnXQzf/j7txCpijcC7U/2pIdICHRz7jY7f3fLKIwzuof3IVNCYWJCMyJg7eBGRMuBRjIOHFU+tm1+rgsBDKxR9J/f/KPWe7XNObj18CCj8vJ9SGMpIgnnsKXHWZtQ2CoqS77E+XkSCvdEC4XBQEJhq9hPQuG5sIiS3FHIZsOWHmv3uUNC4SggoZCwmlWSYQ59Uja80HDkO1gIEgrPE3dNKLxgB19L1+MEDhYRuc32RXctdwxoRqTfWuV3GFU8XSzV0uPzoT2jMCNH4Z6IPMPOBEfw+uNBxCQU7oMuWcQOju8m8YeJFK9xfqr1exrvxm3PfBIK9+Jpj/0cAIC5h3UUtk21DC2NbxRP5Q/j7kd/+UCjGj9ZJuBmylAxN2OeziGh8FxYlByFCIZ1FGr3OaequlFAQiFhNas4xZzJB6BngFA4910soEqwKMj1XLhIoVA0bFPaSo+PsMIipPyrffFyoXD46ICmR2JbuRRxGHYtPd7FUcghqKv1nuhmRFnPrrjnOobSx/V3DwmF++GmKiB/y/xc7jbNwFSDiuZ7+Sn84da/pzGjcNsgSSjcnWt/jGfc+lUAAHMvzlEYiiL5apujEACu3PqDg41r7ERphpmqvHL9Yebp1mV7Roft50E5o3BooTA4kj/fSU63vJKwARIKCatZRilmylHIDXAkHXkOFqr0OA1JKDwPvOziSo+byJuZiOrPdZjAakknZvviq+vrGiD0F5A4OBRClB2Fh3UPS6GQrvVemNS1vAGWkFC4D9rxzXse5GzqeryJTemFrZDYsDs3PpB/eGhHIQTwnNV34cWrd+AmivliW0YhAAi6xjsTxhkCJg+1BxMK2/6AHIXnwiJKCkehP+yhu3vlPgDASfQoleSMABIKCasJkxRzdVKGLV35LoK572CpSo+jxa2BRzMOfDGwUMiaMwoBYEXXeG/09fXmBjgK1bVmpcUNLXMull27i+/yXYy6Hu9PrJtdmCEUrjlXqJnJXviZ7qTZf37uey+3HQxszygkEWlnSk1gXHbYp12aCdzACT6C29b/TGxZ15GgtDNhmiKAFAod34ymUzl0Xc+FZZTiBOpZFwybURjc8SSkgsETEXD6kUHHQuwPCYWE1YSrJTymFokGCIWBy/PS43hFtut9yTKBQIS1rx6w9LixmYmkqTQmOrt5sLFMhSAXCoctlwBQCIUleZAORC8WUfn4fO719oxCgZhC8vfCUaWpu2TYHYbqe4YlJBTugxYKvdkWobD0a9/c9Xgzzfc8ZRQejJKy7ojD/h7LpceVK9rhvSKo6dTOREmWC4VsoH1SvclUDi2wzoWzMDGm9Pj2S8f4MO6Qn1z/k0HHQuwPCYWE1URn14tPBj5FAeTDMOLyQRwvSSjcl1VSlJbnXPAJpF7flDcwqSqPTBePXuhYxkacZpgroTAwwVFInDuipwO4kzh4TpsLlxyFe8NVZ0M2oFBYfs/U96O8nnFL9CLI5PPX7X2Qw3YoPW7ulLz9cJDEhp1JivUVx2GdmW1nMtuamQAg59keSKFQVV65wzgKqfT4sMTLW+DaETywUHj1yMfjQo1heX3QsRD7Q0IhYTXp4joA4AxHAN+ccXJRRI58EKcrKkvdl2VUKi3XXHDXYx3SXl7IPg4pSmenJBTuwyJKMWdyo6IDkIdEqGtccRTSJnQvBHO3v6j8+gtsZnKCJRJyFO6Fm+gMOzMyRuvvHhIKdydOMxwpl8q2gxzW8HE913dXtt6hJDbsTkkovEhHYRnZ+GaLo5Cu8c5EaZFRiAM3rOkNXddzIVnK6qYMfPDqOpeXDokExULYDgmFhNUkWijk5riRYkc6KzJqZrI3ZSHp17Kn4/uSV1z4aVnR9bjYCj0qlHt18diFjmVsLKMUR8oxurW07QIoymNKGxrSkfYiYV7l82sPvGLj68tC4aF/9ZfZGXU93hNHCXGOP5xQuElc5mk9uoLoyj4HOZu6Hm/6psZ7ftvhIIkNu1Nq9sMP/HtsFQrRofEN5VDuTBgXXY8HcxS23cJ0754LqRIKQ+fows0UdThjxdxP19d6SCgkrEYsbwAAFgYJhakqPc4iEgr3ZRkXjsI3xl+Db0u+6qA/b5MwUV7IPqaEQr58/KDjGTuLMM6vLxtQaMhh+n+Kd8JHT0lo2IeUVZ3eH3noKze+vou40HSfbvqutj+7QkLh3ngqw84xpGt5PQvLIUfhziyjFMfYPUP2vDIKt7qMaTO6OxfqKGz+OisLC63fTELhrkRpkVE4XOlxW0Yh3bvnQbaSQmHkDL8XruTT0n1rPSQUElYjVP7ByoDJUZO6UigU5Cjcm2VUZBTqbtIXTeEoLAmFuAIAcJbkKNyH5fKsyFUxoBmC3pCWl7Tf8K/fjR/8FQpk3pUYtdJjzvG/x18OAPjRe75u7fWisYhxP3hLN8/LOEOSkmV0H/xseEdw+QrW3zFuRkL/riyiBHP1/N12kFMWaBnr6BJr/pv6fwuJDbtTavbDDywUio2Owm3Xna7xrkRxitnApcfkKDwsIpRRV7E7/IGddBRS6fFYIKGQsBoWSkfhyh0+30yTeWqijkko3JflagVfdbVewh9kDPoktLyQ1UG9bnhtkDGNhXBRyvH0hhcK882uEHgiPopP4v8TAPA3f+y3BxyV3awJhYzju9JX4Xmr78Qv3vGla6/vXa6o/9odCpUvsyWShDqm7oOvu5Yb4yisfs6pI+7OLJfL/PmLno7vTi6x9e9q+fK2Rhck9u9MXAiF+dr1QKRZuetx6eMuZeokKO1MpiqvAACzK8MNpAm6rucCV0JhYoBQ6HBW5NPS9bUeEgoJq8nU5Ji6w4sMGqEEDxYvBh6J/YSrQmxd4fAnoU0n3k1djx8VcrHlk1C4F9FClkusEBjSjKh4JP6X2TfgX/n/O17EfnfA8dhPPaOQqU3/NVxudBlUMwoZXvKU2w86Pi+5edC/f+wEQjrOfAOaEQHrJW7swC6pMbNanBafbBGRWMNnu5Ued/ta9QW0Gd2ZkqPwfS/6Gwf9Ue0Zhds7ZAtqOrUz2UJG5CzZjJqZjBVlTEn94avrOANS/UTI6PraDgmFhNWkkVrkDJS70YgSCjkJhXsTKcdZKhiiujPpgikvUx9TXY9nMQmF+xAv5UY0ZGYtXstuhxfy36fOx3twzbmz8jnjxbKjyUNSzyP72//Ls3HkdxGRd7tGLs3TOxOnGeYqw262pSvuUDgiHnoI1hKqgPwYLuD2c/Qz9O9gLgAI0fQ9lF93MJRQ+K+Sz0B25UkH/VGtWl+HrseMShh3R0XknPLLgw2hvfSY1lbnAY/kXkl4wx/YsUrpMQmFtkNCIWE1WSSD1LlnkFAYyJN3J6EN6L7EylG4RIDzyivbRNOSxVErHNFQejyPrx98TGNGX99INQAaHFb5H/UxLXT2IUFd5CsJhVschUD3u37X2YHTPL0ziyjNM+yCoyEzCqv5eGVcchTuTLzQBzn911eVQPvu39X4VWpmckCUUBjCh8MPuyVszSjsUHos6BrvDF/KA+0zZzihsBW6rueCl8i5WgTDH9jxsvBPAr/1DGvRIYg9yWIlFBrQCEHDlPXbSZcDj8R+klBu4ofIJ/yJr/8UzDwHnK8Lhbr0+Di5fuHjGhNpKBc3pgiFRdlisaHh5CbcC1bfCJRKzJs6IVZLjzc4Ec4Jmqd3ZxmluEN1LR+ymckmyFG4O/FKCYV8jm1Xt3yfNjUA6wRrEQW3zQEkNuxOVBzGuvywk21r12NsFwqD5FQ6R42IKLELZyVLjxcDCoX1bvQ5dO+eC67OxA+GdxQ6nFHX4xFx0OOj//yf/zNe9apX4b777gNjDP/23/7bQ/44YoKIWLoZHN8cR6GjHIUuOVX2JlGOs9VFdTwuLWQfuvcynnbXSemPioXOLUhh2s9IZNiHVG1EE8cMoVBf4xMU9y4JhftRFwoZ2+YorH1/R6/gLs1MAMApZXQR/ViulvBUsws24GHd+8Vd+cf195RDjoadSVeqkybfzVG4S2Oi5rt4WzMTEht25uyjAIDHxCU4BxcK25qZMIgt1/j5j/0Y8F0vO9TQxs1KNjMJ3QGFwrY/oHv3XAhSuVfis+Fdo7zcyIqur/UcVCg8OzvDc57zHLzjHe845I8hpoza5Lm+GUIDAHBl/fYy2oDuSzqgo7C+sClvYJaqsYqPmE7M9iAL5eImcc24f1lDd81dBShCspYtVc4obFAK681MGDts6ICT0oHOrkTL7s0uDskPpK/A9ySfi79127evCcsuyFG4K6man+MOBzn1e7RLg4qmv6XJUUjNTA5HcusjAGSVxMEdhS2WQgYgFR3eKw//j/Md0ETQWdB9O5efN3+U3bv2tZ/8zQ8NMJLx4RkkFDIqPR4VBxUKP/dzPxdve9vb8EVf9EWH/DHEhGFaKJyZU3rszuTD2M+WFNS7J5lqNLC4gI7HACpNK+oaRnkD8+1f+pLiD8iRtDNClT1lpjgKm6reGN3D+7CWLcVKpccNv+8uLqSmaXVXQfd/u/Z/5I4Loh9aKEzAAcfb8urDEcPF25KvxP8Inr/2Zz4Seg7vSKYchYnTb32l7+Bduh5v/htbIKFwZz7y4fcDAB7DlYM7Cr/h5U8HALzy2U+ofH1X9ynRjUQJ/nxAoZAx4Cuiv46/HX9Z5evv/KU/GmhE42Keyb2SOx++9JgzKj0eE0Y1MwnDEDdv3qz8RxCbcDJZeuwFZggNAOCr7o8OMiAJBx6N3WRKSFpdkFBYpu52KguFxyelh3FMQuHOqFyVzDNE6G9QrshRuB91R2F029OKP2t4/UVnFF4Sp8B7fvqwP2Sk5F3LMTv8hepI4zAyamiyCyKSm8+sg+N7zR28g/gjWh2F24RCmqN3xQ9lfp10FB52S/iZD92Dd33ry/EdX/KcytdZy3UnzgftDNYmhiFgYHgYd+A70y+ofJ1Ts7i9EUJgJuRc7c2HdxRWS49pbrYdo4TCt7/97bhy5Ur+3/333z/0kAjDcTIZpO545giFXvlEJ6aytr1QXa2X4uJLj+uUH3fzwEMolIOGrvHu6I3ogGWLVUgoPG/KGYV/K/6zYG6Rd9ZFW2oNQa+/rvfISpDYvxNJqLviXvxBThuNb5c0uvBxjAGhnm1pz/mZMVkAnnUpJy1/H5rLjLeJSILK23ZDCNwG6Rp9XFyC4xxerLvzJFi7R8lReGDUOkubGEyCMqD3J0ozzCHXMP6RAY5CTqXHY8IoofDNb34zbty4kf/3/ve/f+ghEYbjC+nYcwNDHEkA5kFQiEjR6eYXE5uJdUbhBZUeb1izlMO25x7HCuoaU+nxznAtspriKGx4JNL2ZQ+iBR7K3gMA+KroW/Av0s+rdkft4B6i37+5JCt5/0Y7NLs4FE3vqTQhoXAXmFq/CHe3+Xk38acx/2Hjd4iMXEk7Ed6Co6I1buD44BmFZeo/6fzK1Ik6LJEH7t6QjsKWtxY5CvdnEaY4htwLB0dmOArz+5liIazHHXoAZYIgQBCYczJNmI8rIoABbmDORuXId7BAgABxfpJH7IZe4OhmJg/dO9xp2UfFlfzj+XyOJQJcwYIchXvg6M7gA3ZMLdO0mKWF7B787N/KP9SiQVnI2WYW1M1MurCX85MWszuhS9oibo6jv+n9slqtcGzGFGMVXD1/RYdss7VmJuXNYkdE682+zVFI9+9O6G64wkUI7+AZhZvo3/iG6IqbysNsJxiy9LgZchTuzyJOMWdSKHRmw7tGy6XHIkvpsNdyjBIKCaIPQgj4IgYY4JnkKPQdnGGG23CaZ7ARu8FjuVF57lOegL/9Cc/Cy595z0F/3iZHYQgfL1n9E2Tg+OkgwDXhAwyIVwsMF+NvN04qry/3h1/ctEEL2T34w5/NP9SiQdVRuM4gWVUkNOyE7kqfcLMPeKNwBVPCDWxCH+Swngc5TP23i/izS9djQYH5u6GEwps4AsAu1FFYhrGB5v2J4AslFA7oKGy7vBTtsj/LKMEdqvQYBqylOStiJ7I0gbPl9YTZHFQoPD09xXve85788/e+971497vfjdtvvx0PPPDAIX80MQHCJMMMsqTI801yFLpYikA+GCMSCveBKyHJmx/jy148/JzxCG4HIMXgDyuXY0hC4c64Wig0RuhvyigkdiaN8w+1aFD+fTblD4rKx0z+31pjof03Fx+69Gx4N/8Ed7EbJBTuiO5aHhvStZw1Fh4DYURNxXbBVY7CTpvPHTuY1/+S5jubmpkcBC0UCikgXZSjkLHqlWZglFF4QPxspSqvzDsuoYqN/VlEKe7PhcLhrzFjLF/vkdvbfg7q9X7Xu96F5z3veXje854HAHjDG96A5z3veXjLW95yyB9LTIRVnOKI6QDX4XMZNLr0GACVHu+Jo0om2AVl2HXdbvgux0oJhdGScih3xcvk9eXB8AHMAFq6HtNCZ1dEVhIKhSo9LjsKG8WF6rKkc+kx6ycWCO7i17Jn6IH2+l5CooXC1BChEGh+v4QrypHdBS+T65e+BzmMyf/OLXdua0YB3b87sboOALip/LaH7nrcxrm+V4g1AgOy3JuPcKhi4zxYLJYIWCI/MUAodDiDLjgmt7f9HNRR+LKXvQyCTvqIAxEmGU7UKYprQEt4zdx3sBDS4ZhFZ7T82QMTslXaiFW5XbQi1+iuBGoj6g5ZElOmUSgkdkWkcf77KzaCpYzCLWWGAof7/cvSSPW3k9CwE3lXXNccobDpHRORo3AnvDwaYrf5WfRd/TDWXIK6VSek+3cXxK2HwQDcFFJAusiMwqqjcIf3CtGJNBOYq0YX3my4A9n2ZiYCQojG6gKiG9HqVvFJzw71h4Cz0oEvCYXWQzMzYS2rKMExepTGXBBlR2G8vLXl1cQmXOU4M7FkImbyGickFO6Mr6+vAQHMABpXs1QaszuiofSYb3EUrgkFTa9pOH/sXeRYCtym0sXdYEoozAwSCpveU0lEjsJd0PMz7yAw1EV/hv7NTIBmV/+2/DohaDO6C9nv/SQA5M7qi8ooXHuvsB6lxyQK92JVanThzc1bRzMIpBk9f/chWsh9ZgIXcP2BR6ObmajSY7pfrYeEQsJawuUCji43CwwRGgDM3LJQSGWp++DlQtIFlR73EAwiR44pWdE13pVAhWx7czPu3yaHG51z787pohBo8q7HrOwobGJdcDgEDKIQIMhRuBNMNZsSrikZo81EIQmFuxAIeX37OvqZ6la+W0Zh0/dQ6fG5IwTYB98FAPi57LkAAD5UMxP0eK+QKNyLVZzmjkJ/wMqN9q7HGRISCvdCG1JW3IwDu3KUAB3i2A8JhYS1xEsZxJyBGWG31nDOEDE5YZOItDtCCPiZXOAM2q2thUg9lLOQrvEuZJnAXGXn+EdmZBSKxtJjWsTuiisKR2Ha2Mxk29/AOmcUdk8Y1X9zqTyGhIad4KrZhfDM2KAAzRvSlJ7DOzHL9EFOB0dhh7zRXdnaEZccwb1512/+FvjycSSC4/fFky70Z9ffK3VReSU2tIejUsZehEmGuWr6yAeszGkrLeYQJBTuSaIMKZEhQqFDjsJRQUIhYS3J8iYAYIkZMFAIcxuxIzMKkxWVHu9Kkom8ZMK9oNLyPsuVRDkKM7rGOxEmWX59/Q4b0YthfTH7592fxBeyXxhgLPbjotjU5V2PK6XHDRmFtZvwYB4XRhmF+8LzrrjmOAob31OquyvRjxl2c3zLrra7OApbRMEtpwW0Ge3Pt//QTwMAHsbtCDFsuWK5SyoA/KPki9tfTA6lXqyiBEdqnYULagrYBw6BJKX7dx9SZVaIDWkqxstRAiTsW49Z6gpB9CAXCpkZk2MZXZaahZRftytR6ST0okqP+5DocruIrvEuLKIEx2ojGhhSety2If0O959e8EDGgdckFJabmWzJKBRgYKxb8fEuzk8SCvfDVc0uLqorfRea3ivZ6uaFj8N2kjQrSha7OAobvtA3o1Bgt4xCEo/6o+fLRDgAgL/6pz72An/2Opko3ivPe/DO9m8m4aEX4WpRfDLgPN12BzNkiFNyFO6DyIVCM57DldLjLBl4NMS+kFBIWIsWCkNuxuRYJlUnOxmJSDsjhULlKLygkok+FUypLnena7wTyyjGnEkh2DEkY5Q6750vnBU3VNrkKGzselzOMNwqEeT86+Qze42t0mmThMKdcFRXemZgs6kyLKLS476skqw4yNkxGqL73Sthpf/f6+fQ/dsb3aRLAHjwjiN87cs+5kJ/fv0qV2I/uNP+jXStexGVYxcGjIjY1PU4IUfwXgi1B0kNyQpmpe71NDfbDwmFhLWkOsDVMW+Tkk/Y5CjcmSgtSlOdwIwHYBmhhEIW0yZ0F8Jyox9DShf7bmyJ7jSVITY7CqufddVuP4Q78SFxe+fxMACZIEfhPnjKUej45jyDm94vPCRHYV+Wqyg/yPF3cHzLQ4B+82lTRqz8yzZvVWgz2h+uZtoMHDNvgzB3QVSevSQUnht5fh28zb/Xgfgi5xeRkKNwL7Sj0BShEAAEU+81cgBbDwmFhLWkKhvOFLt1mUxN2CJebHkl0Ua59NjEbJVMbY45XeOdCM/k/ZuBAa4Z8QEkE54f9Q7iTY5Cp0EYKGdVSamh+1VZiX5ZW1R6vB9+JoVCbtBBTmPn8ohyZPtSPshhHTKCmxpU7ELTYc1WGYEcSb3Rv2UBhiP/YgWkJud+itIY2IbxkPDQi0SZFVZsNug42p7jn+b8JmLKKNwLFstrLAzaJxXNTOh+tR0SCgl7US6B2EBHoZ6wSUTanbBUegz3ohY53U82mXIUOgld412IlCM4RGBMMyIqPT4/wri6QNQCAC/9jjnfLAowiMOpt5VmJuRo2AVP6GgIM6IDgGaByiGhsDd6fs7ALrBksS1pdEszExL6e8OZ/J1lYJhfsFDYREUg3uQgpTzKXqRKKIxYMOxANtzC1PV4P/Q+U1c5mYB2h9PcbD9m7M4IYge03ToxaHLM8bVQSKXHuxLFKWYslp8MmK3SBlObYzeha7wLsXKsDH3SXYZKj8+PSog6AEdlYm1zFJZhLaXH57GtYEJQRuGeBJnMsHNnBj6DS/gxdT3ui56flwg62QPrTYp2nUmbHYVb/jZyFPaGlUqP5557wT97nc4ZheRQ6kWqnsMxN2edVYcchfuRmxU6OL8vCgEqPR4LJBQS1sJUgGvmmTM55uiy1GQ58EDsJY7D4hOnX0nhrvQxFnElFHopOQp3IVEh25FBC9g+Za7EZqJlNRcuFwpLv2PXafp9s8pHBzMUlhyFglwqOxEox7c3M+QZ3PJmmUXXLnYcIyB3fO94kKPd2d8c/6U+39WYZbp1EiChvzc6o1CA4dLsYoVCqJ9c/awUObFJmKa5uhdZqO7jgZs+brqklFG4H24i19LMIGd/UXpMc7PtkFBIWIvuZJgZ6CjUIpJDItLOxNHFC4UPPeFy59fymewEqQP9iX7o7ByThEI0lMISu5Gsqk5bF3KDVzGONOwe1roeH6wcvCRK0GJ2J2ZCOgr9I0OewaJ5Q3qUkFDYl3Sls836u/nL9+x7s3t7fGM1o7TyBxug8rb+6K7HGRhOggt2FDZczrR83TeVHpNDqR9aKBw4omnTHUylx/sRaKFw3n3/cnB0nBAJ+9YzxDESQZwL+hQFBp2iaHggH8okIu1OEq2KT9yLyVd5yp3H+JHXfRLuPNkuTLpzKRQGGV3jXchyodCcsnJyFJ4fybKaC/c+cTeA6obBadgPJqUNozjwFclPvQUVnfcly0TebMo3xVGIZjfSSXL94gdiOYlqFtf1IOd8mpmwljJjKj0+b8qOwpNBHIVVytedl4TCG87tuJI+XnohXes+6EZOkTuwULhhQkjL1UNEb2apXEvz+ZWBR1KQH/iQsG89wz8dCGJHXJ3/518adiANOHlZKolIu5LGUihMweFsyqw5Z17w5Ns6vc6by2sciKWsWaZGGL3IdMaoY45QSHLR+aEdhTdxjK88egfOVkp83+IovI5L+JH0U8Ah8Dguy9vqAJeFobjeVHrcn1UU4UhlyAZHhgiFLdl4R9kpkESAezHO9DGgD3LCPQ9y+t66zaXH2xyFdP/2R2cUXryjsAlRcRQW1zurd0AmobAXTK2z4oGFwk1kEe2T9mGeybnanV8ddiAlBOOAILf3GBj+6UAQO+IoEY4b5GbQ6HB3X4TyROUCha6xkKjS4wQeTPzt+cpRyCGAeJk3sCG6IdRGNHUN+r2R2HtuaEfSo+x23OS3AZDXu5JR2FLq/cb4a/OPD+cpFKWux7SY7ctycQp9587m5hzWtd7C4S3AveNCx2Iz+UFOR6Gw/HvfR9tvKj3eeoBD929vdKPjbICMwiZ3WVb6GuO89PXa2Mih1Asey+dw4g67T9p0B4t4teFPiW0ciTOAAd6xOY5CQY7C0UAZhYS1aLeeE5h3UuaVN04x5RTuQqLKEWLmDTySZvzyNVZ5mUR3hLovUoMchYdrnTE9dLOakM1ruYTFx06DUFgXDxu7Hp9DpBFjFLi9D5HqipsJBu6bdA9XiYVSRFIqb+uDUM3i4h3nZ33fsl49yluamVBG4bkTqHlWgA/iKKxf0bZmJuuOQhIe+uDEcp5OB276uPEMlpo+7owQAieQa2nv+OqwgykhGHU9HgskFBLW4mbyFMo10FEYzI6RCfVkjEgo3IVMlx7XT5QHor7QOQo8nAmVnUhCYW+KruXkKBwjsRKSYmde2RSWN4FNzpLmTsjd6Fs6XnQ9JqGhL+FCXt8V8426b+oO1BDqoCkh10ofhFq3JJ0d3+X7uumrHX/uLl2PSejvjdYGMzAcG1B6XHaSsk0VOCQ89MKNddNH8/ZJGhGTULgrqzjDJSUUBie3DzyaEozWVmOBhELCWnwlFHoz8xyF88DFAkpEis82v5hoJI1lUH7CzMyVOvIdnEG5LUISCvvCErm4EQYJhQbpHdajS48TZ17JIiz/ipsyCr1ah5NDXRNWbpxAi9nexMoxuoI5Xctf8OTb1t4vkU7YSchR2Aem1i2Zu6tbdIcbl7HigLUElR6fP/dflfdtBobnP9Atl/mQVJuZND8v5AtJKOyDl8j7WPhDlx5vuIfpEGdnFmGEE0ihdXYy/H2syR2FNDdbDwmFhLUEQj5cfIPykTRHvoOlFgojEgp3IVOnjCk3s/R47jtYCXKr7AqPtVBoktBPj8TzQjczSd2j6savpQxZ800vf0bl86YNhuhVzthO7igkR1JvkqUuLb+YjvSb+Jk3fjq+9ZUfh2/4rKevvVtCqIMmEgp7oYXCXTJkGVhResz63atNGYVb52XajPbGVb/SB+84wV2Xhr+HBWtuZrL+QrrWffBVR9xs4KaPmy4po4zCnVme3gRXc6xDXY+JA0C7IsJaAiEX/r6BjsIj38GZUE4LKj3eiUxlFGaGZhQe+S5WahOaUte23jgql4b5Jt2/ZCk8L3QzhMw7qpUiNjtHNK/95AfxjS9/evH6HpfkFrqLGgwiX8z67/rnQBp3/0EEEt0Vlw3vKHzaXSf4C5/6VMw8Z+0WDvPDHBIK++D0PMip3OM7TqOiNaNw2zeSeNQb9TurCHQDUs4o5KXSY47ataVDnV74iXwO89nlgUfSjrd4eOghWEt4dh0AEMMF3OGfxZp8XsmSYQdC7I0ZTwiC6IkQAjPIhX9wbF72xtxzC0chlR7vRJbI0mNTHYVHvpMLheGKrnFf3FQLheaUHpNOeH7ortbCO65mEZYdhQ2WQsYYnnbXSeXlXS/LN8Vfi9/IntrtxQxVUeJ3/l3Hn0IAhVAYcXM2J01QRuFucN1gYIeDnF27HjM0lxmLLcoj5WDtgO4INVDeRr3JTVYSLKulxzVHKpUe9yLIpODvHpkrFF659j+HHoK1RGfXAACnODIqO+cal2XQ3tmHBx4JsS8kFBJWsopSHCmhcH5kZunxgkqP90IoB0jKzcgorD+CA5fnm9B4Sa7RvmihkAfmCP1NzTWIHVHzHvOPKyXG20qP6/S5Ju8VT8AXRm+rfO1/ft6PNv+9QlRFCXUwQXQjVUJhbJhQ2NbMRJBQ2Au3Z4Ysq33icrm9yCsrOiAYayk9pozC84Zpp95AjsI3xq8DAPz7J3wtgJpAXHYU1q8tlTL2YpbJedo5GrYsddNjfH72/osbyMhIlKNwwQ06cAfwQedJAIDZzffSPWs5JBQSVrJYnuW5DDNDhUK9QBYkFO5EpoRCYaijkDGGWOVzRSGVHvfFy+TvzDGpazkJheeGblYjhcKWoPouQuEeY7jx7D+Pszuf0/IXM2SinItFy6E+ZCpSI+XD55uVWW9mIp8fCcVD9MLRju9gF0chg6NOAX5TPAXfl7wC/zT5gg7fByo9viCYLj0eaBv4U9mL8NDq+/Bf7vmKtXFUDehVkUFQKWMv5spR6A8sFG6CkZC0M8niOgBgyQ1aRwN4hN+NWDjgaQicPjL0cIg9oJUxYSWrs1v5x84OC9lDMy81M9Gh70Q/hHL4ZI4ZjsImEuV2jENyFPYlUEKha9T9S0LheaEdSTyoOQpLr2nKKDxPmBCtjsQ1UaLkYiG2I5RQmOzcFfcwrDUzURmF8YochX3QBzlsx2ZTnqOvBMO3JV+F70k+r9P3NQqF20qPKbeuN3lJ74CHYysEuQO4XF7ONzgKM7rW3ckyHKuOuMHxwI7CTWsrEn93Jl3eAACE3KR1NADuytxEAEipWsNmSCgkrGS1kELhCr6RG7wj381Lj+MVCYW7wNTDRRhSetxEotw0CQmFvQkyuXH35uachFLp8fmRZ1AGJ5Xfa7X0uPn3XU6lanrJFzznPgDA0+/e9t7Z3HG1Uu5G174XWihMHcOEwtp1jFQzrJgchb3w036O73ozE9epbi+69D4WYM0ZhVR6fO5oR+HQTmr9vimXnFcc6LVmJllKolJnSvno85Orw40DW7oeC7qmuyJCuReOHLOEQl7OgKb52WpIKCSsJDp9HABwCrMmR43DGULI0uOEhMKdmIePAgAi34ySiSYRKVX5XFTW1p8AUih0Depavi00n+iOnxaOwj5dj+s03Xcff98V/PKbPxM//vWfsuW7xcYNSlUopOVQH0Qs79/MoE6LTSRMHjTRHN0PP4+G2K2ZiVsLIN0q9kG7fCmj8CIQAzcz0eifXu6+zMof166toDLVzmgRKRUM8yNz1llr0P27Ozor2DUro5CzUgd70eWYiDAVWhkTVpIspN16aViAa5nYkW6zlDYoO3H7SgYcnx4/eeCRtJPRNd6ZuZAZlL5R3fhIKDwvPOUY5bOT1lzCtmYmosPC8glX5gjczW5ytvHvqTUzYeY5040mlnOeMM1RWPtcN8NKKEe2FzOhD3K6OQrLtxpjDK7TXygU9U7kxV+45WeT0NAXXXo8VEZhPg51bSvj4CV3YS2jMEtJKOzKaiFNCgvMcDIzM+sbABiVHu+MiM109nNWcofT/Gw1JBQSVpKqANeFYQGuZTK1QUnjcOCR2Mnt0QcBAIsTM4TCpq1K5kqhMCOhsBdpJnCkHIW+Lc1M6FS0F4HQGZQnrYLgwUu9NyxQ136ygREWJsPzrrhmbVDqb6mEnsM7EeRCYf9mcdJR2L/0GGgWCreJjHXXGdEBoQQ3Q5zUldJj3u4oTKn0uDNLJRSu4GG25VBtUASJv7vClFCYdexOf1FwDqT6nqb52WrMeEIQRE+y5XUAwMoxSGSooYXCLKYQ9V2Yp7JsIpnfOfBINuCoztYxCYV9CKMIAYsBAMGxOV3LNwZuk1DYC51B6c4vVX6vZSHHaVMQz43NEgMr518ZsmG2BZ6oOc80obB2xXVXZjrM6YEQmOuDnB0zZD1nl3ubNTrcth0oiEy542iO7kzRzMSMeS9vfADAKQuFtYxCQUJhZ+KVFJFCBOAHf9ZuxnM4vvC59+G+K+tRFdT1eHf0gV1mWFMxz+GF+E9CodWY8YQgiJ6Iler05JojMtTRZamChMKdcIUUkrhrbjMT4WqhkK5xH3RJDADM5ibdw5sW07QJ7cO85Bhtzyhs/t76fn9X5+G20mNevqaGbJhtgaXSoccMEwrrtzAd2O1AEsJRAo3XMRqi3oBo/RCg2z3c7Cjc9sNT3FjG+LT/8+fw//t3v9Xp50ydfG40pJlJzLzS19odhRmVqXZGN1IMWTDwSCT/8Mueh+997YvWvs7IUbgzPNbOfrMyKH2HV0qPf+P91/F1P/Tf8YFr1PjRNmhlTFiJFgpjg4VCqLJUkVDJ0y44mex6zD0zwvIbtQo9NtqE9iJcSrdoJhi4b47QwDadupNbpRdzVbroHVUzCsu/4ovI0d/0M6pCocGlWQbi6K7WhpU81RHK9U1CYQ+iolvqLgc5DAzeWtfjLjc7a84o3LZVERl+5Nc+gPc/vsQ7f+mPuw5z0tSdekOhD46SkqOwfDDE681MyFHYmUQ7Cg0RCtsgoXB3HO3s9816DgeeU+l6/IXv+C/4sd/4EL7ph9896LiI/pBQSFgJD+VJWWrYKUoZQY7CvfCUo9DxzV3kMC0UpnSN+xAtpFC4YLPBuy6W2TgSKp/ojEhCeEwu/oP5paqjsNLYpPk3LnZwbzb/VZuvGWfl0mNz3oc24Ko5jxm2QalfRqEc6SKhObor8UrOz6HwMAu6NUGonKOw9a7HXWlsrrHt3hSbu5sTDagLJgx0FPINzUwEOQo7k0RSKIwNEgqb4l2o9Hh39IEdDDuw81tKj//4MXIU2gYJhYSdxPLEO/PMzSiEo0pmU3IU7oIuPXYMcRQ2wVXZHaNNaC9i5ShcwZwFLLB5P5plJBR2JVoWpeXB8aVq1+PS6/g57u6dhr9rc+lxKaeL6I0WCp3AHEcwsC72Fwd29Bzuir5/zxBg5vV32jaVHne611ibo3AzQmRwHdrO9EM9z4YWCtX/pqzkKOTtY8rIUdiZNFRCITdnDd30yCdH4e54qRLefLP2woHLK45Cza4HSMRw0JOVsBJHCYXwzXUUQuXXgUqPe3N9EcFRQuG9t18ZeDTt6LJZTkJhLxKVnbNi5ixgt/Fj/+ODQw/BGsKFnJ9j4WAWzGuOwuLjJnEP2K3Ku7kxisAmn6hTdhxSaXkvXCGfa25glpNhzaWqIkDoOdwd7fheYobA7b9NYGhyC3e7v5pKlLuULXu0Ae1Fnv1nSDZrgmZHYR0qPe5OZqJQ2PQ1Egp3xsuko9AJzNoLB241o1BTj6QgzIeuGGElutMTDJscKygnHCNHYW/+4JFb8CEXhA/efdvAo2mHKTFY5ykS3UhWUkiKDBMKN3U9/oXf/+gFjsRuIi0Ew4fnsKqjsCWvcF8ahcIN5eKs3syE3IW98DP5XHMMO6xbexfoAzt6DncmVo7CJWY9Ggltc+92/Vt2EAqFqDgKqfvxdrTDUwxcs61/fFJ2FG4QL6n0uDuZanShO7+bQNPbjZNQuDOecvZzw/bCvsuRCS0UFvOx69CBjm2QUEhYiauEQh6YZbcu4ygnA0tJROpLEkfgTD1cnG4ZSYemUURSpcduRpvQPqS6Gx83rGxxwxqGylS7Ey61UBiAMdYqCLZmFO7iKGz6u7Zkl1WEQsqg7IWvmtW4c7M2KHWYfg6T67szicooXO2YbdZ0X3ebPxlEU1OhrWKWgFfagMYpzdXbKGIZhs4oXG9mwjecIJGjsDsikm6zxDHpQLYpIoSEwl0JhI4AMes57LvNGYVUemwfJBQSVuIqu7XRQqEuSyUnQ2+Scp6Ua85paB3dkZkchf1IQ1Wa6pglFG6C1jfdiZfy+upui21ZhG2/0/o2v4vpxWk4qd7W2bPy5yQU9sIXcs7zjCs9rn2u5mh6Dncn1gc5rPv8XBb3m27XG+i2kW3OKNw8AQgh4JbKVcOEhIftyAvW3TF6GPRPT8rNTDaIyuQo7I7QjkLXHKGQMgrPFy0UejOz9sKymQmVHo8BumKElfgqwNWdXRp4JO34Myo93pVKh0rHXKGQKUehJ+ga90FEciMaG+Yo3AQ5CrsTh1WhsG0vusk50pdmR+Hm76k6Cun69mGm5jx/btYGpe781s2wGB3mdCYNlRNpx5LF5luR4zXRN2/8PsFYS5nxdkdhef8ZJiT6b0NnFA7d9Vhf2riUUeiIdjFQpCQqdSaW97EwyFHYdCdT6fHuBLmz36zncOA1ZxRS0yn7oCtGWEmgHIWeYZNjmWAmT9A5lR73Jo3l7ywFBxx3y6uHg/tyAeZR6XEvRCSFpMQwR+EmdwXfoRvnVKlnULb9XlsdhTuIds0/Y1O6GaPS410RAjMooXBmVslT/W2gG045dGDXmTSSB7F9hMKqo7D5rkuxvYNyo6Nwq04okJV+PgmF22HGdD1WpceljEIH7cKRyOKDj2ks6LiFzDVnndUcS0BC4U6kCQLI+8G0vbDvOFR6PBJIKCSsxFS7dZnZjPLrdkWo0uNyJ7zBaQphzh2FJAb3ItIlMeYsYLfBGDnOupIqITjmuvS4+XXHwfkdAjT/jE3XTIBT6fFOxNEKjrofZoZnFHIVXUHxEN1JVbZZfI6OQqBL92LZYqj/9wFpSSkMYxIetqKV3aGFQnVps1I2Jd/gKASVHneGqSx3Yfg6ixyFOxKf5R8Gc7Oq62RGYYOjkIRC6yChkLCSuZALWf/o8sAjaWd2cgVA4X4kuiMSJRQyg4TCBnQOpU9CYT/y7BzD8s02/Nmm3CSiShYqR5Iqeao7jP7a5z2Er/6Up+Che5vn711+0+UcxO9LXgEAuPXib9zoEmXkKNyJ1bK0QTky97AOANxAOQpJKOyMUCWL2TlnmzXnD9Zfs74t2dSNHgAgMmQlSyM5CrdjiqMwpzRPc5HgL0ffiJXw8J+f93crL6NmJt3hOsLHM0cobAwWoGfvbugDd8EQzMxaSwdloTBLwZHh6ewD8EgotA5DnhAE0YMsxQxy0R8cmywUXgUABAiBlMol+pDlQqG5ZcdAUdbmIaKMsx5wJRRmnlmLm41dj8lR2JlUC4VcNZKorTT+0qc9DX/j8595rj+zvP78tuSr8PTVDyC58+Pav0EIOJVmJ3R9uxIpoTARHIFvVoZs/R7WhzkOHeZ0JlOOwox3FwpFh/tnZ0fhloYbQoiqo5CEwq3kXY8NaWZShosUP5W9GM8Mvw8fuPdzqn9IjsLO8NRAobCpMocchTuhmwIuMMPMN2uv5Lu8mMtFhre734P/GPxVfN7iR4cdGNEbEgoJ+4gKN8Ps2Cy7dZmjS1eLT8Jbg43DSixxFLq6szUEQFmUneF5SYxhQuGGP+OkI3Um77bobM4obP8L+v/M+s+I4W68ngw1l+jDv9n/h06UaCmbEa0QgNVV4IGpu888fZhDjsLu7Oko3L30eLeux6gLhVR63AH9+zKj9Lh8zuoo4SgDX3svkaOwO07uKDRnndXkDt6USUm0Ey3lvnKJADPPrOdwteuxwKvd/wQA+OLr7xxsTMRumPXOIogO6MkxERxHBucjzWczLIRyW4Q3hx2MbcS666I/8EA24wSlk9qYSsy74iihEL45C9htcHIUdkYoR5LOoNzXs9Ll+9v0qs1iYcl59At/F0hITOpCuNJdrc2bn+vCgjdTDafIUdgdJTCIHkJhl2YmQmy5k1lLF96tBw2iUnocpeQo3EZe7jm4o3D952/OKCRRqStuJu9jXfliAk1vN0aOwp3Qe+GFCDBztzeKukg4Z7IZJVCJdfEFZfbbBgmFhHWszqTotsAMR+cYhn/ecMZwCvWAJkdhL2aLDwEArrt3DzySgqbltOfNkOnNT0IPwK44iRJVDTrpBjY736j0uAdxNUSd99yMdiljrNP0Mzb+WNaQO5mQ2N+FWAuFMKvsGFifp3NHIWKKh+iKug/6CIVl2h2F22lyFG5zIsrS49LfQZd5K/ncZ0gzk/Ktmd398e3fQKXHnSmEQrPWWXUcZDQ370Du7GcBuGHZfw4vzdsloZCyvu2DhELCOsJFIRR6jrlvYYcz3BJKKFyRo7APJ2d/AgB4NHjSwCPZjO85WEG5akhk6Iybyt8VC8xqhLBJWDJsHWY0LNGli6rZj9tvnt5lz9AmRm68pvVFK4WqdyJRQmG0Y1fci8RTIe8OMhIZOpI3QdizW2p9zuzWzKTJcrT5+xgE0tKkIUh02IpxzUwAfGb4HXhN9M1In/D8/Gv1Ky/IUdgZL5OH1yYJha23Mj17e6Ofwyt2vk2nzgPOWD6XC3KMWo05TwiC6Ei4ULkMBk6OZRzGcIschTtxvPggAOBx/76BR7IZ3+EIoXIUyVHYGV91Ame+udEBdchQ2B2WO5Lk/PdXPudj8eQ7jvDmz33ocD+zr5ArBL43/dzq1zLarHQhUc1qYmaeUFh3BfuzkthFc3QntFDI/T7NTAr0FXBqSmG3Zib9MwqFALKSjZCm6g4IM4TC8pX9I3Ef/lP2vMr7Zm1eJ7G/M55yFLqBSUJhy71M17U3yUo6CkNmTmm5RgqFcm5JKArCakgoJKwjVrkMoeFCIecy7B1AXopHdMNRjrPYNcdx1rS+8VxeOAopo7AznhIK3ZlZQiED8L3Jn2r8s8vpoxc7GIvhSihkqrT83isz/Pw3fwb+8qc/rdP377LRbyw93iIw/K54AH+SleINMupO34VcKOzRFfeiqF9x7pbETBIKO6G7pbIdu6VqMaB+/3VpZtLY9Xjr92WVjEJSCrfDDCk9blpY1QXmCiQodUbnwRklFLb9AV3X3mRKKIwMfA47vHAUZtSAyGpIKCSsQ+cyhNy8U5QyDmdIxXqYK7EdJ5ULnMwxz7FSxnc4QiEdhYKEws4E6qTbMaz0GIzhbyZ/Dkux3qTh9b/32gEGZCe62yK7wBD1tr3lNrHwDKUxpiQUdiHLhULz5ue67uA4LmKhgt51SS2xEf38ZT1KFqvNTNT/9m52ziAaux1063r88eyP8ZXOf4Cg9dZWmL5ggzczWaect7Y2f1PpcWdyodCgA9nWtxtd195kkSw9jg3cC3NWHPBkFAVhNSQUEtaRraSjMDJwcizjsOauT8R2uNqoCIOEwibBwXcKR2Ea0ya0K4FQJTEzw4RCRRfnC9GOox1JF5iNtE0QXH+9qPwvAHI1dCSLpFCYOuY9gxlj+JC4HQAQ+1fAOSvFQ9Ac3QVHH+T0KD0uo8WAssv3z7zkARyx7Y7O5hzD7UKhE9/ETwR/DX/LeycuP/rfe4x2mpjiKGwSjiru8Nqfs00dkYmCLIUP+bvyDBIKW6Fnb2+yUAmFBj6HOWPIlFFGZGnj4TthByQUEtaRhtJRGDvm2OmbcHiRtyPoIdgLnkUAzBIKm/BdjpXahOpyPGI7uVA4N0soJHnwfHBVaflFhqi3GZHaDTP6D0go7EsWa6HQzPn5z0Z/Df8ufSl+/eU/BIeVhMI0GnZgluCqJgjOjvevLj0uu3zvOPZxGWfbvhECTtMfbPw2AeDqrT/MP3dX1zqOdLqY0syk6YDH2eRyJOdZN0oVLiYJha0HenRde6MdhSYe2JWbmSDLsAQJhbZCQiFhHSI/RTFfKNSOwiylh2Af9EZFuOZsRJ9y5/piy3MYQu0ojKj0uBNpnJ90+7NLAw+mysBVWKPBVY5gJ9htg7JLpcpz77+608/iJBT2R21CTdygALIpwtfHX4fFlafDIUdhb3S3VKdHtploCAasOsMYrmH7fN/k5t4+HQiIciMi6rK5FdMcheVO1bw0pPq7gdEc3Y2SUBjMzNkr1ddYqZBfCGM6xOmNFgr37E5/CMoZhUJk+T6JsA8SCgnrYLF0FCaGblI0vCwU0uKmF46BjsLv/LMvwCuf/QT8u9d/cv41t9T1mITCjkSFq8Q7Ms1RSErheeALnUF5PhuU1k6JAH7yGz8Vf+Pzn4mv+qQH17+v7w+ijMJuxNWu1ibDOUMkqDN9Hzwhn7/envdvvYL0l7NnbvuOxozCTfc/AEAIZOV4F2pKtBWWdz0275nX1Jgqh0TgbijX91L4mAfewIMpqF/ZRDmIX/3PfvHiB2M72tnvmSMEa3iloo6it2zGHXoABNEXroSGxDVvcizjlNrD00TZDyd3FJrTzeuBO47wjq94/trXY3IU9kMtbhLBMZ+ZLzQQ/fEz3W1xR0dhzUMkNlgMH7r3Mh669zLe85HTnX5WNaOQBIYusFwoNGd+bsNhDKfkKOxF0S21x/zccItWmlIwAGD46dnn4OWr/9D612RN/oVtrjchkJXWWIwE/3Ye+0Pgj34uF4MHdxRu+VpdJGZUotqJLFqCA1jBx8w1yBNUdxTCAZDg0Vu0fu5L8Rw2by/MGXKjjCBx32pIKCSsgyVKaDBwcixTaQ9Pi5vOZJlAHC4BZpajsI1Idf7MSCjsRBaegQNYYIaZ15RHNRx6T8I6FLsR7WihwZ9fXOlxf2OMbmZSgubpTrBEzXWe2UI/gyxjLEqPyVHYhQBSRPL3zDYr31tRIoW8xdktNMYQKnYuPS6XrgoSClv5x/Kw8wv050MLhY3Zsu2TOaNr24lwdYo5gCV8XPXNWWfVqza0mOSAnr194WovLDxzMig1DmOIyVE4Cgw6ZiCIbjjKkZQZLhTyUtdjQRmFnbm2iPIMu0cs6A+SMOkozCJyq3QhXMqu5Uv4mBu0gAWomcl5EWA/R2GdraWHaClX29jMRH0fSotYciJ1gmtnnuFCISA3LJESCgU5CreTJnDVpn1fobB8T15byHtrhg1ZZIw1CoVdSo9FxVFIUS9d6TK3XvTP3zgiEh06Ea9k5dVSBJi55qyz1jIK1R7JJaGwN64SCtkFNo3rCmPVjEI6fLcXEgqHJImA1c1K6CyxHSfRQqF5pyhlpKNQlx7TwrUraSYQQG4q3vOY+Rv3lMlNaJZQGHMX4qWZC9gyTZtVoiNZlosB/o4ZlLssKc/lilHpcSd4qh2F5m1Q6lBTsZ4k59cEoSwCrWL5u39cbG5oItj6M2HbfCxQzShkdB93Z2BHoaY859ezLasvJKGwC9FK7pMi5lciAIamLaOQk5DUG70Xhm/eXtjhDEJLTCTuW40ZT4ip8iv/FPjb9wPffi8Q3hp6NNbgpkooNHyTwhlKpcc0UXYlTrO89OlVL3zKwKPZTspVMxMSCjsRhfL+DQ1bwAJG5rrbR0lomO1YevySp9ze+3uaHIW9m9PQgU4nHNXVmvvmOwo5Z0iE3Ixm5DTbTly4LoMe92/TNr88vS8jKRR+R/Jq/Hz2XPzF6A0N31G4UKpf3nwfM1Etb6POuD0wRCgsUxaY65eeUd5ZJ7SjMGRmxffUHaTaTPGv/LcBZ48OMSRrcdWBHTdSKCz2v4IiXazGvCfEVPmJNw49AmtwU0vykSrNTGii7EoSR3CY3Ha84jlPHng028k4BeX3QS9gI1WybRLU9Xh/0rDIC5jNd3MUPuOeS/h/v/5T8a5vfXnn72nTErZd00pJDAlJnXAzOdfxc+pqfUicSgQIXd9txKGcn1fCw9zv3i21qeFQWbxfKEfho7iCr06+Bf8xe2HL39Rf8Bciq/x8yrHrgYEZhWU+5u7aM4QchZ1IQ73OMksorJOoufkudhP42bcNPBq78Ax+DlPp8XigZiZDUn5C/t6/H24clqHdDHDNFgqBooyGSo+7k5Sy/pgFXTW1UEilx92IQyn0xyYuYEkn3JtweYojSKFh1kNoqPPM+y7nH3e5LH3doHrhyqnrcW+8VM7RjoHZSGUYY3A4y8vbMrq+WwlXC3hQ3VK9/USkqqOwWAOlrd2KWGPX4+1REAJCUNfjnRhaKGy5tr/0ps/EaZjgyrz6DCFHYTcSdWCXcLPWWfWrXbnfVzcudCy242dyLe3OdjuQPSTlAzoqPbYbchQOSmnKpIVNZ9xMCoXMgrKnjJqZ9CYrZ3Za0PU448oZl5JQ2IU0kgvY2LAFLHE+hMtTAMASAQL3fJYYXc6iG0uPOzQzqUAHOp3whBIKDXQylBFCVJqKZQld321EKkN2Bb/X/dt0j5bLDE/DYg2kdcJHxeX6tyBruGFFvVxR1F4jgCwrOwrpOneFDS0UqktZ147vuzrHM+65tCYskVDYjSzU6yyzDtvrt7eOhQAAcPIu9cFXjkJnz6ZTh4CXGlMJumethoTCISnPmCQydEYLhdzw0mMAEGoRJqhcojO6e3AEF+DmT1GC646adA93IVWOQtNOugEyFJ4HWihc4WIzKHvnS6qdKZUe98fLzrer9SGRzUyUs5+u71Z0E4QQ/t4dccvfvojWf/efGv4DvD76uvzzuv5X+psqn62LklnVUUjO0e4M3fVY/a9oOQ5aew+2ulGJMmnuKDRMKATDH2f35J+nZRmCm9nczkjSBL5q+ujNNjeIGgLOS0YZQe0Bbcb8XfioKd06pLh3xhP2BKkLyijsTRpJISmCeRl2TQhHlcaQ2N8JfX2NFAqpm8neJAcIUe9yVZochV2g0uP+BOoZ7BnoZKjDWZGDtQhpjt5GHOpuqfvfv+V78sUPrjcoWmKG94u7Kl/LsF0sWNt2ClFpZsLpPu6OIY7Crn9OjsJuiFjex6ljllAIBrw2/qv4qfSF+FfP/QESCnclLrKgg7l5QqHDS42paP9rNSQUDgltSndCuxlMz0cCSo5Cmig7k6quixHbPd/sIhFK8BIkFHYiU0JhZqBQqCHPwu7EKy00XOwGpelxylq+nv8hAMbKQiE5zroQQAuF5mUj1WGscBR+z8///sCjMR99/8Y9m001Gb3KhuK/8apnbv07UmeODBz/PHll9Q/WOqU2lCeXm5nQfdydoYXCrc2malB1TieEivAxTShkDHiveAL+cvwGPHbpmfncLP+QhMLOqOubCYZgbp5phlMzk9FAQuGgkFDYmyzL7dY8MG9yrJPlzUxIKOyKUKXHsSWOQihHISOhsBN6AZsZmD/Jav9L9KdwFF6wUHgOVy1LyInUhUDIuS6YmX1Ypx3C2lGYUenxVnS31PPIkC07Ci/PPBz760JA2R0Ye5fAGMPfT76k+qKamCXqWxchqkIhZX53hhke71J3ipOjsBv5Osuwpo/lq+k4LJ+bAVBGYR+Uo3AJHzPfvN+bzCjURhkS923G7CfE2CFHYX+SoiOua0HpMWii7E2mrnFfR8NQCIeamfShEArNOukGaEo+Dwqh4WKvb1McYt9S8iSme3gbIo3hMym4+XPzS48BIFWB+S7oObwN3S21b1f65mYm1c+3ZZZGnmxuskKAn0+f3eNn1YRCambSnaEdhS3NTOp/nn9OjsJOMLXOEq5Z66zyM7nSGRcgobAP6vouEWDumefE5KzUdIruWashoXBQaFfam5JQODsyv+ypKD2mhWtXstguoRBKKCQXQ0fU9RWGnXQT58NQXa3bRME2pyFTO1NeEo9IKNxOpByjABAY/gy+41jOzdq14oDcSNvQ0RDpOTi+626wphzRiqPQvZQLQ9Xy4nrpcd1RWK3aoGYmPRhYKNxGff4mobAbLNFCoVnrrIqjsNRoCgAJhX1QQuEKPuYNTu2hKWcUUjNPu6G7ckjIvtIfNTnGwsHRzLzSxTpaKKQw1+6IWOZfxdZkFMrNKM9IZOiEXsB65t2/NCXvTxYNE6K+a4Pl8rfF0aL1dYQkXJxB37lzQx2F3/lnX4APXl/iE554BUAhLLmMnsPbyHS22TmXHgNy87iJ2L/c/AdbMgrrHXOpmUl3hm7g1ffnU+lxN3Kh0DNLKCwjhUJqZrILSXgGF8BSBLjLSEdhSSjMmlJlCVsgoXBQ6NbpjXIUruDjODD/7ZtnFNKJSndSeY1N7IrbiKOFQtqcdIFpV7BhJ93A7p1ziQKhxLbEudjr27Th3NjMJH9NITJkq9NzHtX4CJWjcCl8zF3zNigA8Kc+4d7K54lyrThUerwVEZ1fE4S10uOGe7Es8cXe5cZVcb3L8dq2U2SV8jZqZtKDoUuP+76e1tKdcNQ6ixkmFJbnBIezPBYCAAmFPYhWp1IohI+ZiUIhLzIK5dxMzUxsxWzP+dihTWl/cru1hyMD7dZrqEUYj2gD2hWhSlMTS0qPhW5mQkJhJ1gqHaMwbAELDO+uGANaKMzOMRupy2Xpf+nkwrUsFKbkKNxKtJRC4QqWHOQAeXkbCYXbyXbMkBUNIXP1+bRpfi2LgJF3pfHr9e+qC4dqAPmHnDIKuzO0UKhjzLq+nuIDOsHVgbtp66xyKbnDqZnJrsSr4jkcuOZJOU7JUUgZhXZj3ruLIDaQqI1cCB/HBnZ6qqNPVO78g/8LWF4beDSWkGhHoR1CIVxyFPZBL2BNO+kGdi9fJQqG6ra4ixv0E596e0VyEOFZ62sJSaRcl2HPZhdDQhmFPcgzZHsKhQ1fq8+nzpZ7dHH0pOY/qIlZ6xmFAiiLwG2dMYg12NBCYd9voGvbCTeT97Hjm9WZvuIoZKxyLwtmgfnDEBJ1YBeywMgDbs5QySg0b4REV0goHBIDb27TWWk3g7Cj9FiUrfR/9PPDDcQmEuk4S20RCrl0FDqUUdgJRzkKuWdWNz6gOO2mrcjuDBWi3vQ0ZWzzRvT//9UvqTgKtchJtBOv5GFdZInjGygchS4yZBnd3RtJzq9b6nozk/XXXGaFi/fs6InNm97a1+K11CRRm7TpGnfG8GYmdSijsBuuOpDlvpk5soAsTy1nFApyFHYmVhERfbvTXxScFyKwyMhRaDN2PSFGBwmFfYnyUxQfvoF26zXKizDLFmRDwZRQmBj6AFzDleOkcqduOKk+6bbPUZj94xcCH/39ixmMpfB4GKFwF0eh53BURIWIHIXbSJTrMrJlfkbVURgmtGnZRJEhex5CYe3vbrhHT0UxT6Rum/up+n2hqDU6EwKV+5hK3Vq5dfnp1S8M7SjcMm9fnlfFI07XthNuJtfRTmDWOqt8uV3OKjEC5CjsTqqewwk378AdkG7R/NqSuG81pFwQVhEutZvBlk0KCYV90Y6k1LHEsaLG6VDpcSf0ApYbKBRu27Twx/4AZz/8Fy5oNHbCUnn/Mu9iS54ajUhgHZqZlEjIUbiNNFTPYEM3KE3owHwXKcKENi2byIXCc4iGqM+nTV2Pf1M8FW+K/wK+NHxLxQFcERBq37NCfW0gqs1MyFHYygeuryqfD122uHV+rudcUnxAJ3yhhULDSo9rGYWVe5WamXRGP4eTc2g6dQjKXY+zLKM52WJIuRgSKj3uTaxPUSwRCll5YUwPwU4E4aMAgDPv9oFH0g3myPeiI6j0uAtaKHQNy84BumUUXrv26OEHYjGOFtsuWAje9XFaXsDymJqZbCPfoNgkFOaOwgyrmBxJm9g5Q7ZhH9il6zEA/Ov0M/HfxEPtf3ftLwqxzVFIm9Imri8i8NqFYtyMjMKul4y6HnfDVxmF7sys0uPyrcxZVSgUjEqPu5JFhguFHKXSYxL3bYaEwkEhobAvaSg3oQm3Qyh0y6ef5CjsxHz1UQDAmXfnwCPpBnNVRiGVHnfCM/SkGyjKVzfNzD45Gjbi5NlIF3t9dyk9BqpCISNH4VYKodCOZzBQzihMsYrp/t2EzpDtKxSKBqVwPaNw8z3KWJvgX107NTsKRfVzYo1ri3jd2TP0urTLvP3Cry5eTkLhdoSAD3lw7QWGCYWlj6WjsECQmaIzQgmFqalCISvyJ0VKz1ybIeViSOoPSAr83EoS2SUU3lqUNp5DL8gs4ShUQmFw18Aj6YjKKKTS4274ynnpzcwTCrvsWTyQILwJ3W3xokPUGy8da/2T/Ktlh41DQuFWRGz2BqUJnVHIWYYVlR5vxMnv3/0dwXUHId+5rfz2jMKKAEY6YSNCiPXZ0IZ16Sv/Lv7lQ+8AADDQPmkrSZg/1zzDHIVlOAPuuVS+l8k80xUtFGYXnAXdFafUqEZktTUzOb6twoInxJipTYqr64OMwiYKu7UdQmGaFOJRSqcqnZhHjwEAwpkdQiF3pbvBRUJifwd0do5nsKNwEy45Cjfi6WY1F3x9d3UUVv4OVRZPtKOfwamhG5Qmyl2PQyo93oib7ub4btr7fekL7gcAfPx9lwF0i3bQ62Kx/qWctdLjWkYhSExqJBMAr/1uTCk93vwihhuzJwGgZiadKEVoBHOzhMJ65uQz7j7JPxYkIHUnGaZpTgAt6gAAsjBJREFUXFcYQ0koTGsHOXSdbYICAYakvrE5exQ4siOXbSiE6qiZWSIUPuOuOXBNfvzw9VM8cdjhWIGfyhxKEVweeCTdYOWmK1kMWOJ2HQQhMFMlMb7BjsJNyxiHHIUb8cQhhMLt28nGZiatpYzlv7nkKEwpZ3QbutlFZqGj8PP4f8WvU+nxRlwdDXEO0QFf+sIn4Wl3n+Chey8B6FB63Haf175vrfRY1EqPaR/aQlOQ5NBdj/VHWy6aEjQZdVDdjpqjY+FgFpi1Hl2/w6lb+S4wJQaLc2g6dQgcxvImYmuOQpqgrYIchYNSmzIXFJK/jSzSQqEdm5TPeHoh/EYRuVW64GXDZJztCvNKCzESGjaTFPeAb2BJTBdXmkMblY34ulnNBWcj9e7eqYSFSmZSRvfvViKznQxNaEehx1Kwx/9o4NGYjZffv/s/fxljeMGTb8NxID0JXebX5pdsaWYCoLr5JMGhCSHWO0IP3vVYO0i3aQfMUa8nkWErylCxhI+ZZ1bu39rbrXThyVHYnbw7vWvmPqlceox6MxMShK2ChMIhqc+Yy+uDDMMqtKPQtUMoLJcpxhFl2G0lS+EK+XsysdlFE45b2rQkJDRsRC9uAARHtgqF5CjcRF5abqAQXIHp/yk5CgXN0VtJzHYyNDFHcUAhTh8ZcCTm46kM2b5CYZc9/s5VrnVHodjczISR4NCILD2uC4XDCklddUqmnI8cGZUubkFEsipnhcBAobC44EIA4kkvyj/33vXdwC2an7vAdZ7yOWTJHgLGqkJh5Tan+9cqSCgclOoTMiWRYTtKaBCOmZPjGiXLdRKTo3ArcdFM4DxKny4Cx/GQCDWVkqNwI9oRnAqGmW9WSQzQbdPCSSjcyAxaKDzZ8srDw7ChaLlhseqJiBaxW+Ba7LdIKLyXPZ5/HKfkZthEIfSf//V1unQ9Vh83tN3IWXMUCoGqo5Du4SYExLojb3BHoR7GlnGUO+KSI2kjkepMvxIeZp7Z2/z0ZW/OmxPx6+8FfuALBx6RHTipXEufR9OpQyH0IUSWwKm4vGl+tgmzZ5CxU3swxjGJDFvJNyl2OArLQmEck1tlKyWh0MRmF024DkOkNy4kFG4kXOmTbh/zwLyI3E5CIZW1tZPGuYv6PB2jh9zL/lj6idUv0D28EZ7aJxS+5O5iY5KFpwOOxHyCPEO23/0rOmz+di9zrW5VosZmJhSWv40sayjdHbiZye3Hqhnclk43zCmtF+qljESFeCnXWUsDHYV1GHPw77PCVYiP/s5wg7EIN9URTeZWbmTKBXzXY7+Ky6xosEPzs12QUDgo1QdjQkLhVnI3gyWlx+UFTUKO0e2ogN6FCBD4Zi9wNC7niFUGFokMm4lW6qQbPmauedf3PDrnTppKt8XzcxTus67cJk78zeTP4U3xXyi+kJDzexOO3qB4dhzkAMCzXv3W/GNBQmE7WYoA8kDzEBmyXboed8kozJ+3mnozE3KsNCIgwJkZpcf/4NXPxWs/+UG8/OPuASAzzTbByk1XKCd4I/GqKD32HLO3+Yxtdg8TzbgWZLlnap4+XtXKyckRbBVmzyBjh9WFQtqgbEO7GZgtboa0cBEm5CjcTjmE2UAhqQmHM0S6gTwJhRvRjsIIHniXXeMFQ0LhfohICoWJ4AgM6LbYxcG0QoAfTl9WfIHu4Y24ecmTuRuUNe55Jn7v6PkAivcosY4oOfpn8/MXCreJQa3wulBYd6MLMCpt20rjgctAXY//9POeiLe+6uPzdYDr9Cg9vvYnBxyZ/ejS44jVszzNg4GEwl3QTR/dmbnPYdE6t9D8bBMkFA5KLaOQHIVbyYVCg3MZKpRKjzNyFG5HOZJsKJnQeFR63JlYOQpDNryI1ISB2qVVRKui5Gnun19p+aH1WwGOUKjxlhruEOs4qiuuydlITay8qwAAFpGjsI04LITC4ACOwrpwP/ccPPFq9X3EitS60vdV/54fS1/a8LdTM5NtmNj1WLPdUVhaD/6rLz3waOwm1Qey3PzKK86oj/UueJlqOmXwgV3GWtaAND9bBQmFQ1J7QFMzk+04qdqk2OIofNFX5x9SaXkHlKMhFB4C147pyeEMsRYZUnKNbkILhTHMPOk2ZM9kLeFSO0ZdI4T+Tc1M9PbkV978Wfjrn/dxhdhPpccb0U4GW7rSazJXrhlYTI7CNnLHt3Awm9VzADfTqetx7Wb8ia//FHzNy562/e+u3cV/KJ6Il6z+Cd4cf3Xxw6n0eCuZEA1dj81YZ23NKCxnKV5/34FHYzdJKO/j2NADWQ1jes1FC69eCAFfyOewd4ADnfOCHIXjwIwnBAEASKk0dSvazWDNJuXBT8F7Lsuw/DSh67uVvPQ4QGCA0NAFz+FFKRSJDBvRC9iIm7mANcVdYStRJA9DYrjGZyNp7r0ywwsevI3iAzri589gczcoTaSuXDPw+GzgkZhLtCyaTfk9798uW7+6a4wxVhEPGWMthzXrY3kEt+fdUhk1M+mEQIOjcOBmJhp32zi4ec3PTCWN5Do6ccxcZ5VhjFHpcV/SOO8i7J1jFvR5k7Xln1JGoVWY8YSYLPXSYxIZtuHpTYpFZU+n8/sAUOlxF0SsSxd9zDw7pieHs0IoJJFhI4kqbUsMPemmjML9iEJ5yp2sZYgNR6dO1owhzB2FVHq8CRucDE1knhwvOQrbiZYq2wz+QQ5NmubXLnNum5CQf10IVKVKEgqbEEKsdz02xFG4rfSYO3YcHJtAnhVseOmx1vNJ1+9J6Rl2iKZT54WoN53K/4AuuE2Y8YSYKlR63BtXCYWuLY5CoDgJLeUVEs2875HHAAARm+Fpd5l7UlZGZhRS6XEX9El3bOhJN2UU7kcYyfk5bcumuWC6ah2cAZHQQiE9hzfhC/n78Q0OUW+C+XJDxRNyFLYRKcf3oTJkm8THiqMQxfF5eSvJOMOZWB+TKL26nEtIGYXNZAJrpccwxFG4VSikZ3NnMiUUpo7ZQqFG0AFtP1TlVSI45jNzr7FonVtofrYJM54QBABAkMiwFV/IjahnoVDIBQmF27h+4yYAeUpmQsZZFzyHl4RCcgVvQguFqaGlx+Qo3I/YMKGwK5wxuoc7EkA9gw12MjTBVKm0Q47CVnSG7KG6pTY1tu3iXGQAfls8ee3r+XaTHIUdqf+ezMko9LZ0Pa48mw0Zs7GoOS6zRCikjMKelJo+nmfTuPOmvfSY5meboNl2SGoLJCpN3Y52M5jcEr5OxlWODjkKt5KfhLq2LHCAwHWomUlHMnUSastJN9GPRAmFrd3uBoC1bkKKxaoUCslRuBUhMIdyFBqcjdSEE1wCALjpcssrp0sSqmZTOzgKuzUzqWUUNn2tRTj8rezB9Z9Z8R/S5nMbmViXZEwRCns5Cl17ooeGQMQyHiKzZh1NQmEv1Dp6Bd9wQwUJhWPAjCfEZCGhsBdCwNebFJuC1JWjkJGjcCuZdpw59iwEA5dTI4SOCHV9M3IUjhLtKNSHI0PTLhJW4RxI9XKIgrZb0fMzAARzi57BAPhMCpteSo7CNhJ1UBfvND9v3/xtLT1uuV0ZA345+/imP1E/WlTuW0b3cCNCABzV340tzUwq7x3PFgFsGJgSkjLXDkNFRuuuXmhDxVL4mPvmCoWtjkI61LEKc479p0htcqTS4y2UOj35czsegACQqTy2gDYoWxG6ZMKiE+PAo67HnTH8pFvvVagL324ksRTKjXIUbjcUgpc7L4r04GOylXB5Bj0zzywTCj0lFPoZOQrbSHWzqQMd5DQ1Um47nKnPwT+VvRD/JPlCfNC5v/Sa8qup9HgbmVh/stnjKCz9+T2fcODRWI5uyGXoOmsNQeutPsSrMwSQpcd3GOwoFJwchWPAjCfEZKk5Ckko3ExSdjPYU/Z0evQkAMBLbvx74OHfHHg0hqOEQmGTUOg6uaOQXMGbEeoeFq7ljkJa6DQSx9pReL4ZZ7tuI/o0MyFH4XbC5an8X+FiFph5D7fhzUko3Ea2R4bsTqXHrNs9ylSbk+9IXo0fZ59W/MzyzFDRCWl+bkIIGNv12O1QevzDycvkJ1fv3/jaqcP1XsmzYx1NzUz6Ea1k06ml6aXHrRmFtMayCTOeEFOlPjmSULgRoezWmWCYGdzpqc7pcSmE+zs/ZbiBWECxwLHn+srSY1lqmZKjcCMsP+k2cwHbubMi5Y02oh2FgpvjKGylUvLIkOkvZOQobEMLhSsEWx1ApuEfXQYAzMRq4JGYS5EhexgRuOkgpvy1clTAP08+HwDwW7d91va/WAiwSkktCYVNCCHWuh6bUnq81VHIGd4r7pWf0OXdCE/lHMcsEQqJfsQrdWDHzH4OZ62HEHQD24QFq/kxQ6XHfYjChbJb+5gZ3OmpzvLovqGHYA06WwWWZKsAUijUzUzSKIQZ6WyGkjsKTRWCOy660hhw6ErXyZSj0LbfDWcMGTkKt6KdDOGBuuIeEt18hYTCdsSBM4J5bVPLwFpd3L8unoFnr74LX/KUTwArOQTLr646CsuvoY1oE6L0/zWmCIVeU116iTDJ8uu9imOYuoIwASe1y1FIzUz6EavncMQMvwuo6/EoMOMJMVXIUdiLaCkdhSv4mJtst67BDAn2twGuHGfMt2WBA7gOR6Iy2ZKYHIWb4MpxaepJt97Hbt1oUtOaRtJEOwrNn/PKT1/OgExooZAchW3kQiHsKjsGgPnxFQDAEVZIM9qoNCF0E4QDdaWvm1+OAmcttzBOC6H+Jk4gWLuMUFzFrPIZ6YTNiMaux2aspesicp04yXLXd5zQHL0JJ5XrLO7bkSNLpcf9SPfoTn+RiNasapqgbYKEwkEhobAP5bKnbaePJsEtGuvQ6JNQHtjjKASAVAkjGQmFGylKYsw8Ce2cUUilx42kqvTYJEdhezOTYrHKGUNa7qBKNJKG2slg9galidmxLD0OWILFknIKG1EHdbs4vrvcNU7tZjwJ3Eo3W8aAZIuIW369dpgxUR0BA7mCm8iEWO96bIhIsy2j8NUvur/UcIqu7ya8TN7HTmDmOmsdM96DtpAooTA50IHOedHezITuX5sgBWNI6g/ojITCTcQrOTlGsKzsyYa8LkNwlJDEfbuEwoypjEISCjdSXF9THYU9So+JNTLltGSGCIVdLydjKEqPKaOwlWQlBbb4QF1xD0lwVDRAW57dGnAkBrNHNIToILCXRSnOZGxHfc5N0vVNZJuYVZQei0p5Mon9zQisSzLckNLjbULhceAWkUN0fTfiZnId6tjiKCShsBeZFgq52UJha6Mkun+twownxESpH5zyjMrZNhGpAFfb3AzcMaO0wwb0AseWkgmNUF1eM2pmshFHzXHcM1MI7myuoNLjRkQiBVThmHWY8z+ypwAAfvvkpY1/ThmF3dCOwtj0DUoDzA0QQz6Ll2c3Bh6NmeTNpg7k+PacYoI99qWbsK4P1cvC63vK8hwtyi+qvJA2ok1kQqzFapiSUeg6XR6+5Cjsgq/W0a4tlTmkE/Yii6VQmNrqKKT52SrMeEJMlPqjzk/OBhmHLWi7dWSZm4GEwu7okgnrHIXKQZUlJCBtws1LYsx0FOpN6NYTbio9boRpV/w5ZxTuUx3HGMNro7+Kt8RfhR960reW/qRaepx3PaaMwlbSSGUjWfYM1iwg551wQY7CJviBu9LPStnSR4H8uNr1eHvpcZXCUVgtPSYaEVjvemxIRuEXP/9JAICPvedS62t0ll0X9+qU8YQSCme2rKPpju2DUM/h1NimgApqZjIKLkQofMc73oEHH3wQs9kML3nJS/Crv/qrF/Fjjad+r8ySm8MMxBLSUJU92eYoNGQhZgO+WuDYllGoHVQkFG7GVY5Cx1AhmEqP90MLhaY0M2FqA/IYruAH0lcgdJs3oZwBKTkKt5JFdjgZ2lipLpHRGa21mjh0NMTcL9ZCx4EsI13r6dcgFJZfU+16rD+oO+VoI9pEJqqCKoD28sAL5kUP3o7/9Fdehv/n9Z/c+hpBc/R2shQ+5HPYM3wdrSMFqPS4J7GOiDDzwF3TelXp/rWKgz8hfviHfxhveMMb8Na3vhW//uu/juc85zl4xStegY985COH/tHGk4nqbXSU0in3JnTZU+JYJhQ6lFHYlUDobBWzFzhrKGFEUOnxRvRJt6kL2O7NTEgobIJpp+U5ZxR+8yseAgB8+Ysf6P29rPJx8/VljBWbFcoobEVEcoNiq1AYqZLpWMWYEFWKZlP9N6BdpLl5yVF4rPLmeM9mJtWfWXIUUkbhVmTXYzOFQgB48M7jiut0HWo4tRXtCgbgzcyM8PnyFz+AZz7hMj7jobvUV0go7IUqPRaumetojc/b1lJ0/9rEwRWMv/f3/h7+4l/8i3jta18LAPjO7/xO/MRP/AS+93u/F29605sO/eONpn6rHGW31JOcJs0mUnWKYnyAaw1TwqJtwBdykeMaWpraRqYdVJRdtxHtGDU1O2dLnnoBXedGWHaYrsdf8oIn4VM+5k7cc3m/Q6K2qbjsKBSrG7RtaUGoDUrm2DU/ayI+B1IgXtKhbBN5E4Qdnr9dtJuZV9yAR/566XHz3yvAS2JWY9djiFqnY9qINiG7Hm8IfTQd9T4Q1NW6nbjo6O4bKhS+/YufNfQQrIZpR+GBsmTPCx8tQiEJ/VZxUAUjiiL82q/9Gl7+8pcXP5BzvPzlL8cv//Ivr70+DEPcvHmz8t+YqdutXaRARDmFbeS5DJY5Cp3O6gMxgypNDU62vNIsMtXMhFFJ6ka0Y9TUk+627pp1kpiEwia4dloeoJnJvVdmW6/P9732Rbj9uPjZ9Ze3iRIOLzIK2U+/FQhJSGpEbVAyw0ue2ogceUCRkqOwETdVQuGBmk2VHYWXZtpRuPl7Nm0pq81Miq8zKm1rRHY9tlko1K5vEhpaUXN0KFzMA7OairVikKvVBniqxGBDmwJqMkbVdGPgoHfno48+ijRNcc8991S+fs899+Dhhx9ee/3b3/52XLlyJf/v/vvvP+TwBqfxUbe6fsGjsIdMlT3Z5mZw6BnYjTSGB1m6aKrjrA3hkKOwCzPIjahvaMh21z3T2RkJDU2cJNcAAHFw2yA//zM+9m686U89VPlaJd+sEnBWan5Q7noMAI/81oFGaDmJzkYy28nQRqKEwiyk+7cJV+zuKOxCuaz0ylwdrrFqOEAT5ZfwBkehpBAHLZK+LhQhGtLgLBJp8oxCcoy2o4TCFfyKg9dk6Gr2QzedYgfKkj0v/iT4WPxK9nHrf0AHOVZh1Czy5je/GTdu3Mj/e//73z/0kA5KY4Dr8trFD8QWcjeDXZuUzrlnU8eCkok2CkchCYWtpAk8VYoQHJnpGO16r66uffjAI7GTS6l8fiXzOwceiaR+NXlLVwTOUBUKqTSmEa6Fwh0y7Ewg0YeMqoSaqOJlh42GKDczuTKXh2tbHYWieh+XXy9KmXXUzGQ7QgCcmZtRuJU8kpKEhjZ0PIQUCu1opCjMkiKMx1GOQm64oxCc4y9F37T+dVpfWcVBfaF33nknHMfBI488Uvn6I488gnvvvXft9UEQIAjsKivdh8ZbZXn9gkdhEZZ0eqpDpccd0UKwYPAsyygUWiikJhetZNEiXw6aKgTrW/X94i58HGs/qIqvf+iCRmQXVxKzhEKg2sCk4l0qLVY5WyvIIxrInQy2CoUq/J1RxEsjM5UR7M36H+R0uX9mbiFcXD1SQuGW9ZGo/c1VR2HpI0FC4TZE0wbdIqFQ6IxCEhpaScIFPABLEeA21xKhkDG6ZXvg5t3pzVxHaxzOEKEpr5outk0c9Anh+z5e8IIX4Gd+5mfyr2VZhp/5mZ/BS1/60kP+aCsQomGBRKXH7ehuXpY5Ch1yFHYiUxmUS/jwLTkJ1ejSY56Ro7CN1arYnM/mZi5wdBncW+PXbHwdP12PziCAy5kUCtP5XVteOQxtGYectfVDJspoR6Hp2UhtpLpLZExCYROBioZw54dxfJcdhblQWOt63ASruX9Lf9LwUfUQgCjImpx4FgmF+SxNjsJWwlXhKCzfb8R4cDO5F3YMjfDROIwhbvKj0fxsFQd/QrzhDW/Ad3/3d+P7v//78Tu/8zt43eteh7Ozs7wL8pQp3yqxUBM6OQpbKTYpdrkZ1k7MaZJsJA7l5m2JAIFrz+IVAEDNTLYSLdX1FT5mvpkhx/pW/VXxcXhN9FfX/vymkHOPu/jIRQ7LDrIUx0J1xZ3dPvBgJHVhsBqHVhUoKp5COtxpxFHNLrjh2UhtCCUUOiQUNjJTGYXBDkJhF5dXNaOwe+lxmWaxn7oedyJrEtjsmesEo4zCbSSqUdMKPjzHlmtr2Xp/YPy8O72ZB+4axhhSNIjVJPRbxcF3a69+9avx0Y9+FG95y1vw8MMP47nPfS5+8id/cq3ByRQRpQXPdZzgLtxAcvb44S+KpXBlt7ZNKFwrPRYZwOikr04cniGAXOBcskwoFK4UCjmVHrcSKkfhCj7mhpbjlzehfyzWn1EfwL14Jt5buJuJgiTMP+T+gK7v2lurrRECaqXHFaGQDnMa0U4G7pvtZGhDqFKt/NCRyBFJCI/JDFn/QI7Cp911jNuOPNxcJfiEJ14BUL0n5y2VBOV5mZejREsZhZXmRHT/NmK7oxDkKNxKpByFMQtaHfTGYckwTcFTBzqe4U0f2xt50vxsExeiSb3+9a/H61//+ov4UVaRle6V6+IEd7EbSM6ukVDYgpPnMlguFGYpwEkorJMsVemxCOBb1ipaZxRS6XE72lEYMnNzaBuD8kskTHe3JkF4jZJ4asocvd7MBPjt7Ml4Jv8ThB/3xTgqfZ32KtvJS54M36C0ITwpFLoJNTOpE68W8NXHwdGlg/yMq0c+fvFbPhNhkuH2Y/nT0pKo9zF3n8DlDElWSR+sNTNZzyiUIj9lFG7H9ozCkjBMNBKrA9mIm7vOWoeevp0RAn4uFJrtKGxtDkj3r1WQJjUoxU10qrYs6erGUIMxnkIotGuTspZRSKehjSSq9Hhl00mogrk6o5AEpDbyBWy+HTWP6ia0QSjkPpABjAThdZSjMBEcrtsUYD0MdZHhy6K/jpfw38XbX/qGklDIqHSxA74SCl3LnsE5amPlpiQU1lktbsGHjMGZzQ7nCD4OXByXNIxllOYfP+HKDE5dKKzdik7jHF0VCqk1UTOiqfTYIqEwHyutoVtJQ+mWTiwSCtfWWllWtQ4TBUkIruY339Csb01royq6f62C7sQBKU+OSy4dGOmKsnPacHQug2WblPXS47T5hRMnDeXmzWQhqRVHOQoFCYVtaCE4NHgBW6lMbfjzhKn3JjkK11GOwhAe3AEdwZuOGBhjuIkT/MfshWCOX/p67ftoIduIp5/BhnYt3wZTjkKPhMI14uUtADIa4iId/S95yu141XPuw9/4/GeCMQa3aXNZ+hJrcn0LUSs3JqGwieauxzYdylLp8TZS1RQwNXidVWftXUnXt524eHZ5hguFrY08f/HvAf/9X17sYIidIUfhgJQnx5DNAQGI8HSw8ZiOp8ueLBMK1+zXGQmFTSRWlkwoHDlmh5xmrSSl7BxT2eYoTLkPpABL6TqvoX4nEbzmzf4A1Kfe9q6qtYzCLDncoCxGlzy5hpc8tcFnMnvPzyijsE64lGvPJWa4tIN4tGs1metw/OMvf17++drBao2m0mMAlDHaAZHZXXoMamaylTSS+6TUMXedVWd9rUXXt5VYPrsi4WAeDJgF3QE9lb8t/jN4Kf9tPIf/Ie5kN4Hf+lH53/P+zLADJDph0RNifJSf2ZEjxS8RkVDYhnYzuIa3hK9DjsJu6K7HCTf74ddEUXpMAkMbaSQXOLHB15dt+AwAMsqibKfiKDRDKARQdSOVv1zviFz+hO7jRgLIZ7DpJU9t6C6RumskUZAsi+iPXRDntLn31tyMAqx0dzYd5tQzCg2afYxCNDYzsei3xchRuI0sls/hzKID9zWhkK5vO0ooXCHAkW921r0uPf6e9JX46vibEaIWSUOVOVZAQuGAlJdVWihERCUxbRRuBtuEwtoX6LS7kVQLhY65QlIbzJVjdqj0uJXUAiG4sgltuE0zLhc6jLIo11EZhaHwGjb7ZrBpT8zLGYVNWV5TRwgEkAK5b9lhnUYLhZ6gruV14pU8pA7ZsPNzk6OwfN+2lR6DSo87MBJHIa2hW9FCoXDsifCh0uPuiFiuo5fwMTdcKKyzJghHFLVmAxY9IcZIcdMkrlzAsphunDZ8oTcpdrkZqPS4GzqjMHHM6JjaB+YoRyEyur4tZMpRaHJJTOMmtIRefJNQ2EDZUWhM6TGruJGqH9deS6XHm0ljuEpMDeYnAw9mN3S35kCQo7COzpCNBo6GqM8ddU2ouZOmqNy/1cZEhMb6ZiYaEpJaEeo5DNfcA9k6645CEoLb0BE+SxFg5pktFC7CLXshEgqtwMInxHgQoiwUygUsiyk7pw3tZvAsEwqp9LgbmXLTZlY6Ckubq4Q2oU0IFcKcGiwEsy0ZhVoopCzKBrSjEHY6Ckko3IwWkgCLhUKVb6wPHYmCVOVjR3zY+fkzHrp77WuVzuWlqaVcelwRCklnaKZRYDPjUKcTuaNw2GGYjFDPYeGaeyC7DpUedyVclRyFhguFN5bVA/Wy5gGg0piFMBczV/MToTwVCuUodBJS2BtJE3iQm7fAsrInchR2QzvOMtdcIakN5pbKPKjRRTM6O8dgR2GZxr2I7m5NjsJ1cqHQNyujsERZCF5rdFL+hITCNXSzi0RwzGf2HeYARWzJDCG5Vmpke0Z/nNev86+/8uPwls9/ZuvfW42HKJUeg0qPt5E1XSSLSlQLoZCEpFb0QbVFjsK1q0nXt5VERUSsEMAzdJ2luV4TCjMqPbYSEgoHRJQXPL4UCt2UFPYmROnkITiyy81QX5ulJBQ2o6+xhUKh45ZCeimgtxF9D9siBG9yFFLTmnUSJfSbllFYyTfb9LqKo5Dm6Dor3ewCPgLDnQxtuKoagUOQ87uGdvTHOzoKz0soPPJd/PlPeUrx90LUMgpbuh6LcukxCYWNNAqF7sWPY0eKZzJd31ZU6TH37BEK15/MdH3biJdFRES9IZtp3Kw7CuvXmRyFVmDOan6ClLseZ74Uv7xkQSfdDcSrYkKZWdZxManlwqwiEpIaUWX3wrNDSCrjOg5CoRbcKW1Am9CxCsKik+41lBuSmtas89iNmwCAlHu449hMl0pVNKwuWnlpcyLIMbpGnAuF5m9Q2nD9UjUCbVIqiEhHQ5g9P5dNNG2lxyQ0NNPY9dgiGHU93gpT60+bhEJyFHYnUqXHkcFNATVrpcf1F5Cj0ApIKByU0sno7DYAqhlCeGuoARnLSucyCB9z354TUABrm6rVikpTm+CJFJK4b59Q6DkMKZTLhtxmjTB10i08O6IDmhyFUCXmnITCNR69JoVCL5gbJSR1HUlZaEgTchTWifKuuGaKwF3wgwCRUPM05UFXUZu2xDDHtxBVUZ83OQrrpcd02N6M7QIMdT3eClfRN9yzI+IFAERdiqDr24rOCjb9QAcATsPqXoi6HtsJCYUDUp4Kvdlx4Uha3RhkPCYTl8qeTM9lqPPgHVVhZBmRUNgEU0IhLBGSyrgORwrKz9kET+X1ZZY4RpuWqlwJha5IgKYOkhPm1pl0JHnBsAvYTSJlxUW4llFYEgopPmCNZCXv36G74u6D73KsIO9hQUJhlVhnBJv1/BWoOoF5W8MpKj3eishs/73o603P3ja4hY7CtXclCYWtJKFcZyXc/Ofwk2t73zWh8Df/zQWOhtgVEgoHpHzTHM883IQqqV1dH2ZABqPt1jaWPa05CiNynDXhpNJx5gRmbVS64HBW3M8kIDXiKEchs2YBuz7PsHLZNJWnVkgS5WTg3pZXDkfXR0ea0LWtE4dFNpKteA7HCnL8cUhuhjJclWKLHR2F4oLEueZ7uNb1mITCZiw/xBTKUchISGqFZ1IodCyqzFkTkCx/nx6SVAmFmWP+9f2eP/fCyudr1/nx917gaIhdIaFwQMqtwk8CFzeFEkiW14cZkMHkuQwWlz1pVuQobMRVQiH3LRQKGSNH4Ra0EMwsub5NpcfU3bqdNJYblMrvyAAqnY4rX6++jpdcKiQUrqNLnmILspHaCFyOpZDvz2RFGYVldPSHMGx+lqXHBc2OQsoo7MJFibkHQ137K9d/C/gP30pNpxpwM7kucQPzhSRNeS+svjLIOGxAN53KLMj6fvo9l/DlL74//7y+phYJufptgITCASnLCcczDzdyRyGVHteJlVAYW+xm0EQxbUKbcDPlKPTtalYDSEdhph+CghavTTiZLokxayNa52Pulo2lmkuPS/NPQkJhmUyJa8wd1lG4yTTI+aay5IKEhMI1slB3xTV/g9KG73AslaMwIUdhBS0UYldH4YH29nVxizfsWlgto5CRztCIsN6JV7r4v/SPgf/5I8MNxVAcVeng+vbM09TMpDu66ZQtWd8fe8+l/OP67BMt6RlsAyQUDkhZXT8JPFwXcoOKs48MNCJzidUmJbIgl2EbcUylx014Wiic2fEALMMYkJGjcCO5EGx4aflPfsOnAmh2FHqui1g3Q6Du1hXSWJUeO4Y5Cju/rtzMhOboOmlkTzZSG5yzPKMwXdEmpQzPHf0GOpFKLsK2jMJqOartgthhELbHotQPem58YJhxGIwn5H3sBjYduNdLj+n+bSPP1rUk6/vPfOKT8Q2f9XT80F/8xGKPpBAqjogwGxIKB6ScK3wy8/E74gH5yY9/E3UDqpG7GZg9p2RtxLQJbcQTUnixa4EjqTgKqRymEU9n5xguFLqOfCw2LVW9UjME6ppaJVMNQJyBHYVdqQuI5CjcjHYy2NBtcRM6Y1FnPRES7fg2rtmUqEcGbC89pozCFiwXYBird8e1XPg8AIG6j72ZPetoyijsDlNZsrYIhZ7D8U2f/Qy8+Cm3r83KOo6IMBsSCoektOC563KAn0+fU/zZh39jgAGZi17UJ5ZvUgASCtuwcYGj4ZRRuBXfspPuZkchRwglhCXkKCwjVCm245nlKOwKY2VHIQmFdQqh0I4NShuhFgpjEgrLOKlugrDbQc5FSVCcAd/8io8FANx/uxxrvfSYHIXNCMu7Ba8LSnSd6wSwbx293vXY7vfpIWEqIsK2LHdpBq7ev14W0j1sASQUDkg5L8R3HPz+/NnFH5JbpYIOcB2DUJiQUNiIXuD4c3sWOBrOGJUeb8HXQrAlIduNQqFTchRSEHMFoRyF3LhmJm0fV68vlR5vRsRS6LchRH0T2lGYkaOwQhENYdb8LFC9bzlj+N8+42Pwe2/7U/iEJ17NX1UuPeYkFDaT2f17IUfhFoTA3EqhkJqZdIUndjZ9ZIzBRUO1FZUfGw8JhQNS6fTEGP7+q5+LX88+Rn5OQmGFbCRlTwAQUzOTddI4f4h4FmYUcla6n2nx2kgA6TjzZicDj6QbzaXHDkJBjsImtFDoGewoZBsSCytCYUpz9Bq6K671QqEcf0aOwgp59MeuGYWHamZSc5zojMLAdUpif63rMblUGrG+mUm9VT2ttaqURBerhUK6rq04qXwOO5ZU5pQJWMO6irQO4yGhcEDqU+FT7zzGUqigcFLZq8TjKHsCgNkZBTCvUdq0BXM7hKQyDqfS423kJTHWOEbXRSXf4Qgpo7CZzExHYRvrGYXFJjqj0uM1WKyFQrufwbFqxiIiun/LeJmKDtgxQ7benfg8KQv8vHK+Lp+5l6OPgJVW1JRR2IywfW1CjsLNlNYkviUHsgCVHvfBTe2K8CkzU2aBCqR1GA8JhQNSPUVhOA5cLNUmNKNmJlXUA9DasqeXvj7/8AmP/sqAAzEUdX1TwTCf2bcRlaXH1MyklTSGqzZyviWO0abSYykUkqOwCUfIcl1uWDOTNpGhzq9mD+UfO6vHDzkkK+G61N6z4/5tQ8eX0Bqrii/MLVmslx7nH5du6FfxXyp9BwmFTdQF1MfZ1WEGsiP1uAgIWmuVSVanAIBQeAh8s57Dm1i7W3/rR4HTjw4xFOPxVESEPQfuBY1CIR24Gw8JhQNSmRwZw7Hv5vlX8YrKYsroTk/CtXST8opvx08/8WsAAF5ya+DBmEe8kpu2JQLMfXfg0fSHc8oo3EQWFpvymYWOUY3vcqwEZRQ2oYVC5pjrKGzLKwSAf5R8MX4rezIAwF88coGjsgOuOxRa0m2xDV06TY7CKr6OhjCsK31dROClXQtrUf43nAdMGq4a1iSC4/+IX42vP/mOgUfUE3IUbiQO9TraR+DZtL2v3bE/8zeB7/7MYYZiOJ7BBzrbCNBQqUGOQuOxaSYZHXVH4czjWEGWxUQrOu0uwxL7Nymr4B75QdpwqjJxoqU8CV3Cx8xzBh5NfzhD4SikU+41Vmo+ywTDzBLHaGNGYclRmES0wCnDTRUKO6oGIXz8neTLAADBitwMdRwlFLJdM+wMQceXCHIyFGRZvokLDHGqfOrT7wQAfOUnPrm6Ui4p/GvNLXLIUdiEFgofwW34p+kX4qP8noFH1A/KsttMvCwO3H3Hnu19Jhoe0jfed/EDsQDdFNDGiKa0NF9/QMj5nRyF5mOfdWdEZLVmJowxpI4UCslRWKUoe7J3k8JVyD/LqKNmnXB1imMAKwS407VngaNxGGUUbiJanuEISgi2xDHa2PXYdQrXd3hGD9ASuaNw4NLjulOw8mela9rU2OQRcRsAYB6SUFhHh6hz3wwhaVfyjEVqZlJQcnXsGg1x3n0y3vnaF+Pxswh3XQrwy3/4WP71Sulxy81OXY+bcZRQmLviLYO6Hm9G7xtX8OFaJBTS3dodnfUdzM1yfnfhDHMcqfGHwpOHuGScMR57ZpIRUp0c5YIn5bIsJg3JUVhGb1KYZS3hy+iQf5ZRUH6deCmvb4hgPYfGAhhjECQUthIqx2gIH86moDiDaBIKXc4KR2FIJ6Fl8oxCx9xspG1Ty6mQIpKXkohUx1VOBse3NCdYIdRhIyMnQ07ZXTkzxFHocIa7LsmD82pGYfHxxrWC7R1+D4COD8gbclnGWqk5XeMKyUrGGoWqMs0WBEkR3ciyPOdvNr808GD6s0Bh9In1MTsJhcZDd+eA1B2FQNGsI6H8nAq67IlbLBQ6SijkJBSuEesQZmbXAkfj8KKZyY+9m7pa18lPui26vk1bEMYYYqYbTtEcXcaBLLkf2lFYp01LqH/9H37Zc5FAxh7oMmqiQIeoO5Y7CqEchYwyRnMidTAdCwdBYN4czVpchIxv2MKQiLSGFvtX6rDLtjPZNUGJDmUrZItrAIBbzC4Ria5iN0TpmTU/sq/0+FQUh4yxWmshpf2w6ZBQOCDVWAb5iS6LySJyNJRxxyAUeiQUtqFDmCNu3ialC5whLz3+kV+jbJU6OnPVppPuJkchACRcC4WUUVjGzbseD+tW2XXz+4XPfSK+8pOfBgBwREpCQw1POwotDFEvw5SjMG/OQiBaFiWL8x0zgi/qbmnrgLwO3b91HCX221p6vDa5k1BYIRcKuW0ikmWK9UCEy6LSMDiy7zn88+mzAEiTFDkK7YGEwgERjY5CKYSJ8HSIIRlL7mYwrCNfHxxPiiTkVlknUY6zmNlZ1sZLJTFvdX9gwJGYSRqq62uRENwoFDKGWLkiMypdrOBCNzMxzFFY/niLilgROTNqSlTGF/IZ7Ab2bVDKMLWG4NRtMac4yPHgOWZv2p3SPbxxqCT0r+HqjEJbS48po3Azy8cBAAt+eeCB9KPtUJaoEimhMBQeZr599/A/TL4Yfzv+MnxO9HdKQiEZZ0yHhMIBqXc9BoDYvwoAcMLrFz4ek8ndDBZvUlxfCYXkKFwji+QDUDfzsQ3OGJ7OPggAeAp/BIIefhW0EBxZUnr8Bc+5r/XPUq6FQhIacoTAc9kfAAC4YaXHZbZtR9zy2GmeruALefK/a7MLU+CeHL9LjsKcSM3P+2QEiwsS5souQleEG14pSCysoV20Wii0LQ96bbwkFFZZXgcAnDl2lR6TTtiNSEU0LeEbf6DTRAgf35l+Ad4jnoRIkFBoCyQUDkhWXsOoB2A6uwoAeMKjvwz8zN8Ekk0Loemg3QyexWVPrnKruIImxjracZZwOx2FDmNYlk7pk5sPDzga80gjfX3tEAr/waufi5//5s9s/LNEi9nkKCx436/kH3KDE4fYuom/gueVTulpAVthproV+nPbytqqOErodDMSCjVxfpBjpkulUm5c2rX42YaytX/3dcA/ei5A1Tk5RUahmdd5K+Qo3AhbydLjlWuXo3DNKUo0EqumgCtLmz6WodJje6C7c0CaHIXp7LbiS7/wd4Ff/a6LHZShBOrk2LVZKFSOQodKj9fQmZypM9/ySjOpP7OzGx8cZiCGoru4x5YIwZwz3Hul6b3IkCmxU9AhTk5288P5x+zqg8MNpIE+C2qnLBRmNE/nZCl8VVpuu6PQVTnHHgmFOXG4v+P7kN49Vlorl+9nb5Oj8Dd+CLj2x8Bv/egBR2YXuVAoVDOTIQezC+Qo3Ahb3QAAxJ5djkLbRa+LIo+IsKQyZxMkFNqDO/QApkxWXlqpiZId3V590WN/eIEjMpdAuxlm9roZPJVR6IKcKnVErIRC1w4hqY7DGXjpfs6uk1BYRuf5ZY6d17dMSo7CNbLwFBxAKhhwzzOHHk4r27YjnltaEpFQmCPiRf67C+b2HtYBRc4xCYUFic6QNdRRWKYUB4yzoydt/wYSIYB4BfzrL8dLP/hfAMgSQBthrNZoh3Jkq+iuuK5tB+50j3bBtgifTVBGoT2Qo3BIRMPkOL+t+rlj5wP9XEmT3M1g8ybFDaRI4gha3KwRKSHJugWOhDNWKbkUKiuGkAglqiVWCYUNHhnGkGmhkJoh5Oj3+49lL4XLzVr092lm4rsOIqE2o7SAzdGlqYDdz2CgiC/xRUQZdoo8GmKPjOA3fvbHAgC+4iUPnMuYyrR1Or518iA+IO7MPw9Fk/fBrPloEN79g8Af/mzuwAzzjMIhB7UD9fHS/VuBqTUJ8+1aRzPD1gymkqjKHNuFwmc98QoiJRSKlCpzTIeEwgFpMs17x7dJV4bGsA6Sg5AUzh3fwpbwGl91qdLdQYkCpq6xsFQodDjASsJSGtPDr4LaiAqbHKOODzzpxfiA/9TKlzNVPs1IKMwRq5sAgJviGI7Bi/5tG2PP5Uj0STc5CnNWKhtpKXzMfbvXJDpjkSOjsidFGqqDnD02oJ/y9DvxG2/9HHz7n/6E8xpWI2Wh0OEMP5c+N/88biqSovyzNfd7qH5P9gmFNUchlR5X0J3cuWfXOpq1ifnv/28XOxDDsS3Cp41LMxeJOpBNY3oGmw49QQdENDQzOZ75uIGSGEZCIWKVywAAc4szCn1fTu4eNTNZR4vBnp35V4xVS48FlaVWUR2CrSo9Zgz46v+Atz3pn5e/CKEiBBidhOYIlY10E0fGOQrLbBuZ73AkellEQmFOtLS722IZv+yIjBftL5wQOhoi3XN+vjL3DpI3VnUFlz9mSEvbGBIKW6j9DuJG56X58PqlJKGwgu5qzS1zFK5fWMX3v+pix2E4mWVNAds4Dtx8rs4SEgpNh56gA1J9xMnVz5Hv4JooBdFS6TFCtUlZiAAz384FDgB4upkJE5StUkOfhMKyk1CNw1jFUZhRo4sqiXIU2iYE1zaiACDUZlovyomi9PimODLOUcjaVIYGApcjAZUe19Glx+EIui3OghliXV5OBzoAgCzSQqGZG9C20mOHMaQoXGbNQqHd79dzoS4UWhpPL0COwk1wdXjpBnats1odhQnNz2Uy3XTKsev61jn2nbz0mIRC8yGhcEAyVI5GAQAngYvrKDXsIEdhLhQu4SNw7X3L+kFxWp9RaWoFRy0IbMtW0fA1RyFd3zK6TNeq0mPF6172tOITxgBXC4W0wNGw8BYAYMHmgwtJrZsOdGhm4vBCeMhIKNREK/kMtj0bCQDmvoOlbuZAQiGAwgFvg+Obs+rH5YOciByFLVRnPi0UbporTWTt2UJCYQXd1dq1bB3NDTtcNJZIPocTx67rq3noXmmC+l9fdH8+BwkSCo3HzmOlkVDN4dWOQhfXRUko5CQUxstxuBlmJaEwikPMLDv1OySOLpmwzXGm4BwVoZBOQqtoxyiz8Po+/4FqgynhkqOwjlDXNzZQSCpvhu88KcbnNpQ7+S5HnDsKaQGr0d0WQwOvb1/mnqOaOSxJKFSYLhSW7+GyqMA5Q1YWCoVLvUuaqImlkbUZhbU5m4TCCrlQaNneQpBnqRuRjOFKXDsjuH70az8ZH7qxxNPuOsG71TpL0DrLeEgoHBDR4ij8CEqnBVR6jDiUpygrZuYititBUGyywtUSs5PbNrx6WriZEgotW+BoOGNg5a7H5CisoIVg5tl9DwPFv8GhjMICg4XCMieBi59946fD5byxRNp3Oe5jj8tPfvgrgTf89gWP0Ex06XFseTYSIIXCpfABBoh4QboS7HJ8l0uPOWNIS1eQMgpbYM2OQuuoHe7EaQqyUhR4Sij0Z3ato9siCokasRQKM9eu66uZ+w6edpc0QqXKBEWlx+ZDt+eAiGpEMwDgOHBwJkqLcSo9RrwcR0t413WxUNc2XtwceDRm4SohybFUKHQ4qzkKyW1WJneM+nZe3wKWdxR0MlrgaFZqjr6ZOFteeXg2uWQYA5561wkeuKP5fVhp1HHzg+c8Mnspui3a/QwGdOmxeg6XGqVNGZY7vs0saWO1cmONw9GhmQlJwfXfge44ahu89u/48LXTgUZiIFkGDzIu4+joZMuLzYKRFNEJrhyFwrfTUVhGS/xUemw+dHcOSNbU9ThwsUTpVJeEQiRqkxKNYJNyHTKjIbn12MAjMQtfyI2KG9j5AGSsXnpMD78ybmZ3BmUZ7SjUZT4E8OFHrwEAVjDPAd9HJ/AdWhI1MZZuiwAw84qMQn0IOXnyZmL2OQrLpcf3sUcbvoOEwrZmJrb9ZkTt31FuIDd5ShUOR8d2CYUk5neDJ8pR6Nm5TyqjHYWCGj8aD62KB6TZUehiAfsX4+dJEuqyJ/MXsdu4zqRQmJ59dOCRmIUumXBndj4AHcbAWWnRSvl1FbSo5lgqBOdcfQBcC4UiqgfNTpZAORlWwuyDrW3bkatH5gmdJpCqDLt0BM9gz+EIyVFYQWfIckMdhWVYvfRYFNuY21mDw2x57SKGZTjVmS9v+mKdQFPdsrqMnr85pbxV24TCOaOD9S44idwLM9+u69uE4KqZSZYMPBJiGyQUDkiTo/DIc7Aslx5TWC+EDnAdwSblJrsCABBn5CgsE1juKKyXxIBOySp4tguFr/kJ4E//M+C+5+ZCIQC6zoqZWuib6CissGVffNclOqRrIovk+zxzxvH70SXUUUhCIVCOhjBTKCyLgw/cXsQGyIzCLduYH/9GIJ34ZnTNUWhn6TGrhdkxOqgrUEJhLBxcPjbzPm7janZ96CFYgaeEQti6ji4hmDqsmPrcbAGWJtqOA8HWHYWcs6qjkIRCpLrsydCOfH24xS8DKSDOmkpkJooQCCCFhmBu5wOQ1xojMMoorJA7RgO7FrA5D35K/mFlM52srCjXOzQzdf+GhguFzLpiOzMQsZzPxiIURiwARFGtMHV0YyZmQYbsx993Of/Y4aiUHrcSnwHOlQOOynBaSo+9hoZOJsN4VeAUWTzQSMwjXVyDA+AGjnFpZtfW/oq4MfQQrMBL5fOKzy4NPJJzgDtyL5zSPWw65CgckKx8GlYSDf9b9rGlF5FQKEJV9uRYKjKUWDhqkbuicpicNIajOgbP5nZa6uvrbUYdcSsEQv4+vBGchHqej1SoC06CMIBS6bHhPSitq7QzBKG74o5EKNTVCSk5CgEATqYd/WausVZxmn9cdhQyxmoRPm1M/MZvEQptE5TqGYVOdGugkZjH8oY0H9wQ9gmFS8fOdf9F46usbycYwe9LlR6DSo+Nh4TCARFi3VEIAL8lnoLHhDoxIEchRCxPUTLXfudOojZaopQnMnniwtXhWyoUOnVHIQmFFXzlOPNm5jtWtuF7TuGcI6EQECJ3FK6EeY5CEgfPAf0+d0ciFKrqhIwchQCKDFnXUEfhzWXhOjnyC1eZwxgcpJXXZqLhhp/6OrouFKqux5dmZh/srMGqAlgQ0YG7JjyVcUY3cILAtau0/KcufTH+7/TThh6G8QRKKHTn9jsKM30vZ+nmFxKDQ0LhgFSWLrXdzC9kz5IfTH2BA+TZG9kIHIWJ/jdEJBRq8o6aguNobqcYvJZRSA+/Cloo9C1tVlPGdzhC7ZyjjELpCFah8qHpjsK+30AZWACK0uOxlNnr57B+9kwdT6iDnMBMofBGSSisNDPhgFtdSTf3wZ36OrrFUXh5bpfzjNUOZIOYSlY1yenjAIBb3D4RKXJO8Ffir8GvZx8z9FCMJhcKZ3YaKsoIHSNAjkLjIaFwQDbtQfLclakvcACwRE6OwoKOfNvIdM5iQkKhJlzKToVLBJj7dp2Eakgo3ECa5Js5f2b/Pey7vGjaQY7Cylz2j7/ykwYcSDN9cwl/4VnfXnxCi1gAJYf0CHKCgaKEmpz9El9FQ7iGOr7LQmEZzhgcVn3WNpYiT/15XFufFKXHZh/s1BGsuj6cJTfpMEchFlIoPLNQKNQVOd1iBCZKlmEOud70RuAozJuZUM6o8ZBQOCCiqURC/5maMAUJheDxiIRCV/0baIOSs1JC4Qo+ZpaVTGjWSo/FxDcmJbLSe31m6Ea0D4HLEQq1wYpJKExUhmwmGJ795LsHHs1mWIc65I888bOLT8gxCqAQCvlIHIX6OSzI2Q8A8JWj0J+bOT/fXDVvJh3O4NZKjxtdzVN/HtcchZGlGYX1ZiYAgIhyRgFALK8DAJbcPreZPmjPSChspxzRdHR5wwstgRyF1kBC4YCI5iIJAEXOiqBmJmCpXMwzz8xFbB90+TQnJ1JOtJALvRWCte7BtlAf9uVb7wHe/6vDDMYwVqtigTM/sv8eDlynVHpM9/FqKe/fEB7mgdkbzy55hUG5oUMaHW4wFsF1V1xvHBmFmT50jKn0GCiaTQWGRkNsdBSWSo/flr0G19EglJCjsPKpNiI88apdh++iSSikZzCAUoSPhRFNjlIiHNB+txUliGeCYTY3c57uQ8bVGnrqc7MFkFA4IFmLTvjQvZfy0uOMbiI4qrSNGRq03QehGrJwKj3OiVZKaGD2bkIbnUr/4rPptBtAuJQL2FC4mHl2lTo14buUUVgmLAmFgWvekqJ8a3Y5hpgFQamrNV1foBAKHd++TWgjrlxLMHoOQ2QZApUha6pQ+I2f9QwAwKtfeH/l65xVHYX/t/tKXBcNQuHUHYU13vTyB/EVL3kAn//s+4YeSk8ani90mAOgiFFILYyH0BU5z+fvGXgkBhPJyqszzDD3zT6Q7YQS/Rk5Co1nBO82e2mL1vje17wIP/8d5CjUuJk8MeQjEAqhnAw8pQ2KJlZCYWSxUNhKeAvwzdx8XRShchRG8BBY6hgtU80opPtYX98QfqfS3iHpMry57yCChzkigLqXAwAc1RWXj0Uo1M9hun8RRiFmqhlRcGTms+rlz7wHv/rXPwt3nVTXCJxVXUgz18G1mByFa9Q2G5/9ss/AZzv2HdrxJkchCYUACqEws7AzvenrBhPIwlNwAAuLs9wr5BmFJBSajnnH/xMiayk9vv3Yz0sDMjoJhZuOSSiU/wZOG9CcRAuF3L6T0K1Q0DYiLRQyf+CRnA++U8ooJMdZ6fqasUGpbzr6bkGkUKgWsQltQgHAyeTvYSyOQi148pTKFnV0AACjS9ruvjRbu7cdzuCh2GjOfQfX0RD0P/Gs7ygp9hE/434qYKFICKxHvAAAUmqGACAvwRYWOgq/5RUPDT0E44mWtwAAp2KOozEIhVyusZggodB0SCgckDYJweEsD3UlRyHgKUehE5i7iO0KD6RQ6JKjMCfV2SqWC4V/IXpjw1dJKIxVs4uoKWTeQqqlxyQ0aKEwZjZc3+2y4dxzivcqHegAKIRCdyRCoc47pqzgIjogEwyeZdeX1TIKA5fjWlPp8cQdhe/8L3+Uf8yYvdu+xgxrchQCKMUoWNj08YE7jvDTb/j0oYdhNNFCCoULBNY2fSwjVEYhm/jcbAP2PjFGgGhxGzmM5RmFJBQCnip7cgP7HYVuLhTSBkWThuMQCo+f/Sq8Mvz26hfJUYgo1ELSSByFlFFYIdZCITfDUbiJTqXHnkPXt4anuuJ6gX2b0CbyA7uMnsN5MyLmdbtBDKLe9XjuO7iFhnXixMvbfudDN/KPbRYKGyGhEADA1KEHc+1cR7em0pCQBKAQCldsbm3TxzK6gzk5Cs1nZE8Mu2jTEHjJUUjNTABfdeTzDA3a7oPj0waljnYU2hjCXOYfftnz8NkfXw8HJ6EwUY7CZCRCYVDOKIzJGZzkjmAzhcK++Udz38FCqH8LdcUFUBzWjUUozJ/DdGCHSAmFEeybnzkDfkM8Lf987jk4Ew3riIlH+PDyOqQp588SeNNcTqXHAACmDrWEhY5CYMNzenWj+esTI1lpodDufVKOo0qPJ36IYwPUzGRAsk1uI3XqJyaerQIAgZCLeW8EjkJvJstivIxOQTVCC4WWnoSWYU5tEU6OwkIo5PZtRJvw3SKjUCSr3hl4Y0Nf39QCR3Cnrseegw9DCoXJ6pQWSQB8aEeh/c9gAHBVjIlHB3a5I9iUjNE+cMbwQ+lnAgB+OXsmnuw5WKDh3zHxA3fGinUI4/b6Q5ozCmktDRR5q9xSobDVJLe8BhzdfqFjMZFUCYURH8czmGmhcOKHODZAa+Ah2aAhCEYZhRof8sTQm9k/QXoqLNxDDKRJfqoyZYRy7QjXzgVOGad+PekhiCTSQpJ9G9EmAsdBqNw3WbyCvf6M8yHTQr+hQnDvZiaeg6VyJUVLEgoBwBMxwIBgbv8cDQCOqk7Q1QpTxuZmU5wxpHDwg+lnAwAe8hycouE9OvHnMMM4hMJG0xkJhQAKodDkhkSbYG1P6uX1Cx2HqSSrUwBA5IzjGZw3MyFHofHY+8QYAelGsxFlFAIAsizPoPFHUPZUKZ9OqGwRAKCEpGwMjkJekxUm7mQAgCySC1hThaS+lDMK04gcSfp3YMP921i6VsNzGFZKNInV4nzKpJlAoA7rgpE4Cn116OiLcPKubx0dEFvoKHRqNqSZ52DRVHo88XV0WSh0qPR4lDhaKDyyVCjc5Cgkckdh6o7jGQzVzIRTRqHxkFA4IKF3FT+XPge/c/xi4Piu6h/q0uOpCw2lrpNHR/YLhbOyK5LyzQAALFE5YCN4APK10uNpb1AAII2VkOTYtxFtQgqFylEYUYZdpuaxzIKM0S5xhYwxhCoHKFmSULiMEgSq9Hg2t3+OBgB/LiNAHGSTFxqSldkZo5uolyvOfY6zptLjiTsKyxmFvmevR7oxx44chQAAV+XIzo8aun7bzOr60CMwgkwdWmaenUJwHSo9tgcSCgckA/Da+Fvw3Q/8n+s7GCUUZhM/CY1WhZg2t9RSX+YocLEUuhECiQwAwLWz0rdfCF4rPZ660A9ZnguMRyh0OEOsHIX63zZp9IGHIY5C36kua3Zp5BpzORel4dl5DMlqlqsQjso4C0YQ/wEAftnZP/HncKyjISwQ+uu4tXt95jpYUUbhGmVHoe9aLBQ2fZGEQgBF7vnRsZ1CYetzmgwVAIAslEKh8O3fBwNF9RUnodB47H1ijABd8dJ0SiYYlxmGE3ckLRZn8AFkguF4Zr/QMPcdLOFjjgggkQFA0a2Nu/ZfX1Yv66GHYF56LEYiFAKF+0bQPQwRq26LhgiFn/Vxd+MlT7kdz73/6tqfteYg1YidOZCQUAgA4aoQ0phnxjXel1kwQyI4XJbJjej86tBDGowk1POzfdEQx371eTvznIooljPx53DZURj49m77mhpeJFFIG1kAPuRz+MRSobAtFiSNl5PPgQYAFsm1CB+LUJg7Cqn02HRofh2Qh55wGV/+4gfwvAeurv8hY4Cg0uPlaoGrACK4mLn2Py7mnoMlAgCnk3cy5KgwW8ezX0giR2ED6fiEwtTx5fyckFCos1ZNEZE8h+OH//JL888by9W2kChHoSChsCIUYiT38DxwsUSAS1hO/jkcJ9KJtJavawHHQXXMc9/BY+Ly+gsn/hwui6eBxaXHvEEpTOIVbWTTGC6kqeT4xE6hsO0xnUTUMA5A/pxiYxEKVUahI1Lpmtql9IO4EKj0eEA+/Rl34e1f/Cz8ry+8v+FPqZkJAKyWchNqY0e+Jo58FytVeiwmvkHRMFUy4Y5AKOTU9Xgd5boTnv2l5RpyFBYwJZYyC65v17Voojqwi4iEwnCpuuLCBSzumFpm7jlYqfgATFzsTyJVuul4ww5kB+ZeVUIIXI7fF/fjW+PXVl848edwpfTYs+86a5qm7ziizuXlvcTx8aUBR7I7bW7/JKTSYwDgKsvdmdkpBK9R3itN/CDHdMax6hshgskFkJj4Amel3Aw6E8x25r6DlWqEkIQkFALIHYWub78Y7NRdrxMX+gEUG/ERlJZrMh38P3GRAQC4coxyQxyF50GqhUI6zEEUaqHQ/vlZM/cdrIS8h5OJu0YT5SjkFgqFnLNK+fFcffyD6Wfjo+JK8cKJP4fLQqFncWVOkzs8IaEQ4VLOYZlgOBpZ1+MkIqEQAJxU/h7ckQiF3C09bzIqPzYZEgpNRVnsxcQzCqOV3IQmzL5FbBNHvi49BqIlbUIBgGey6+QoHIX1jEJ6AOZh48yQDLvzIC+jTmiTwlVnem5BM6KujsI8b5GC1BEpR0c8Elc/oCNA5L8nnHhn6ySWz19uaZOLcvlx1WFYyiqc+IF7OaNw8cKvHXAk+8EZQyqqk3gS0zN4eSbnsBAe5pZmULY9m1MSCgEArjqQ9UfQ1BOoRV3QPsloSCg0Fe0onPhJqM5HSvg4Nimew3NHYbSa9gZFw9RDwvftFwqd+mZr4hsUYKyOM/VvIUdhLhQ6vvkdcT2n45KHrm9OspIbtWREQqHnsLw7bryctqMwTZRQaGEzE6AqFM5KQmFFd5h4aZsWCn88/UTMb3/SwKPZHRndXhMKI5qjV2oOC+HDaer4YgEMDG+Nv2rt6xldXwCApxyFwdzO0vI6FQe7MosQZkJCobEoR+HEhULtZkhHIhQCQMzlJjReTXuDonGEfEh4IxAK1x2F096gAGXH2XiEQuHIfwsnIQluJn8HbmCuo/DPf/JT8AXPuQ9Pv7tj2Y4nRU9G1zcvzY24/fOzhjGGkCmhcOIHdokWCl07qzaOg+KZG7jFloaRozBH/y4ScFya2ek4A2ShVV0oFOG0718AWKm9RGjxYQ5jwPenr1j7ekY50AAAX8jfw+xoHKXHzCntlWifZDT2PjHGDlMLnomXHsdKKMxGJRQGQAakE89G0nDlKPTGkFFIzUzW4Kr02LGg2UVnVOkxS6nsydHNiAJzHYVvedUze71el1FrN+yUSVVDl4SPR+gHgJDPAQEkExcKM5VR6NgqFJZKLX2Xw+EMaSaqL5r4RlQLhQIMR77dGYW1K0sNp1DEGEXM3sOcNh8kCYWSmRIK58cNXd0txHUcpILBYYJKjw2HHIWmoroLTj2jUJcVjEko1BuulJqZACgchb7BjqSurDczmfYGBQCcbHyOQv1vIaEQ8IT8HXgGC4V94UrUdhLKR9LPqcQZz/0LKKEQJBQK5Sh0PDvXWHecFOP2HY4jVX5cdRROex2tfxcZWGNDEFtgAER92xpN+/4FgFhHNFksFCZ1cT//A3oGI8swh1xnHZ2MQyh0OEcCtV8iodBoSCg0FeUonHrpcayEQmFpfk4TesNFIb0SB1JMC0bhKKy5Mia+QQFKjjMLml10RYtinIRC+EJeX282IqFQvVe1yD1lMiUUpiMTCnUESDZxoTBNVTMxSx2F91wu3peeW5TWlht4TP3Arvhd2CsSArKZSVb7NzByFCJS1UmxxYaKuy8FuDJvmIOoWQ3SqDCVHI9EKHQ5K4TClDIKTYaEQlPJS4+nvcARaoLMRtQxNXPkJjSj0mNESQYPqplJYP81dh1yFNbxlNgyJqFQ/1uciQuFQgh4SiicjUkoVELw1K8vAIhYCYXueO5fAEhc2T0ym7jQILRQaKmj8M6TwkUVuByXm8SGH/+mCxyRedylXJdXj+x1nAGy0KqeUUhCIZDowxyL4yEYY/iNt37O2tcF5QTj7PRW/vHJyTiamTicIc0dhbRPMhkSCg2FMSo9Bor8kcwdzyZUi556AzZllnEKVwmFs8DuRSwAuPWuqhMX+gHAFTrDbjxCgz+T/xZXRIBoKZmZAFGaYQZ5ff358cCjOT9c1cHZI0chEEvnu3DGc/8CQKL+PZNvhqCEQs9SofByqTnHx9x9knd9rZQex9MWk3Qz6Gfed2XYgewJw3pGoZNM+9oCRWf61LF/Df01V/5Z5XNqKAacnt4EACyFD98bR2sJ12FItARFpcdGM4533BjRjsKJlx5DW6698QiFIhcKqfR4GaWYQzczsfc0VOPyWmkPnZQhECHAAH82HiFJC4UAgCQEPPvfu7uwjFL4kELDbDYeIUmXlnuCNim5UDimZkQAEn34OGFHUpikYOowy/PsLD3+4uc/Cf/1vY/jlc96AgLXwSqW/x67i2zPGX2Yxez2hrCGrsckFALZiCqvPsDuq3zuJGSoWJzeAACs2AxjeQpXHYUkFJoMCYWmQl2PAQBMu+788YgMQm1QGHXzwjJOcUllFILbPx3xulA4cUehEAKBCmH2RuQ4q4ieyWqyQuEiSnEFWmiw05HUhM5b9LVj1OIGAPvCEi0UjuewDgAyT97DfMJus0WYwlP3r+vZ6UY6Dlz8k694fv75B6/L9+sHxZ24zN431LCM4oH0T+QHls9jnLE1odAlIQmpOszJRpAju359J+74BrBcyN9ByOy/vhqXM8S5UEgZhSZj9/HSiGHU9RgAwNUigPnj2aQwlW/GqJsXFlGSZxRiBA1r6jrh1B2FYVKUpgYjchTOgwCpUBd7wqUxiygt3b92OpKacOtC8IRhahPKxiYU5gd20xUKz6IEDuQa07G0mUmdO46l4Pm6+BsGHokhhKf4jOjnAdQavFiIdBRWcVNaR2vXN0bgKPzqT31q5XOfHKMIFzKjMLI4g7KOwzlSQRmFNkBCoamQoxAA4KhFAA/GEeAKIC+jJqEQWEUJfKYeEiMQGpz6if3E798wzjDPM+xOBh7N+XE08xBCCdsTFpIWYVy6f+0X+jVB2f068YgInuhn8LiEQqGqFJwJZwWfhSlcpoT+ETj6AeAfffnz8KIHb8M/+NovGXooZnD20fxDJux27jQ6CilHNo8xGkM8xBc9/0mVz4P0bNI50AAQKaEwHlFOsOx6TBmFNjCOlcEYoYxCAICrNinOiNxI2h3p0UkZlmFpkTcCobBeeiyyZNJZScsowRWmSo9HdA+fBC5CeDhCCEw4QmARRsUnIxEaAOkYjYUDj6UkFKrDOmcEm9AyXAuFE3YknUVJXno8hucvALzgybfh33zNJw09DHMoHVbavhbhDMhq/hYvCycfD6HXIGwEjkLGGHD5icDNDwKAbHaYrICRPX/6EC1l6XE6IqGQMgrtgRyFhsK5vjTTFgq9TC7i3WA8biQ2uwwAcFMSClerklDI7d+o8NpiNUmm/QBcrUpunREsYjVHvoMFVKbXhB1J4WpcQr9m5jlYkmMUAMBUV1x3BF3pyzBfrimmnHG2CFPcw67JT0Yk9Gt+0PvS4pOJlrf9zw88nn/MLa9wYGy96zFHBqRR4+ungu4MrGONrOcbfgM/9sp3IdPxLuGtYcczMMlKCYXuSK4vtKNQCYWp3U7nsUNCobGojMKJOwp9JRSOqRECC64AAIJ0uhsUTRiWNuEjKF10ajNqmk5cKFyUgqhHdCJ8HLhYCiWcTLhr6iocl9CvmftOUVo+cUchU0HjvqXNLtpgMykUehN+Dsc3P4yX8N+Vn4xQKPx/r7y6+GSim9Fv/dHfyD9mtguFWG92AYDm6FSuo/lYstwdD8HRJZxCHS5PXChMVVdrMSKh0CkLhRM9xLEFEgpNRTkKbX+w74uv8kf8+XgyCp25dBTOUurmFVWEBvs3KnVHYZZO+wEYraSIFsMdlePsyHdwphexE3YULitC/3iu79xzsBIkFALIy4I83/6DnDJcVSnow8gpcvKBXyg+GcHzt87JvORin2hnzbg8R1vezISzkrgAIBFqCzvxOdpRjkJnLI5CyMPYU6h/T3hz2MEMTBaqw2h/PIYZ16GMQlsgodBQdNfjKTdDiJIM/gg7prpHSigUq8mfpISxvL4ZeC6O28y6UDjtB2C4lAucCOMSGU4CFwuhNqHRdAX/UAn9GRjAnS2vtoe552Cl3rP6NH+qcO0oDMYTHQAA7qwkFE40LH+Vlp5XI3RGnxyXHFYTdRQGKP7dXNi93uQcWIjC2bzU8R8TbwzoZEooHFHDqSPfwalQQuFq2kIhQrnGZCMSCh3OKaPQEuzfmY8Vpm4gyx/s+7CIknyRE8zHc1Lmzq8Un0zcUr+K5PXN2DhEBqfWzCSbuBAcaaGQj6ts8ch3caY2KSIkoTBj43Ijzf0iozBaTVcojJIMjpCL+MAf1z3sqioFF+lkM86y8ty1eGy4gRyIWeAj1TlnExUKfVZswm2vUGJgWKI4sFhBudgn7ih0U9UwbkRCYdVROO19khOrf7/Ktx8DlYzCibq9bYGEQkPJuNyk8IkuYAHgLEpzodAdkaV+Pj9CKNQCZ+KW+iQel1BIpcdVolCKLAkbl6PwOHByN0O8nK5QGEVyg5KOTCgMXJ5nFOry+SmyiBK4TM5h/siamQTlOJMRuum6wJdFowssrw03kAMx9xwkUHPTRNfSZUchs9x4wBiKJmIAVtpdGE+74ZQr5HPYHZFQeOQ7uCXUv2fiQqEbyzWmUzaZWI7DGRJBGYU2QEKhoWSqsQOfsNK+CBP4TP37R9DoQjP3OW7RSZlEleZmGIlQWJ9RJ26p10JSNrL8q7nnYKGcDfGKhMKMjSefEJDdNSOmhOAJC4VnUQofcg5zR9bM5Hg+w0of2E1UKHTDkjj4ia8bbiAH4sh3EE1cKPTLQuEIMgrLpcervOHUdF3fAHCUyX+/dzQeIenYd/N9Urq6MfBohiVQefbuiK6vyxlSyii0AhIKDSVTpXpOFm555XgpOwrhjicfae65pQXOtE9ChSprG4uj0KGMwgpaSBJjFJK4PO1OltMV+3UzIjEyIRgAYuWCTcLpbkLPwkSW5gKj6moNqJxRTLtzuRfJDfh/feAvAXc8beDRnD8zzymVt03zWayFfmAcjsIlyhmFah2dTHcdLYTACaSQFJzcPvBozo+joMgojBfTrrzyU/l88o6uDjuQc6TS9XiisRC2QEKhoRSOwmmeggLKUagXOe54HIVHvlOUHk88hFk7CsVIhEJeyygUE38ARiqDUoyo0YUmduQiNllNVyhM4hELhVweTiXhdOfoilA4oq7WgIwP0K7gqQqFebbb/OqgwzgUR76DmByF+ccMdmcUcsYqpcdaNJzyMzhMMlyFnL/8y3cMPJrzw3c4Fkwdxi6uDzuYgTnK5PWdnVwddiDniEvNTKyBhEJDEY52FE5zcQMAp6sYgep6PCpHoV901BQTD2HWD4ixOArrGYUima4jGABi5SgcmxsJAFJXLmKzCXfFjSI5P49RKEzVMzgNJyoiAVhEKTx9WDcyofAkcHGmOpeLaJpCA1cHld78ZOCRHIa5Vy49nuah3TEr3HbWNzNhwLJUenxDyC6w4a3H275l9CwWCxwxuc6aX7pz4NGcH4wxhI68vulyuo7COM1wJOQac0xCocMZYhIKrYCEQkMpSo+nKxQuwxAOU5kq7njykcpCYTxhtwoAIJML17E4CuulxyKZ7v0LAHGs/v0jExmAQiicctfjRF/fMQrBylE45cOcszAphMKRXePjwM0dhdFimkKhk8r3tj8bqVDoO0Vg/gSFQiEE3uZ9X+kLlguFYPhDcV/++SmXDYniW+Pr2N2V5U35b88EG1WzCwCIXTkvTVkovLVKcInJeXp+6baBR3N+uE45o9DuSISxMz4bwEgQqtTWnbBQuFqVNmjOeITCI68oPY5WC4ynqHoHRpZRuNbMZIKbkzKJdhQ643vUZJ487Z5s2SKK0uMxCsGZI0WkLJquULiIUnhsnKXHR76DM1W6uFrcxHhWGN1xU+k2C46OBx7JYZh70y49XsWZbpsHwH5HIWfAD6SfgwfYI7j8rM/F8vf+E5AB8dl0hcL4TLopb7FjXFlbgNpN6p0ACSBWUxYKY9wL6Sh0RyQEVzIKJ9y01QbGNauMiEyXHovpLW404bJU0jciR6Hr8KKj5oTL2gCUMgrHISStlR6nEy89TuQCgI3MjQQA8KSjcNpC4Zgdo0oonHBHzdMwgTvS0mPZ2VqF5S+neQ97mRQKZ0eXBx7JYTjy3UlvRm+F1X+z9RmFnCGGi7cmr8Wf3PGpWHnyfZstrm35zvGyuvkoAOAWG58rWATSMYqJRkMAwK3TMwRMPYNn45mnZddjKj22ARIKTUUJhW4WAUIMPJhhCFVZbgoHGFkzhJhT6TGA0TkKnVozkym6GMqkSkji7rhEBgCAL104PJmukJRoIXhkIhIACJ2LO+HO9IsogTfSrscAEDlS7I8n2LlcCIFAyPf2/Hh8IgMAzH2ex7xgglmyZ4vq3GW7o5BVPmaIfeWwWk5XKIxuSaHwzBmPiKRhgfw38XB687NmWc7f9C8NN5BzxuEM0YRjIWyChEJD0c1MGMRkbyItoiV8PG5CTaI7aq6mt3itoE+S2DimorqjcOpCYRKPV0higRQKnXiabiSgEIKZM8IABU8V7U06o3C8zUyAonP5FIXCVZxhBul4Pz4ezwa0zNxzcVMo53c4vfLFxWnt3yzszgJjpfUVZ0CqhEK2uj7QiIZH5zOuRigU8rn8NznxdHOgl7euAwAWbN6QbWQvLucI9SHOhNdYNjCed93IEOWN10TLF6NQimgpH98mNFPXN51w/hWAPMQ2G0nX1LqhkE28mUmqhFI+woxCrspi3HS6Yr9u1jNGx6hwpYjE0mk7Co/ZeHMoU+UozFbT24jeXMWYQ96/s6ORCoW+gxtQ+YvL64OOZQiWi6pQaLujsLy+4pyBB9IJyyYcD5GpjMLQvzrsQA6AzuRzk+nNz5rw7DoAYMnH5fp2OMNSJQOLCd+/NkBCoamUM/mSaQqFD1z7rwCKvMYxoYPySSiUQuFouh7XlcIJ5iKVSZWjkLvjE/udmdyAuhMVkoQQuDt7WH5ycvewgzkATDkKeTLdOfqJj/5i8ckIS49TlTMqJpiBdXMZY64chcw/Gng0h+HId3JHoZig6yw8q76vbRcKy45CxgBHdet2piw0qLLreIRCoXcshUI/PZtsBFe8uAEAiJxxNZxyOcNKyH2BmHC8iw2QUGgojuMU9fsTFQrvO/sdAMC1q58w8EjOH51/NWmhMInw2R/9fgDjEQp5TShkE713NZmKTXBG6Djz5tKF46eLSS5iV3GGj2XvBwDwez5+4NGcP9yXczSf8D38p9//d4pPxugo9JSTboJdNW+dnRUdrb1xCoUzz8FN5ShMJ9jwIqyX1FsuFJaXVwwMnhYK0+muo/lKOgqz2W0Dj+T8CZRQ6IoESKYpJqVLJRS6I3MUOgxLaKFwuvevDZBQaCicsaJ+f6ITpJvI7K9r933awCM5AMpRKKYsFP7KO/Dg6rcBAGI0pcfkKCyTqmYXjjc+R6E3kyKDg3SSWZSLKMED7CMAAPeejx14NOcPV+KJk03z+QsAIUpu/hEKhUKH5UfTEwoXN5XAAAYE48s3A6Sj8IaQQmGmnDlTIl7UHYV2ZxTyWkahPqybcvyHG6r39Xx8QuH85Aoyoa75RBuaZEooTLxxCYUuZ3mjKTHBRlM2QUKhobicIYISTya4CQUATz383fn4FrGZ6piKaLqNEPDBX88/HIuj0KkJhWyijYgAIEkzcNWsxh2ho9CflxZuE7yPF1GKq5DZQfz4zoFHc/5wVY7pTDQjGAAe5XcUn+gu0CNCC4VTDMsPdbdUdjKqkPwynsNxxrRQ+PiWV4+PZFV7Lo3I+c4ZQ6CewX423QN3P74OAODHd2x+oYVcngc4hXruTFQo1E2YshF1PAZkTNOKHIVWMM7VwQjgnCGE2lxP1FGoH/7+0RiFQjnp83iiDz+gWgYzEqGQcxQnoAB4Nl2RYRGncCEdDO4IHYVH8xlCoeboCQqFyzjFZab+3bOrg47lEDgzKRR6E96EZkpX+MBTXz1KRyFmcm3hTlAo1N1Sl+741ldlbri3AwDY6SMDj+TiScLxOgoZA4Jj+d71RAykyVDDGpR5IoUk9+T2gUdy/lyeuziFzAqeYtdyAIVAOjLXt+9wyii0BBIKDcVhKDahE+2cOsuko1AvBsaEUELhFJ0MTQg+EqGQMaSlaXXKjsJFmMJlcvHORygyHPkOznRp5gSFwlvLCFeg/t3zq4OO5RBwVcp1nE73MOcklWVPN57yeQOP5DDMT+Q19iZ4YBcpoTAcvVB4FwCAn3544JFcPGvdvG3PKCztWBljmJ+U3rvx9J7BAHCcSgFtdnl8rv7LMw+nQguF05ujAcDRjbaCcTkKGWNIVAQXptyMyAJIKDQUx+GIJu4oPBLSyTFTgbZjgql8M2/KQmGpDEawcWQUOozJzCcFm3BG4VmUwIXcmLARCoXHgYuFLouZoFB4enYLvm6GMEJHIT+RG6+5WAATPfE+yeQmxT0ZX1kbAFy9Xf67gnR6929yKoXCJLg67EAOzC1fCoXe8qPArWm5CuvZX7Z3Pa5nFJ4cHSPWTR8n+AwGgEtCC4V3DTyS8+fK3CschRNsOAUAPJJ7ROdofPvglKusfio9NpqDCYXf/u3fjk/6pE/C0dERrl69eqgfM1ocVio9nmBGYZikmENuziqnhiOBKRu5l05XKBTlMpixNDPhDALl0uPp3buaRViUHo/l+pY59l0shHIUTtDNEN6SmV8JHEBnro4I9+i2YhO6eHTYwQzETB3WHY3wGQwAd9x5NwDgSJxNr3RRvaezETZBKBP6t2OpStzwf/25YQdz0UTV9WV26QkDDeR8KCdAc8ZwaeZioV394QTX0kmIGeQa8/jqOB2Ft4SMAEmW0xQK/UQe1gVHV4cdyAFIXXnvsomaoWzhYEJhFEX40i/9Urzuda871I8YNQ7HpB2Ft5YxjrVQeHx12MEcAH06FEy4W9uHrhenSGMpPQaArDSt8ok7Cj2ozfcoHYXOpB2FunRxwS/JwKiRMfddXIMq9zmbnlCYphnmkBmrx5euDjuYA3H3PU9EKFxwCGQ3PjD0cC6UK4s/AQCkV54y8EgOy+0nM/z95H+Rn3zwXaNq6LEVVdL3+9kT8XPpcxC96p8OPKD9YDVH4eWZh5uqqzVW0+tqHZY6eV+6PD7B/2Tm4pZyFIan1wYezTD4yu0+uzS+65s58tqyCR6028TBhMJv+7Zvwzd90zfhWc96VufvCcMQN2/erPw3VRzOSxmF02uIcHZ6Cw6TCzpnNq628ADgzqVQOMumO0F+6FpJJB2R4ywloRAAsIgSvNb9KfnJiK6v5sh3cSakUJhN0M2QnMmF+8odV3aO5jhw8ZhQTroJCoW3zk7hMlmqeHJpfGVPAHDlOMAHhXTiLD7yRwOP5mK5K3w/AIDd9fSBR3JY7r4c4F+mL5efZMmkDt652oD/bPZ8vDb+FrDbHhx2QHvCy+dRylF4A1IoTCbY1frWzesAgKXwcWkeDDuYA+BwJg8iAUQqKmFKrOIUl4RcWx5dHl+zmoV7FQDgrK5N6wDHMozKKHz729+OK1eu5P/df//9Qw9pMFzOEEFtricoFC7zsjYO+OMTCj3VydkX0WSb1SzjotSLYTwPiXJG4Tx6DPipvz7Jh2B4er345MYHBxvHobgy9/Kyp+XZ9A61soUUCqORNkO461KAR4Q8xc9uju/9u43Tm4VbxZ+PUwwOXAcfYrL8OHr0j4cdzAVzT/YwAGB299MGHslhuffyDAsEyIR6Lk+oKQJT2V86IsN243fdUXgyc3FDOQpXN6cnFC5uyTl6yWbg3PKL24IWk9LT6R3WXVtEuAo5X42xWc3Ck+srnsXA6vqwgyFaMUoofPOb34wbN27k/73//e8fekiDMfM4QqhclQmdgGpWSig8Y8f2r24a8Mvl1BNauJZJ0yJYm5fzCi0nq0+rv/xPgA/9+jCDGZDkrLRwP314uIEcCN/lCB25SVnenN5pN5bXAQCxP06h8PZjHx+CbHaxevR9A4/m4jk7lZvQFXxgRNEQdW5w6dSIbn504JFcHGEc43Yhr+/lu8Z9IP+Eq3MIcJzqmIgJrbecRFZt6AMtx3IxqTx8BgbP4Tjl0kgQnU5QKDyVB5QrNh94JIdj5V0FAGRn01tjPX4W4TYmHYXsaHwNxZg3w02VQYnT6Tx/baOXUPimN70JjLGN//3u7/7uzoMJggCXL1+u/DdV5r5bOAon2MwkVg/9Mz5OJ8PxzMeZboQQTs+NBAC85CLkYjxB8hkaFuPR9LIo08X14pNP/5bBxnFIFt70RAYNC6XQkAbjLEv1HI7rrnKbPT49oXChhUI2G3gkhyXy5BojWUwnA+vaRx+GpzqWX77zvoFHc1he9WzZwKPonjqNLLs4zeBn0lH4RS95On7kdS+F5xjlDelNuevx5bncH+nS1HiCQuHyTL6XQ3408EgORxxI1xlbTu/6Xj9d4TLU3mGEQmHgcnxUqPXj2UeGHQzRSq/gqDe+8Y14zWtes/E1T33qU/cZD6GYew4+IqbbzEQv2ld8fGXHgMw3O8UcxwgndcJdJmBFft+YHIXflXw+3uz9UPWLI2zmsY1MCYUfCR7A3fe/eNjBHIg4uAOIgfTW9BY5bngdACBGKhQCwHJ2D7AEshsfGnooF85KuVXCEbtVACDxToAISJfTEJAA4OZHP4B7AVzDZdzmji/brMzVIx//7M88H6f/Zi7b5k5kvXVjGeNINQT8uAeeAP7kcWWc3XtZHmCE3mV5/04wozBcyPdy7Ix3jk5mtwM3AHc1vet7euNRcJXVjxF2pw9cB4/jEp6GDwNn0ztst4VeQuFdd92Fu+6661BjIUoc+U6p6/H0HIWpEgrDkQblnwQubokj3MOuT9ZR6KAkDvLxCGnflb4SvyGehn/tv6344gRzRtOVfF/HI72HASA9ugM4Bdhievk5XiyvLzsa3wI25/gOYAlgOR23mWa1HP8mFABS/wpwBogJCYWnj0nh+4ZzG0Z89+bcfTkoHIUTEQqvL4qyRX48DjdSOYXoHiUURkooFCoKY0pESihM3PE6CrWTzgsn+Ay+IcWzBT/GkTO+hoC+y3FdqP3BBO9fWziYD/1973sf3v3ud+N973sf0jTFu9/9brz73e/G6en0ukPuwtx3EGK6jsJMLdojb5zl50eBky9cs+U0hUIXRUbhHz3njQOO5HwR4Pj1rNZJUoWKTwr14E9GmmEHADiWB2fucnr5Ob4SCvnR1WEHckA8tcF2wumISJpoIa/vqDehAPiRdMTe+eh/G3gkF8fNa9IBHfpTkAmBuy/NcEtlYYmJlDB+5GaI25gSRY/G4SZcxcXh8t2XpRNWry/YBIWGVB3mZO7xwCM5HN4l2cQjiKbXGTe8JQ+gl+44qzYCl+O6akY0xcNYWziYRP2Wt7wF3//9359//rznPQ8A8HM/93N42ctedqgfOxrmXkkonGBGoVCOwiwYp8hw7Lu4JaRQGC9vYNzFP81oR+E3Rl+LL7rtGQOP5nyJUQv/TyYoFKosqHTEQqF7SWbYzaLpCYXzVG5S3ONxbEKbCC5LodCPpycUZgv5b45H2tVac3JJimUn0UeAR/8AuPPpW77DfhbX5QZUzK4OO5AL4q5LAX5BSMEh/OgfY9ypm5KP3Fzh+dBC4Tg6pj71zhO89Kl34AlXZwhcucYSwVUAAJ/gYU6q3LHCH69QGFyWayxPREC8AEb8b62TKqEwVA1dxobvclyHihcjodBYDiYUvvOd78Q73/nOQ/31o6dcepzFS7PaU18EqmwRI13IzjyOU8gT7ujs+iSFQu0ofAyXYXkzvjVE/Y6doKPQieQ9LGbjPA0FgNnVewAAx4k67R5hh/Y2jjK5SfFPxisUHl+VjtF5egvI0lF3/11jJRfuyUgP6zSX77i3+OQjvz0JoXB1U25AnTHHBpSYeQ4edmXTlvij75mEUPjY9euY6RzokTRC4Jzhh/7SJ1a+psVuN5qeUJiFZ/KDEYtnVy5fwUp48r28eGzU/9Y6ier0nM3GOU/PXAfXhRIKV9cHHQvRzuT0J1uY+w5C1cyEv+tfANen1XXRUQ99Pr867EAOBGMMIZeOwmQ1zXJ87ShM4MAZu8AST6/rsRtLIYnPxis0HN0mRQZPxMBv/9thB3OBZJnASSbnreDSeIXCS1dLmcwT6ZaqYerfqx07Y2X2MZ9WfDKBPOg0E1jdeBgAcOX2uwcezcVxc36//ODxPxp2IBfE2bVHAAAJ80ctruiMXD+ZYIRPpDIog3E2fQSA204CPA6VY7eYWOWGbtAzkuiAOpfnLm6ASo9Nh4RCQ/EdjpiVDJ//z+uHG8wAeMqN5B6P8yQFABJHnmsny7OBRzIMrhIKUzGuaejKvKExSzy9nFFPC4UjFfsB4ParV4tP/s1rhhrGhXN9GeMyk/PWyZVxlLU1cfXSEW6qiIipLWS1IxgjdgQDwD1X5vjJ9EUAADEBMfj33/9hfAV+EgBw55XxNpqqs7r8IAAguPnHk8g6S65/EACwDO4ctdNdO9pn8fSEQhbLZ7A7G69QePuxj8eFOmy+9ciwg7lguHL1uyfjcATXuXrk40NC/ds+8C4gTYYdENHIuHboI4IxhswpFUg8+gfDDWYA/FSXtY1ZKJQb0DScnqNQCAFHlR4ncJCOaOH+S2/6THzty55W/eIEHYWzVL6vvRGL/U+8bdwdYdt47NYKVyA3Kd6IMwpvO/JwQ5fGLKbRBEGjS/nGnEEJyPw63VhsdTZ+ofBP3v1z+cf89geHG8gFc/cDDwEA/OTWJER/99YHAADhyRMHHslhmV9RObJiNQlHcBlHrSvd+XirNu449vE+oZzPE3EDa2aRXHPonMaxcduRj1/MnoUzfgLc+jDw8P8YekhEAyQUmozjFx9PrH5fB+XP/7/27jxOrrJK+Pjv1r73vnen0519DwkhBGSTCAFEBB0RGQZHhEFgHEaGUWYct5lRXreZUVFhHMVxhxkUdRBlSUAgEAgJIfvenaT3tbqquvbn/eOp3rIRSbpv963z/aQ+XXXrVtWp7tyqe889z3lC1jyTApAZShQm86+iMJ1VOIxcRSE2MlnrJAr9bgeNZUed4V37r9B70JR4zOLNDU21crK/MuThlew8ANKBapOjmTi9vd24ctuvVYfFgN6R7csNjcmX2VKHDM1q7Q5Z9+8Lun9d0q7/xoNh6/+N0wdfHrmx8H3mBTLBls+qoVXl/i/nQcLBE2sBQIVqTY5kfAULSsiqXMVknh0nOTI6UejyWbcyuDjg4qDSLV7SXXtNjmbiRBJpSrL6+8hXYs1tuMjnJImTfY6ZekH7VnMDEsclicLJzDGqojCPKpKS6SwBpZNnwULrDmvLOvVkJiqRf4nCVCY7pqIwa6GKQtCzeR1j9x8mPhCTpDIj27DbwolCu83gB76/BCCtrDu862jRHn0QGjN8lu5/VeR3DTfbTkbypz+SUopgpg8AX27CHitTuQlbBiN95gYyzpRSlPVuAuDgqn8Fl8/kiCbOrPIAh3MzH6d7mkyOZnwppShM6M9oR/E0k6MZX8UBDwMMtYfoMzWWiebKJQo9PutWFAbdDg4xlCi0foJ/SEc4ToWRqygstmZVcJFfF0PtVNP1gvbt5gUjTkgShZOY4cjHuXChJ5KgFD0EKFhc+RZrT11qKFGYhzPiJtPZkR6F2MlkTQ7oDHPZj5M0Gmid+EBMEomnCeWGpnotXpFUXKwPPo1E/vRISvTo/lcDDmv/bf0uOwOGThRmt/3G5GgmTiSRpgw9PDNYas1qhtFcPt2HMR7tMzeQcbavvZ+FajcANYsuNjeYCVYZ8tCOnpyov+2AydGMr95YimlKJwr91fNMjmZ8FY86mZNPFYWpTBaP0scO3oB1+8gahkHUnRt6m0f70B0DCSqNXIuEYJW5wYyTIp9OFO5L5wqC+g+ZGI04EUkUTmb5mijs7cFjpACwBa3ZmwHAyCUKjTwcepxMZ0fNemytocdwgorCPNrJCcdTBA29E+uw8GQmAJXluuLKlY5A1mIZ7xPIhPWsqTFX2VusObUZhkG1vQ8A774nzA1mAnUNxIdP1nmKrD+k3lmYm708fNjkSMbX3jfX4zcSRIwAzsr5ZoczoWw2g5hPH3BHO6ydKDzYHaXR0PsbrorZJkczvkr8ruGZU1N5VPUdHkzhJwGAN2DdikKAlF9/PtsjbSZHMnG6+vopMnL96y2bKNQTP+5LFuoFkiiclCRROInZnEclChMD5gQywcLd+kxoHLelh7XZPbn3lkfDyockM1kcuaHHuqLQWolCp93G/qzeufll5ny9MI8ShQODqeGKQqvPmlpTpf/OBgqSeTIxUUTPPpj0WjtRCPCqe9XIjWzGvEAmUH9XK04jQxYDAtY9WTfEXr0EgLLobksn+7O7nwKgvXAJ2PJv9z9bUKd/9jabHMn4am7vptzo0zeKG02NZbyFPE7CuURhtD9/EoX9gymChj52sHusnSgcSpQ5k32QJyOwYp26PULC8IDXmu17CnMVhYezQxWF1j5RN1Xl357CFGJ3HTWjZp5MDT/Yq99n2G7ND8chnlwDYiMfE4WjKgo9LhcXzrZWL0qHzcZ7kv/CVYl/5bHMBXphpMPcoCZQJNKH3cglfy2eKJxRXUpE5frJRvLjM9oR0/+XMwHrtoYY8seia0du5MlndbQ7N7TcCIHdaXI042/a7KXElROviqEsOtGFUoqGrucASM95j8nRmMNdUg+AK3rE5EjGV8uhgwAkDTd4Ck2NZbzZbAY9dn3CKnP4NZOjmTj9sSRF5IpHfNad9BHAX1BKXOW+hwbyo6ow3aOr68LuCjCs2f/a5bDhd9lpUbn/v7FuSObHPtZUIonCScxwesYuGGgxJ5AJluzPDWtzWrv/ldevzwI603lShTTK6IrCxz9+EUGPtQ5G+weTRPCxTTXQO9Q/J48abcdzs4emcIDT+xZrT20zywM0Kz38ONq2x+RoJoY3rhOFtqD1J7oI+P0js2rmyU5svFfva4Sd1j4AHTKvpphd6EkfOve8anI04+NgZ5jGrK5Smbb0nSZHY46CSl1dF0pY+4ROZ8tBABLecssmGUZ73XseAN7m502OZOJEBvpwG2l9w+KJwooCD21DM5bnycgcI9cGI+615rDjIYU+F2F8ZJy546SwtU/iTEWSKJzE3E7H2AV5ciYlM6APQpMeaycKbWWzAChNtUC83+RoJlYqrYYrCl1Ol8nRnHnnzSylIuSmvsRHH0OJwl5zg5pA0bAeAjRoC1j+QCXgdtBq1ztz/Ud2mRzNxAikugBwFVlzNr7RivxuYuTagKTyo59sJqwPxmJu6w8tB13Z0ObVvdz69lksURjphME+tm16GbeRYtDw4i2faXZUpqiYNpusMgioiGWHucWSafradULYXmD9/qIAA/7pADhj+TNqI9qr32vCcFt+9vLyoId2ciPMwvlRMOOM6veZCVp7H6vY7wIMBty5k8591m4LMRVJonAS8ziOOsDOkw9IYvogNGPx/leBkhoOZcuwoaD1DbPDmVDJdBqHkesFZXOcfOUpKORx8tKnLuU3f/0OwirXizI9CKm4uYFNkMFwHwBJR8DcQCbIgFfvzCW6DpobyARIZbIUZHTFaFHFNJOjGX8lfheDQ4nCPKkoVLmTkimv9fsTDkmVLwbA1v6myZGcRCalTxgf+CP87AZo3QIHnofufZBJk/3N3USf/DzbjvSxdlcHv33+ZRL/toSBry9n+Uu3A9BetDwv+xMCTK8qY6PSJ2j5twWw9X/NDWgc/HFnCx81HgfAW50fE9Y4CnKTEaUH8qaH3WB/JwAxu7VbuwBUhNy0q1yiME8KZvyD+n0ahXUmRzK+VkzXBUGb+nPHChY9gTOVWe8I3UI8x1QU5kfJtSOXKDT81k4UFvtdtFBCHZ0Q7TQ7nAmVSKVGbtjs5gUyjuw2g5DHid0bIpM1dM++eB84rd/XbWj2wZQzaHIkE0P5KyA2MhuwlbX0DVKOro4tLLf2TixAWdBNTLnBIG96FBq5qn57yNrDnkYLNZ4NzVAR2a4nrZkM30uZNLS/CWu/iPKXk2laj6N338j9u0Zm4t5szGWp2okf8L70U7KqinfbNwHgzkQJ5s47hy65e+Lin2T8bgdveM5hRXK3XvA/H4HyBVA+d+yKsR6dcCqYetU87a/9msttTcTsBfguvs/scCZESUkZ8T1OPEYukV7cYHZI4y6Z+4yOOwvNDWQClAU9bMyzocehZAcY4Cmx9snYv7qoke+/eIAWJROaTFaSKJzEVMUCdm2pZY4tt+HkyQekM6EThZ4ia/e/Kgm4aFI6kZKN9uRVeW86nR65YcGKwtFqiwOEu/wUEdHDj4PWTxQa0aFZcfOjIslZWAWdYItau/cVQHNbJ/WGrtow8iCRVBYcNfQ4mR9Dj125HpTe4vwYugjQuHAl4bVeQkQYbNqIt+GciXvxbBZ2PUH6+a/jaN1IxF9Hp6uOmr6NuFQC0Hnqk31TLlU7h6832tpo5NiTFkfO+TQ1i951hoOfWtrr30N096P4Df17bfn2u/lO4SeIVqxgeqGLmb4I73rpRhypAdT7f4Bt3tVTqn1GWZvu09fR8F6m50EPWYC6Ej8dqpBpRmfeJAozkVwfaI+1J32EsRWFKtzC1Nka355wPEWVagcDQpXTzQ5nXFWEPNx5yQyOPJ/rsymJwknH2kfoU1xdaQFrkvfz0dJt/GPkSxC2fqIwm1UUJjvABsEya1erFPlcwxNdxMOdWLvLyFjpZHLkhtUThUVeejsDFBkRiHaZHc6EcMZ0wiwbyI8DFV9JDewBb9z6lcGthw8AEDc8eNzWrxgtC3pGhh7nQUVhMp0llOoCGxSU15odzoSpLS3gBftC3pF9lZY31zHjTCYKo9062eQrpj+W4tDhJuK71xLvPEB9+9PUxXVv06FvwkD0EIHooRM+3RbXUmLeGpZE/8j6ZV9j5Y4v4h/Q26UK1WA4PFBQC8kIXPMAuPzQc4CahgvP3Huaov7yqgv5u9hPOdTSyo+yn6La6OSf++6DvmPXNR65id22GXy75n4Ky2qYVuzTlxL90+OcBFWno6QyWQrjh8EGgcYJTHSbrK7IRztFTKMTItav6gcwYnrUhvJau5c76JN1Q4nCdN8RrDX14bHau3qZYeh9aG/1QpOjGX+Lawv53XBF4Ym/94Q5rH2EPsXVFftQ2Hit2wNu8qKisCMcp8HQvRgLaueZHM34ctptDDr0zMeJcFd+JQrTo4ceW/tjqCLkoYMiXeGRJ/1VfAmdMLPlQcUZQGG5Hh4SSnebHMn46zuyF4BBdzkek2OZCOVBN01KJwqziajlK7/3dUaYbuh9jXwYWj5apHghdL1KvPn103oepRQ9B7fAs/+MvWcvhVGdxHuJpahMivPt2076+F3O+fQHGjCClXTPvZG54RfwTz+b4prZ2AOlLB5V4fZOgAsvgSc/BZ4CjCu/cvxh04XWHsJ2qqoLvXzn1tUAxDZ7Ub/6KAbquOumlJ3Z2X38+6E/g0Pw7+nr+Gj6/RhkmW80o/xl3Of4CZsrriNTt4ppxT7qS3zUFfsoC7gxJrgScX9nlEr0ycjiqukT+tpmqi3ysk0VArq/qtUrzgDscV1RaFh8xmMAt8NOwlsBGcjmQcFMuPlNbIaizwhRGLD+qJyFNQU8pHSrMdWzPy+236nE2kfoU1xjqZ+qAg9t/UO9Gdr0EBULN6JuPnKIcww9vMuRmxXYylKuQkhCOmr9BMNo6VR+JQrbhhsx58eERMHcrLiOwvwYulheXQ+An0Gy8Qg2jzUncVFKUXXkSQAGq87B+oOeoLLAw2b0CZ1Y5wGs+Zcd0b3lSeYZEQCMYH4k+of4pp8NXT8g1HfyRN6QbFbR0j/Ino4ITS0d9BzZR33Lb3hP7DFKyByz/nlshqNyeN2+GfTXXoyvpJaCRWvwVs9nzjGPXH7yQAJl8P7/OqWYxQjf0vdD7VJ949kvwPbHc3eUkv74FroObqf0sffhTPYDcLfjMXaWrOa7/Xfo9dL6ckHTOhbu+h432Z+miRT/nXkXcWcR00v9zCwPMLMsoH+WB5he6sPtGJ9KxB0t/awxdALJNgX7K75d1YVe1uX2sWI9R/CbHM9EcCV1n2BHsNTkSCaGt6QOOsARbQOlplQ7gD9VtFsPv+1xVlFo4fc5pLrAQ5enHhQY4SOQiIDb6ntaU4e1j9CnOIfdxvuW1fLdtRGyGNiyKYh1651Ci+pp3g5At72cEqfX5GjGX9xbDkmw51m59VCiMIuBzcKJb4DKAjdtKnfWNw9mLs9mFUWZbrCBryQ/KpIqy0qJKjd+I0FP+yFK661ZDd3c0cPF6RfBgOLzbzY7nAnhtNvY754H6fWkD75sdjjjLrvnGQA6PQ2U5VkVWsOi8+A1qE4dIh4N4/HrBHE2qzjSN8ju9gF2t0fY0z7AwY5ewp2HOCezmS86T56ky2Jj24J7qLL1EfJ7cC24Blw+KJtLic2O9WuCJrHSmfrnB/5bn4hv2QS+YhweP1VzV8AdL8K3z9XDuIHv2r5y3KfZ6vno8PVrHS/wD6lbWN86nx2t4THr2W0G04p9zMglD2flEogzygME3Kd3SLa/uVlP6AGQR0l+l8PGoLsUMjDY05IXiUJfuk9PdhG07vHgaEWVOlFozyZ1r2+fdYdcx/tyPb7d1n2PoxmGQV1NLZ2HQpQZYejaDTXLzA5L5EiicJKbXuonjYOwrZDCbK+uSLJwojDepnv19Pun58XOc19wNvRDoH+X5c+SjZZO6x6FyvID+XRF4ZbcsBgi1p/sIhxPUW7os92B0vzoceaw22i1FeNXrXS1HrRsovDAlhepNwbptRVR1PgOs8OZML0F86EbnD27zQ5l3BX0vAlA1+LbKMuT76MhtdMaaKOUSqOLB3/4PQ6WX8quXGIwlsxQQj+fdv6Y5UYXS4x9uG1pTvoVVr0MPCFs1zzAooL8+Cyc0mw2qD2qerOwDj6xA75zPvQ3Q++Bkz+H08/0VDs/dX2RtMOHIx0j7CjmNfsyXoxPZ2NyGk1d5TzdFeLpHWP3B6oKPDppWBZgVkWAWeVBZlcEKPS5Tin8zkP68ynmLsfnzIfGECPSwRroA9Vn/ZPusWSaueoAGOCtmm12OBOiuqSQHhWg2IjoNlwWThSmBvSInHzoPzlkQXWIfc01OlHYuUsShZOIJAonueklunNdmyqikF49oUnVEpOjGj/2nn0AZIoaTY5kYiSLZpE+ZMOVzn35hfJjqObcfd8HwH6c4VlWUxny0Jub3ZpYj7nBTICOvgizDV1F4SzMn+FPA84ySLYSbd9ndijjZnD/egA6ChZTZPFK4NFCVTOhG7yxVsikwW7NXaeevj7mZnaBAbWLLjY7nAlnGAbN1WuobPkxd3R8nvOaSxjAxyrbDv7F/QOqjGM/v5U7hNFwIay4BerOBac3b0745Q1PCJbdBGv/Vd+efw382Q+hey986+yR9W55CgLl8MK/w9bHcCT0kOVQuod3pp/mnQYMzYvU76un1VHD62ouf4zW8VKshtZ+aO2P88c9Yyc9Kwu6mT2cONTJw1kVQQq8I9M6ZLKKVOc+nbgumj5uv4rJyiieDn3gHmg2O5Rx177ndRpsnWSUgadhpdnhTIjqQi/tqlgnCsOtULHA7JDGT26iGruFi4KONr86xJ5sDefadkDXLrPDEaNYc2/XQupLdBH9kXQBc+1YfkKTUPQgAO7KY7v0WFFx0EcfAUoJw2Bf3iQK5x/+udkhTJjKAg99uc5mmVjP0S2qLKertYnZQAoHzjw6I9oeWsD8ri34jrwE3GV2OONiZrvuT5ipv8jkSCZW/fQZJN504DbSED4CRfVmhzQuDr32fywx0nQYJZRbfDKxE1ly6YfgRz8G4CXPx4+/UsE0WPwBmPdujKqlkhjMB+fcBpt+BOkEXPk1/TcvnQU3/AJ+dr1OHtblZhq++t9hzf3QvhX2PqOHLcd6YOv/6MejKIg1UUATc3mJDwF4IFY0l5bAQl51r+LJxCL2dERo6Y/TOZCgcyDBi3vH9rKuCLmZXRFkVnmQVCZLRaYNbOCpmDHBvxzzectnwH4IJNr179jhNjukcRPf8EMAXveexwpPgcnRTIzqQi8tqoR5NOvKXgtzxPV27g7lT6JwQXUBP1K6sEB17pIJTSYRSRROcqUBFwG3g7bM0IQm1k0UxpJpqtKHwQZFdfPNDmdCFPtdhJWPUiMM8T6zw5kQKhnNqy8Bn8tB0qV35rJR6ycKYy26z2iXs5qqPKo6C1eeB10/o6Rvi9mhjIv+/j5mZfcDUH7uB0yOZmItqiuiSVUw2zhCpu1N7BZNFDp2/hqAHcWrKc/T5Jd7+jkwbRU0rx9Z6C+DioVw1p9D4yXgz4fGKGIMbyHc8TKoLLiDI8vnrIHP9R+7vtMDtWfry5BrvqUTjL0HobcJ2rfBtsf07Wgnvt6dzOzdyUz+hxtKZsKMBSSK59IUXMomYwG7O6Ls6dBD4Vv747SHE7SHE8MViF926KHMtqKGcfs1TFbT6qbTvT5IiTEALZthmnUr7Zwdeh+je9plJkcycWoKvWxSlQBkO/dYtmmRUgpvqhcM8BVXmB3OhGko9XPIrnuap9p2cGrNFsREkEThJGcYBjPKA7S15OaXtPBkCAcPtzDLaAMgWGvhsvJRiv0uwkOtlwf7TI1lonR3tDA0T1vM8OEzNZqJ4QyUQARs8V6zQxl3qn0HAD3+GeRPO3Vw1y6GrVCaPAKpQT0E0UL2bd/IMqCHAkor82OSmiEzygI8wnxmc4Tw9mcpmvdus0MaF55+PWzeVr/K5EhMZHfCR57UE1s0vQAlM/Om0l+8BddpTpMxlHwvmq4vjRfBqjt0f+q+Zti/Fvavg91/0MOau/fi5nFmA7NDtVA2B2rmwdlLGYzH2OeeT1N3lJ7WJvb3Z1na2wYpoDj/EoVL6gp5JTuPK+0bSOxdh9uqiUKlqBzcC0Dl7BUmBzNxyoJuDqI/h5PtO7BqB87+wRSFqh8MCJXkT+seu83AVj4XusDZ32TJfeipShKFU8BZdYW0DyUKB9rMDWYcRXY8jdPIcNheR21hfhyIlvjdhFUuVRY/zllpC2prOTScKPxI4LvkwyBkd6gMImBPxyw/LMbf+bq+UpEfVcFDGqc30qVClBph0kc245hurWRLx77NAHT5ZpA/A8o1u82grWQF9D6FcfB5s8MZF+l0hvLkYTCgbuZCs8Mxn80GDReaHYXIB4ah2xks/7C+xHpg37PQ/LJOIO57BsKH9WWfnpXcCyzMXY6RhxWF5SEP291LuDK9gcHd63C/85NmhzQuBvo6CRIDoHHOIpOjmTh2m0Grfx4kwHn4ZUjG9MzxFnOwO0apMQCAuyB/KgoBqmun09ZZRKXRqyv6Z7zT7JAEJ5+vTUwSy+qLaFfWH3oc79CzyXUE86c3UknARf9QRWGeDD3u7dBVsVuyDeyK5scZo1BBCQmVOy9j4ZmP4wdf4bzEiwCUzcuvg+yZ5UFeN3RytPvNP5gczZmXbt0GQLZsrsmRmMM9U/dlLBzYA9Gut1h76tm5/wBBYxCAaTPyo6JfiEnJVwyL3g9XfRVufATu3QfX/xiu/Cos/iDUroDSXB9vpx9KZo08tqjB0hMenkysWp+cC3RszPWCtJ62Jj2zdReFhIIhk6OZWANFC2hRxdjTg3Bko9nhjIumrgil5IpG/KUnX9lizqov4rlM7rNrz9PmBiOGSaJwCjirrpAWpXviqN4DkLXmTLGpfp1AsofyZ8Biid9Fv9KJQpUHM+ICxPt1oqxbhXjfslqTo5kYFYVe2oaS/f1HzA1mHHW98sjw9fL5F5gYycSz2QwOF+Wa2e9ba24wp+qlb8H6B95ytUgiTWhgDwClDUvHOajJacGsGezI5irdD1ivqnDvjjcA6LaXY3Nbr1JDiCnLWwjzroZzboXrHoSPPg13bYB/6oZ/bIG/fg3+/gBc8wDc/Gtw5GeHr4rGJXSqAhzZBBx+zexwxkVvq24P0ePMr2ozgFkVQbZlc9WyHTvMDWacHGnvwmOk9I08SxReMqec59VSAJK7nzI3GDFMhh5PAbVFXhKhRqJxN/5kFDp3WXJYnz3aAYCvJH/6ARX5XRxRemarZMcerDsgdYQ9fBiAuKecv7s8P2a3rgx5aKWEejr0rKkWZRx6BYCfVt3Hh063n9NUNOMSeO0blPZtgcQAuINksopIIq0v8fSY69FEmng6QyKVJZHOkEhn9SU16no6QzKtUEqRVYqsIvdTkc3CWYMv8cGBHxI33DxQcC8drjrsNmP4Up/cx7mxtWwNnEeTfzF2m4HTbrAo+go3HfhHAB5vCdFZfj5uhw23047bYcMz6ueLe7u4wdDbbWnjUhN/weZZNq2QR7MLmWc7RGznU/gWXmd2SGdUZ5OehCgRmm5uIEKIU2MfdQjnK9aT7eSxpdOK2JidzRr7q9C6Gaafb3ZIZ1y0SxdUJD3lJkcy8RbWFLBrYy3vYiN0bDc7nHHR06mPD1I2L84824cu9LnITlsFrf+Os2cPJKOn3xf2KEopEunsMfvjA/E0kUSKgbi+Ho6ncDvsfOJds8/o609FkiicAgzD4KJ5VWzZOINV9u1w+FXLJQozWYU32QkGFJbnR39CAKfdRrtvFqTAvfOX0PNZyzeiDkSbACifPh+P0+pzAGsVIc9wVTD9h80NZrxEu6mK6OGpgbmXmByMOZYsWkrzhjKm2Tr5j/93Hw+m300sefIK8BL6mWm08G77embZjvDHzCIM7CyzNZHGxnyjmQQOvpb+AIuM/ZQZ/Uw32qg0evlO+mpudf6QIiMCwL90/jX/m7kAF2lW2bbRYBsZ5n5538+5PXk3SRx0qxB/4fz+8JiCa968i1uS97A2exZZDFyk+YB9HX/MLqJJVRIiwj2eXMVzWX4k948W9Dg5UHguRH6HsfcZPQGBRWYGTmWyZLv3gQGeStkxFkJMPQtrCvieqmMNrzJ4eAtWbGwzGO4EwObPt07BsLC6gP/MVfWrjh1Y49t3rEiPbi+W8pTgNDkWM5y3eC4dLYWUG33Qvh3qVgwn96KJo060J4cSfPqku078ZYgkUkQTGQbGLB9ZL51VpxRLWdAtiUIkUThlXL+ijudem8kqttOz60WKl99sdkhnVEvfIKWqDwworsifRCFAsnI5HNLXsxv+E9uaL5ob0DgrTuTebPEMcwOZQJUFHl4YGnps0YrCZNMruMiyO1vDogX5ORnC0roiHg9cwrTYI9yR+SkPJS8GvHiJ43dkWehqZ5l9P/W2DlakX6c6c+z/hXNtxx9S8yPX/ccs+4Zr7LDhoDHIhx0n7o/4Xde/n/C+/3J9DYCILUggOzC8fIt9Pp7sICjIFEzD7i084XNYnXvWhQy+7sIbb4fWN6B66cQHkYjkggmMWZzJKqLJkZ3ioR3oSDzNQDw1vCwcT9EXS9EXS9IbS9E/mKInmuRfsy1gh8La/EwECyGmNr/bQW/BfIg+pttDZLN6UiILSUW6gdwEeXlmdmWAvUYuUdi+HcNCJ+tAV7sN9uZO7gby7+8LcPmCSnb+bhrlRh9f/MEjPEIv0USaVObUknunYr5xkM87H8ZnpPiC6246PdMJepyEPA4CbgdBj4Ogx0mxPz9bOBxNEoVTxMKaAtbXr4Qjv6Zvz0scbO6lMuShLOjGaZ/6X4R7OyOcbfQB+dWjEGDFvAbu3X8bX3E+RGTnWkJrzI5oHGUz1KYOAuCqslZV7MlUjqoozPYdtmRz2NbdG6kH9tsbubwkP3uc2W0GV9/9TdJffxpnvIetvtvJVCzG0ZprvJ3NXY77YDdUnwVOD8TD0LYFsumx6wSrYda7YPvjYyc/uvDvoX4V/Og6QEHNcqhcBDv/D86/G+rPg8duhe69x77uTb+EH107fHN0khBgcWZkiI/9wntO9VdhSefPqeXZ15ZylX0D+3/zZV5dppO3Bga5fxi5Axd9PXfBQKFIZxSZrCKd1UPHR9/OZLO5n/p2IpUlns4Qzw1DTycTvLfrIS6N/IYeWzF3+L5GNA2zkzvxp3tpS/t4PTsLB1mW2vayKTuTMqOfw6qM5bbdKAz6lZ+5tmYKiLMlq2fMvNH+LFfYN1Bj1wegtpKZZvxqhRDitKWnX8zA1q8RjLXo4cc1y8wO6YyyDfYCECjMv6HHbocde+ks6AdbMqxnB/eXmB3WGdPcE8Ob6gEnePJsxuMh5SEPe6sXQ9sW6pL76Uunxtzvd9kJeBz43Q6Cbv0zMHTJLQ+47AQ8TgJuB36XnbL0EezF0ylMthEaPEzBH3+EvVNPCvQLx+eh4TIIVev2Df1HdDFH027wFsMlvzPj1zCpSKJwCnn3Ve+Bh/6RRnWIxd9+inButtwSv4uyoJvykIeKoJvykJuKkIfyoJuyoIeKkJuyoBt33374v3vg/I/DzNUmv5uxmlo7uSQ34yKB/PqAvPm86Xx22wo48hDOiDWrzYYk23fhIUlUuamYnj+JwpKAm3b0Dk3GoonC2BE97DhZMmc4WZKPnC4PXPtt+MWfY2RTI0lCAJtDz1hZs1xPSlUyA+ZcAYN9UD7/2OqHQ69C+1aYtgr2PQsLroVQFbznG9DbBA9eqPu4LPmgfq6PPg3eIn0d4Or/GHmuv96oh727g7D5p/Dkp6BiEcx4J3yuX88S2XsQevbrWX3tTgi3QF8zhGqg7hxovGi8f32T2nkzS7jTcy1XpTZQ3vIM/3XwCXarOkJECBMgSIwUduK48JCkxujisCoji42lxl7sRhYHGdZn53O2sZt32N/k15nzOKxK8ZAkaAwSZJAsBkdUKW5SfMLxKMXGAHtVNVc4fg1AZbadxyKj+pHZgDN18rsyP6uBhRBT38L6CjZsmcul9k384n9/wdZp+vioLOimNOCmNOAavj7VWt/0xZL4MmFd+V2af4lCgNk1pfT0BSg2IhBps1SicGNT7/CMx7ZAfk1kMtqq898J//tjPhh4nUvfeRP2miX4AgX4MwPY2t+E3r0w2APd+/T+am8YHB7dFzwehmQECqdBrFtfP5nBHtjy8+PfF6g8829uCpJE4RRSVT2NiK+WQOwwNwY28r3Bi0hlFN3RJN3RJDvbBiggQj9+OE73hi96fsSHeA4OPMf36u5nhnGYlsYPUFRSTnnQTXnQQ3nInC/Pzhbdty5l8+B0Byf89c02rXEOHAFvun94EgQr6tn/OpXAbupZWpA/VWd2m8GgtwrSYPQfMjuccZHNzVpeVJ0/Q8pPaM4V8A8tsOt3uoovEYaSmbD4g8efkbLgBLN/163QF4DyuWPvK6qHO9bDYO9IYrD27JPHNfQ6K2/X1ysXjdzncOv+g3nag/BUuB12PvHhD9H2w+9SmWziD+5PHrNOGgcpw4VXxU7pOf/a8atTWu/yPyXQE3F4wenV1agqV9paNB2cfsgk4OyP6B1sIYSYgq5YWMXDfziLS9ObuL7nu3y9ZSHtHL+fX9DjoCzgpjTopiwwlEwcSSQW+V0U+1wU+VwEPQ5sNnNPgO7tiFBk6Ip/dzA/E0nzq0O0by3SicKBNqhYYHZIgB42HE9liSZ1H7xoIkMsqdt/xJIZ/TORJprM5O7X1/U6GWKJNBube/mSXfegpCB/v4eNuVdBYT3Oviaqn3ibbdb6mo5d5vDo/dx4P/hK4bZ1sOM30LMPkjEYaNX/n0LVej/YHTqt92EVkiicYgIzVsGbj/LJ9Hf5+/InMXoPogwbfRWriCkXNe1r6XRP49cFN/E7dS5tkTQd4QTJTJbCTDfkcoAfPfQpAP57/y7uSP/lmNcIeRy6IjE0kjwsz1Umlgd1pWJ5yI3Pdeb++7Qf3gdA0leJMw+rkWoqKuhVAT0pQW+TZas6os1vANDmacy7qrN0QT10gyPRq7+oPAVmh3TGJNNZvAk9GVHD9Eazw5kcHG5Y8N7xfY1Qtb78qQwD5l195uPJA/NrCuGu38Ov/xr2PnXM/Q7SOFT62AeeKR97Cfb8QTf6nvFO/V1RUKuHmWdS+kRT3Tm6CtRXos+Y2xx6GI0t952djkP7Nj3UpkQS+0IIayjwObnl458h+a3HcCX7eMVzFw81foPXsnP4cMsX8KT6+Eb6Gp5LzWcgrmc53d8VfcvntdsMinxOCn06eVjo0z3MivwuinxOinwuiv0uCn36doHXSdDjxOU4c+NHthzu5yqjS994O9/7FjC/KkSnKmQeh3Si8G1KZbIjybrESEJPLxud6MvkEnx62dD9I8m/kWWnOEfGSc2wd+grFp/U8qScHvjI72HdF+Hgi9B7QJ/YtDmgbC44fVBQAzVnj2wH3iLwhMBTCDY77H0aDr4ADRfqlj0FtSOjdgb7wO4Clw9W3WHmO50SJFE41Sy+Ht58FACj96D+qbIUtb1IUW6VskQzt3T8K7cAXPJpVLCCRMdePC9vOObp/sLxFJvLr2XPoJ/dAy4SaUU4niYcj7Cn4+Qlu0G3g7KQm4pcMnFkuPPI9fKQh4D75P/NuiMJXP0HwAnO8vzsj9RY5mevqmaFsRvVvg3DoolCOvREDfGi/KtaKigsorMrRJkRhp4D5kyEcCYko5CKjxnyseVwH7PRvXNq6iRRKCwuVAU3/Axe/S/o2g1NL+pKvOkX6JMA8X7d4sPhgUOvQNtWndQLlOvE3YbvwazVULdSnxja+DD0H4L68+GcW/WQb5sD1n9LV38GynUfyZKZ+oz38aoozvrzY5eB3hk+3rKhSlUhhLCQQKgIrv4a/O8tANy2/+PcNur+h+3byAZLMQZ7SXlK6A/OYO3sz9CUKaaw9QVWtzyIIxPjWeNcHk6tpjJ1iJez8+iKKLoiyT8pFo/TRsjjJOTVkyUER10PeZ0EPY7h+4MeB36XA5/Ljj/XX83vduB12rHZDN440MpHcr3cKcrPRNL86hBP5tr4bN62lWZby3CF3uhEXyyRGUn+HVXlF01kSGZO1Cz69PlcdnwuBwH30E8HPrcdv8uB/6hlAbdjzLrLH++GKHn79x0WqoL3fFNfz6RBZcCwg/0U01YrPqovx5PHE/K9HZIonGpmvQvuO6wrCrJZnWnPpvXBht0J86+BVx4cqXRY+y8YgOckT/n1nlxG3aEvvYs+QjTrJJZIEkkZ7LPPoDNuY3uykq5okjcihQym9NTjA51p9nee/Gyc32WnfFTisDzoHlOduLGplwZDTwnvKs+/BBLAtGIfj6h6VrCbwcNv4FtyvdkhjYvQwB4AvLWLTY5k4lWGPDSpylyicP/UTBSmk/Bfl+tedne+os/qARv3HuHsXI9RIyh9PUQesDvh3Nvfer15Vx9VvdkA1y4fuVlQC9PPH/uYoW3ouodGlt25wVIzPAohxLhZ9H5dbfTbT0DnjmPutsV0ZZ5rsIOywQ4+kLpD9+kdaBle52b+h5uN/wEXZF1BWi/6Mv0ZJ/79f2BT3V/QmfJw5Za7MDIJfh24nieMC+iNJemN6lnmAeKpLPFUgo6BxGm9HZ/LTlWqGdyQcQawe4ve+kEWVOB1ki5ohMg6Du7azN1bN53W87kcNvy5xJ7fPZSg1cna4QTfMcuOSgKOWu7LJXXfloE2iLaDYYPyeaf1vizFnktOCFPIb34qcgdh4ftOfP/M1dD6BvzwPZAcGOlFFKiAC+6BOVdCx3YoqIMHLzhmZs2iN7/P6K+go+cMU/4Csr4yBgtmkkhn2VF/I9tdi+gI6y/D9nCcnnCU+EA3h5IBoskMB7qiHDhJef9PnLl+AmWzT/33YCEep50270xIPkXy8BtYsntfYoCytB4qUDHzLJODmXgVBR6aVDlns1sn+Kei/eug/U0AOl7+Ka9V/zkHuqKse30XfwVkDAd2i/bXFMJUkiQUQohTV38e3PkyPP15eOmbOvnyF4/roYm7noTuPVBYD3/49LH7ZNPOg+aXhm/akgPUPPUxaoae+uAjY1a/PXE/t39omS7iiHSQrT2HSOOVRBJpooOD9GX99Ga99MczDCSyhAcTeHt2sqjtl7iT3fyf5z1sYJ4eypqriBs9nDWWzDDTppOYttIZef19sGLFSlj7fRa52llVV6ITee6xVXzHT/qNVGn6XQ68LvsZHRoOQGoQYgO6eGewB1IxiHTq43DDpv9uhk23CTn0sh6d4wnp4/D+3GSWpXPAHTizcQnxNkmi0IoMQ1cr3desK4BsDkDpL8chhXX657374PX/hsOv6g+rTT8eWcddoBvv+0oh2gm5M3BGvB97vJ9Az14CwDsO/YF3VC3Vr9Gxc6RZug0y05eQSURpbfwzdpdcStugjUMJH+3heC6xGKczPMhSY79+zZq3aMZvYanShdAC7q5toJTldgQ69m2mHGhXhcxqqDc7nAlXGfJwMFup+4T27Dc7nLeUySqO9A6yvyvCga4o+zujTD/4gm5pANhe+gYfT8zmHxw/5fO2HWAD5Smw3P9bIYQQQkxRqz+rL6ONHrXTeBH87lM6yTftXLjsn6H6LDj8GjSv18clP1jz1q/z0w8MX7Xt+DUhPs0x0yEEKqBmObS9qdtN5CyP/lEXcVQuhsaLoX4Vqv8IiVSaqKeSWCJF4MWX4HUwyuf/yb8CK5m99AJYCzMy+/nZlY6xk7glo7oyz7BBzx7Y9BN921esW4EAZJI6oZcY0L3tUPo4eaANwkf0aIHS2boox1cCsR5o3awnjgtU6EkuHG79GpF23fM3ndC979KDp/8GpW+emEQkUWh1x5thczRvoe6lNOQ934KuPbon0uhx/NkspKK6d1Lzy3B4g+6z1vSivr9188i6mZESe3vbG9iB+o1fop4v6YWuAMy+HBrq9AdtvA9eG9QNSsuOmtkzjwTrFpE5YuBN9eovH4sN4dzxxss6UehpZPFb9K20ooqQh3WqQt/o2mNuMDmZrKKlb5Cm7hgHu6M0dUc52B3jQFeU5u7YMX1c7rC3glNfLzXCPBn4AjPTe4fvd0jvDyGEEEJMFYXT4IafHru89uyRJNQ9u+D7a/TMqH/xOHTugt1Pwq4nxj6meAbMvQoOPKdHdtmckE2N3B9pH3mM3QW1KyAe1iM1dj2hL8/dDzDcNsrjK6UkHYdkrm981ZIz+vannIIamHWZTux+71KoXqaTfr0Hx/6uT0df8/GXD/aeYox1Ojnp9OkJNlw+XVWospDN6GKQkkadeMxm9P8FldWJ6tr8LZgRk0/+Ha2LkzOM4w//tdn02ZWyOfqyPDdleTYDnTth/bf1MOfF1+uKwlcegt2/0zMvFjfqD/Chs2fJCGz932Nfo/qsU29UakGzasvZr6qZZRzRZxstliiMH9kKgO14jfjzQHWhl21qOgCq7U2MTHpC/r8n01kO98Zo6o4NJwKbuqM0dcc41BsjlTnxVG13OX/DYm8Hr1R8iGWuJhYNDsBIC58xSULAUjM5CyGEEEIQrIS7XtMVY+6gTugsvxk2/1RPMHnlV6F7HzRcoI+BlNKTWnkKdMXZ/nVQNB36D+v9+1CN7jnvK9bPv38d7H9OJyB3/d/Y186N5gKg4SJY9hcT9KYnsesegsdu08nCltfH3mfYdILW7oSzboLKRbmqv7j+uzjcuvovm9IVg4ZNVxOWztbHt9FOfVxr2KFnn/7bl8/Xf7PBXl21mEnoKsJAhS5+cbj139pXrKsTXX5Tfi1CnGn5m5URZ4bNrmdgfO8DY5fPeKf+OXoIbSp3RuyNn+t+ID0HYN8zI49Z8sGJiXmSmlsVYouqZxZHyLS8gX3Wu8wO6YxJpDMUDOwBA0oa868/IUBtkZcmo5qI8hBIxfRsqRWnP4REKUVPNMnh3sHcJUZzj74c7I5ypHeQajr5jvPf2JhZwcOZawEooZ9327bwsn0JNwQ3cXV2Ha/X/jmq9hwubH6A4t43cPQ3QRIuO/TM2BetO1f3VzmaJAqFEEIIYTV2B9iP6sG89EP6AlAyY2S5YYyMynJ6Yc4V+nr5PJ0gPFrjxfoCur9dYgCKG/RxU/dePUQ2UK73saS9i/593PgoHHkd3vwfiHXr31/VYp3UU4pjWm79KSx0/CXE6ZBEoRhfo7/QnB59Oe+ukWXd+/SZF4tVz70d9cU+Hnc0gHqJQzs2wIIoIa+TkMeBw36GG+5OsDcO9TODwwBUzlxqbjAmcdpt1BUH2Bpu4FxjB7RsOqVEoVKK7uFEYOyon/p6MpUmy/H/jxQQ4ZvuB1hkHGSR7SCOlbdQUVHFVa99mFDnJpTThxGPAdCw/5/gVNonLrsJbnxE927549dg04/0ckkUCiGEEEK8PUWjeni7/OAvMS+Wya5mmb4cTZKpQpwRkigU5hp9Bi7P2WwGRuUiaAVH60Yu+OqzqFzyx++yU+B16sSh10nI48zdduifHr28IJdYLPCNrONzGhgbfwCHNsDK24//pTrONuxt4xyjHwCjaPqEv/5kMas8wBt9jZxr2wFNL5FafAMdAwna+uO0h+PDP1v747SFR5Yl0iO9As8xdvBp54/Znq3nPzNXcaWxj//n/k+ShpMNnnfQF5rD/PQOjIIa6nrW4+0fOzz47tfXQFHD8Cx/Rio2cqfdpRs9g64arFuhJyja+zRc9VXd8Nvh0WduPQX6MufKkUTh0CRJQgghhBBCCCGmJEMpdeIGVSYLh8MUFBTQ399PKHTM3FFCWE5TaydlDy3Gp3Ty5p9TN9KmSng6u4wEThqNVjwk2ammUU4vbRSjWx6f2OX2jTzo/BoAA0aAL5T/B5FgAwG3g4DHQTD3M+B2Dt/2ux0E3A6CHsfwes7TqGq869u/5lsdN5ExHNg/05W3Z/u+s24fz/3hMX7u+hcG8HF+4huEle+Y9RykKaMfA0WBEeU6+wvgDlDljvPu2ONv78VL50DXrrHLAhW6ubavVFcIls3TQ4orF4O/VK+jFCTCOinYtlUP+SioGXmOTBp+9TE90dGfPQyBsrcXnxBCCCGEEEKIcfGn5NekolCISaS+qgwuuQee/WcA/sn5k7d8zKvFV/NY4Yep799AweBh3sw2MDfxJrG04uHUu1hkjFSUBVWEW1s/w5VNXyL9J27+bodtTOIw4M4lF912vC4HPpcdn8uO12XH57Tjcznwuuwo4PChA+CGrL8Ce54mCQHevbiKB9ctZE+2hlm2I3zK/lN+oN7Npd493Jt+EDu6cjBl8+DMxsc+OAPEjn1OnSg+wfmeeVfrBGHtCj1L3DOf07OWN14MC67V/XL6j0CwSk9YBCP9RYef3hgZUly58NjXsDvgff95Su9fCCGEEEIIIcTkJhWFQkw2SsET98Krp598UYYNQ+nk05ElH6ds549wJXpZe9Z/EMk4CfVtZZfnLHbbGwknYCCeJpLQFwb7GEwmaEsFhp6Nt6pePJHLba/yoOvfUDVnY9z6zFs/wML6YknaNjzG3HV/9ac90BXQza1LZsK0VTD33Xr4cLAKCuthw0N62PC+Z+HCe2H6O/K2clMIIYQQQgghxIg/Jb8miUIhJrNsBuL9sPO3kEnp24v/DHoP6n5yu57Qs0h37wW7GzKJEz/Xna/Cq9+DDQ+CYQM10veOYDXUnaMnl4l26OGohh1QZK74Krz6PWzde0j7yuiY8T6SGYP24DwSiTT+3h2kM2m2h87joHMW2cE+sokordkiYskMg6kMH4g/xp9H/gsWvg/e//3x/q1NfkrBS9+EDf8J/c1j71txq54hr6BW/829hXqIsN1pSqhCCCGEEEIIIaY2SRQKkU+yWYj36d5xkXaIdEDZXH3fv+T6xdWthFv+AO3b4HvvglRUL3f6IZs+eYLxVBk2aLgIml7UlW3zroY5V8FgL/z+Pr3OJZ+Gi+49/deykmg3uAPgcJsdiRBCCCGEEEIIC5JEoRBCa34Z1t0Pa+6H8lzyMNwKLZugbI6edXqwT1clhg/riSkGe6H/MEw7F/74Vf0YVwBW3QXbfwXeYj2k9chGSMchVKMnvmh9463j+dCjMPuy8Xq3QgghhBBCCCGEOIokCoUQZ8Yz/wy7fw/vfQCqloy9b7AXklE9RBZg5xOw5w8w81IIVcNP/gxi3SPrn/dxWP35kUkzhBBCCCGEEEIIMe4kUSiEMF86Ae1bwebUQ6EdLrMjEkIIIYQQQggh8s6fkl9zTFBMQoh843BDzXKzoxBCCCGEEEIIIcQpkjGAQgghhBBCCCGEEEIISRQKIYQQQgghhBBCCCEkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEQBKFQgghhBBCCCGEEEIIJFEohBBCCCGEEEIIIYRAEoVCCCGEEEIIIYQQQggkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEQBKFQgghhBBCCCGEEEIIJFEohBBCCCGEEEIIIYRAEoVCCCGEEEIIIYQQQggkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEQBKFQgghhBBCCCGEEEIIJFEohBBCCCGEEEIIIYRAEoVCCCGEEEIIIYQQQggkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEQBKFQgghhBBCCCGEEEIIwGF2ACejlAIgHA6bHIkQQgghhBBCCCGEEFPPUF5tKM92MpM6UTgwMABAXV2dyZEIIYQQQgghhBBCCDF1DQwMUFBQcNJ1DHUq6USTZLNZWlpaCAaDGIZhdjjjIhwOU1dXx6FDhwiFQmaHI8SUItuPEKdHtiEhTo9sQ0KcHtmGhDg9sg2JU6WUYmBggOrqamy2k3chnNQVhTabjdraWrPDmBChUEg2bCHeJtl+hDg9sg0JcXpkGxLi9Mg2JMTpkW1InIq3qiQcIpOZCCGEEEIIIYQQQgghJFEohBBCCCGEEEIIIYSQRKHp3G43n/3sZ3G73WaHIsSUI9uPEKdHtiEhTo9sQ0KcHtmGhDg9sg2J8TCpJzMRQgghhBBCCCGEEEJMDKkoFEIIIYQQQgghhBBCSKJQCCGEEEIIIYQQQgghiUIhhBBCCCGEEEIIIQSSKBRCCCGEEEIIIYQQQiCJQiGEEEIIIYQQQgghBJIoNNUDDzzA9OnT8Xg8rFy5kg0bNpgdkhCm+9znPodhGGMuc+fOHb4/Ho9z5513UlJSQiAQ4H3vex/t7e1jnqO5uZmrrroKn89HeXk59957L+l0eqLfihAT4vnnn+fqq6+muroawzD41a9+NeZ+pRSf+cxnqKqqwuv1snr1avbs2TNmnZ6eHm688UZCoRCFhYXccsstRCKRMets2bKFCy64AI/HQ11dHV/+8pfH+60JMSHeahv68Ic/fMz30po1a8asI9uQyFdf+tKXWLFiBcFgkPLyct773veya9euMeucqX23devWsWzZMtxuNzNnzuThhx8e77cnxLg7lW3o4osvPuZ76Pbbbx+zjmxD4kySRKFJfvGLX/CJT3yCz372s7z++ussWbKEyy+/nI6ODrNDE8J0CxYsoLW1dfjywgsvDN/3t3/7t/zmN7/h0Ucf5bnnnqOlpYXrrrtu+P5MJsNVV11FMpnkpZde4oc//CEPP/wwn/nMZ8x4K0KMu2g0ypIlS3jggQeOe/+Xv/xlvvGNb/Dd736XV155Bb/fz+WXX048Hh9e58Ybb2Tbtm089dRT/Pa3v+X555/ntttuG74/HA5z2WWXUV9fz8aNG/nKV77C5z73OR566KFxf39CjLe32oYA1qxZM+Z76Wc/+9mY+2UbEvnqueee48477+Tll1/mqaeeIpVKcdlllxGNRofXORP7bgcOHOCqq67ikksuYfPmzdx999189KMf5fe///2Evl8hzrRT2YYAbr311jHfQ6NPNsk2JM44JUxxzjnnqDvvvHP4diaTUdXV1epLX/qSiVEJYb7PfvazasmSJce9r6+vTzmdTvXoo48OL9uxY4cC1Pr165VSSj3xxBPKZrOptra24XW+853vqFAopBKJxLjGLoTZAPXLX/5y+HY2m1WVlZXqK1/5yvCyvr4+5Xa71c9+9jOllFLbt29XgHr11VeH1/nd736nDMNQR44cUUop9e1vf1sVFRWN2YY++clPqjlz5ozzOxJiYh29DSml1M0336yuueaaEz5GtiEhRnR0dChAPffcc0qpM7fv9vd///dqwYIFY17r+uuvV5dffvl4vyUhJtTR25BSSl100UXqb/7mb074GNmGxJkmFYUmSCaTbNy4kdWrVw8vs9lsrF69mvXr15sYmRCTw549e6iurqaxsZEbb7yR5uZmADZu3EgqlRqz7cydO5dp06YNbzvr169n0aJFVFRUDK9z+eWXEw6H2bZt28S+ESFMduDAAdra2sZsMwUFBaxcuXLMNlNYWMjZZ589vM7q1aux2Wy88sorw+tceOGFuFyu4XUuv/xydu3aRW9v7wS9GyHMs27dOsrLy5kzZw4f+9jH6O7uHr5PtiEhRvT39wNQXFwMnLl9t/Xr1495jqF15NhJWM3R29CQn/zkJ5SWlrJw4ULuu+8+YrHY8H2yDYkzzWF2APmoq6uLTCYzZkMGqKioYOfOnSZFJcTksHLlSh5++GHmzJlDa2srn//857ngggvYunUrbW1tuFwuCgsLxzymoqKCtrY2ANra2o67bQ3dJ0Q+Gfo/f7xtYvQ2U15ePuZ+h8NBcXHxmHUaGhqOeY6h+4qKisYlfiEmgzVr1nDdddfR0NDAvn37+Id/+AeuuOIK1q9fj91ul21IiJxsNsvdd9/N+eefz8KFCwHO2L7bidYJh8MMDg7i9XrH4y0JMaGOtw0BfOhDH6K+vp7q6mq2bNnCJz/5SXbt2sVjjz0GyDYkzjxJFAohJpUrrrhi+PrixYtZuXIl9fX1PPLII/IFJoQQYsJ98IMfHL6+aNEiFi9ezIwZM1i3bh2XXnqpiZEJMbnceeedbN26dUxvaSHEqTvRNjS65+2iRYuoqqri0ksvZd++fcyYMWOiwxR5QIYem6C0tBS73X7MbF/t7e1UVlaaFJUQk1NhYSGzZ89m7969VFZWkkwm6evrG7PO6G2nsrLyuNvW0H1C5JOh//Mn+76prKw8ZiKtdDpNT0+PbFdCHEdjYyOlpaXs3bsXkG1ICIC77rqL3/72t6xdu5ba2trh5Wdq3+1E64RCITmRLCzhRNvQ8axcuRJgzPeQbEPiTJJEoQlcLhfLly/nmWeeGV6WzWZ55plnWLVqlYmRCTH5RCIR9u3bR1VVFcuXL8fpdI7Zdnbt2kVzc/PwtrNq1SrefPPNMQdtTz31FKFQiPnz5094/EKYqaGhgcrKyjHbTDgc5pVXXhmzzfT19bFx48bhdZ599lmy2ezwjuiqVat4/vnnSaVSw+s89dRTzJkzR4ZMirxz+PBhuru7qaqqAmQbEvlNKcVdd93FL3/5S5599tljhtifqX23VatWjXmOoXXk2ElMdW+1DR3P5s2bAcZ8D8k2JM4os2dTyVc///nPldvtVg8//LDavn27uu2221RhYeGYmYqEyEf33HOPWrdunTpw4IB68cUX1erVq1Vpaanq6OhQSil1++23q2nTpqlnn31Wvfbaa2rVqlVq1apVw49Pp9Nq4cKF6rLLLlObN29WTz75pCorK1P33XefWW9JiHE1MDCgNm3apDZt2qQA9fWvf11t2rRJNTU1KaWUuv/++1VhYaF6/PHH1ZYtW9Q111yjGhoa1ODg4PBzrFmzRp111lnqlVdeUS+88IKaNWuWuuGGG4bv7+vrUxUVFeqmm25SW7duVT//+c+Vz+dTDz744IS/XyHOtJNtQwMDA+rv/u7v1Pr169WBAwfU008/rZYtW6ZmzZql4vH48HPINiTy1cc+9jFVUFCg1q1bp1pbW4cvsVhseJ0zse+2f/9+5fP51L333qt27NihHnjgAWW329WTTz45oe9XiDPtrbahvXv3qi984QvqtddeUwcOHFCPP/64amxsVBdeeOHwc8g2JM40SRSa6Jvf/KaaNm2acrlc6pxzzlEvv/yy2SEJYbrrr79eVVVVKZfLpWpqatT111+v9u7dO3z/4OCguuOOO1RRUZHy+Xzq2muvVa2trWOe4+DBg+qKK65QXq9XlZaWqnvuuUelUqmJfitCTIi1a9cq4JjLzTffrJRSKpvNqn/6p39SFRUVyu12q0svvVTt2rVrzHN0d3erG264QQUCARUKhdRf/uVfqoGBgTHrvPHGG+od73iHcrvdqqamRt1///0T9RaFGFcn24ZisZi67LLLVFlZmXI6naq+vl7deuutx5zYlW1I5KvjbTuA+sEPfjC8zpnad1u7dq1aunSpcrlcqrGxccxrCDFVvdU21NzcrC688EJVXFys3G63mjlzprr33ntVf3//mOeRbUicSYZSSk1c/aIQQgghhBBCCCGEEGIykh6FQgghhBBCCCGEEEIISRQKIYQQQgghhBBCCCEkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEQBKFQgghhBBCCCGEEEIIJFEohBBCCCGEEEIIIYRAEoVCCCGEEEIIIYQQQggkUSiEEEIIIYQQQgghhEAShUIIIYQQQgghhBBCCCRRKIQQQgghhBBCCCGEAP4/SWgGeqlpW/cAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 计算均方根误差\n", + "rmse = sqrt(mean_squared_error(inv_test_y[:,5], inv_forecast_y[:,5]))\n", + "print('Test RMSE: %.3f' % rmse)\n", + "#画图\n", + "plt.figure(figsize=(16,8))\n", + "plt.plot(inv_test_y[300:3000,5], label='true')\n", + "plt.plot(inv_forecast_y[300:3000,5], label='pre')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mean_squared_error: 0.0014791752952266549\n", + "mean_absolute_error: 0.013799955472387545\n", + "rmse: 0.0384600480398381\n", + "r2 score: 0.9904178817149276\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n", + "# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n", + "from math import sqrt\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.metrics import r2_score\n", + "print('mean_squared_error:', mean_squared_error(lstm_pred, test_y)) # mse)\n", + "print(\"mean_absolute_error:\", mean_absolute_error(lstm_pred, test_y)) # mae\n", + "print(\"rmse:\", sqrt(mean_squared_error(lstm_pred,test_y)))\n", + "print(\"r2 score:\", r2_score(inv_test_y[5000:10000], inv_forecast_y[5000:10000]))" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "df1 = pd.DataFrame(inv_test_y[:,5], columns=['column_name'])" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df1.to_csv('高频re_test.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "df2 = pd.DataFrame(inv_forecast_y[:,5], columns=['column_name'])" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df2.to_csv('高频re_forecast.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/iceemdan信号重构.ipynb b/iceemdan信号重构.ipynb new file mode 100644 index 0000000..e1743f9 --- /dev/null +++ b/iceemdan信号重构.ipynb @@ -0,0 +1,429 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "from math import sqrt\n", + "from numpy import concatenate\n", + "from matplotlib import pyplot\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.metrics import mean_squared_error\n", + "from tensorflow.keras import Sequential\n", + "\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.layers import LSTM\n", + "from tensorflow.keras.layers import Dropout\n", + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# 加载数据\n", + "path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\低频_forecast.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "f_low= pd.DataFrame(pd.read_csv(path1))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# 加载数据\n", + "path2 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\高频re_forecast.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "f_high= pd.DataFrame(pd.read_csv(path2))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "path3= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\低频_test.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "true_low= pd.DataFrame(pd.read_csv(path3))" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "path4= r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\高频re_test.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "true_high= pd.DataFrame(pd.read_csv(path4))" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
column_name
01.958189
12.254070
21.279676
31.747101
41.987240
......
208260.017192
208270.014549
208280.014636
208290.016639
208300.017215
\n", + "

20831 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " column_name\n", + "0 1.958189\n", + "1 2.254070\n", + "2 1.279676\n", + "3 1.747101\n", + "4 1.987240\n", + "... ...\n", + "20826 0.017192\n", + "20827 0.014549\n", + "20828 0.014636\n", + "20829 0.016639\n", + "20830 0.017215\n", + "\n", + "[20831 rows x 1 columns]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pre_data=f_low+f_high\n", + "pre_data" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
column_name
02.186333e+00
11.377467e+00
21.452000e+00
31.846867e+00
42.793334e+00
......
208266.661338e-16
208270.000000e+00
208282.220446e-16
208292.220446e-16
208304.440892e-16
\n", + "

20831 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " column_name\n", + "0 2.186333e+00\n", + "1 1.377467e+00\n", + "2 1.452000e+00\n", + "3 1.846867e+00\n", + "4 2.793334e+00\n", + "... ...\n", + "20826 6.661338e-16\n", + "20827 0.000000e+00\n", + "20828 2.220446e-16\n", + "20829 2.220446e-16\n", + "20830 4.440892e-16\n", + "\n", + "[20831 rows x 1 columns]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "true=true_low+true_high\n", + "true" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAKTCAYAAACJusZ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwkR3Un/iKzuntmNDMaHaNbQujgtrgvm2uxWfC1tpe1/cPYmF3bYK9ZwBh7wTYYA0bYgDHYXu7TyOIytxBCAh3oRvctjTQaza25z54+KjN+f1RFxMuorOn4RlRXdk2/7+cD093KrMzKI+LF933f9ymttSaBQCAQCAQCgUAgEAgEAoFAcEQha/oEBAKBQCAQCAQCgUAgEAgEAsHgIcSfQCAQCAQCgUAgEAgEAoFAcARCiD+BQCAQCAQCgUAgEAgEAoHgCIQQfwKBQCAQCAQCgUAgEAgEAsERCCH+BAKBQCAQCAQCgUAgEAgEgiMQQvwJBAKBQCAQCAQCgUAgEAgERyCE+BMIBAKBQCAQCAQCgUAgEAiOQLSGfcCyLGnz5s20YsUKUkoN+/ACgUAgEAgEAoFAIBAIBALBSENrTfv376dTTjmFsqy/rm/oxN/mzZvp9NNPH/ZhBQKBQCAQCAQCgUAgEAgEgiMKGzZsoNNOO63vfx868bdixQoi6pzYypUrh314gUAgEAgEAoFAIBAIBAKBYKSxb98+Ov300y3P1g9DJ/5Mee/KlSuF+BMIBAKBQCAQCAQCgUAgEAgiMZeNnjT3EAgEAoFAIBAIBAKBQCAQCI5ACPEnEAgEAoFAIBAIBAKBQCAQHIEQ4k8gEAgEAoFAIBAIBAKBQCA4AjF0jz+BQCAQCAQCgUAgEAgEAsHiQ1EUNDs72/RpjATGxsYoz/PkzxHiTyAQCAQCgUAgEAgEAoFAMG/QWtPWrVtpz549TZ/KSGHVqlV00kknzdnA43AQ4k8gEAgEAoFAIBAIBAKBQDBvMKTfCSecQMuWLUsishYDtNY0OTlJ27ZtIyKik08+OfqzhPgTCAQCgUAgEAgEAoFAIBDMC4qisKTfcccd1/TpjAyWLl1KRETbtm2jE044IbrsV5p7CAQCgUAgEAgEAoFAIBAI5gXG02/ZsmUNn8nowVyzFF9EIf4EAoFAIBAIBAKBQCAQCATzCinvxTGIaybEn0AgEAgEAoFAIBAIBAKBQHAEQog/gUAgEAgEAoFAIBAIBAKB4AiEEH8CgUAgEAgEAoFAIBAIBALBEQgh/gQCgUAgEAgEAoFAIBAIBAIPL3nJS+jNb35z06eRBCH+BAKBQCAQCAQCgUAgEAgEAhBaa2q3202fxmEhxJ9AIBAIBAKBQCAQCAQCgWBo0FrT5Ex76P/TWgef42tf+1q68sor6SMf+QgppUgpRZ///OdJKUUXX3wxPfOZz6SJiQm6+uqr6bWvfS39+q//emX/N7/5zfSSl7zE/l6WJZ1//vn02Mc+lpYuXUpPfepT6etf//qArmh/tOb9CAKBQCAQCAQCgUAgEAgEAkEXh2YLetI7Lxn6ce9598tp2XgYFfaRj3yEHnjgAXrKU55C7373u4mI6O677yYiore97W30wQ9+kM466yw65phjgj7v/PPPpy996Uv08Y9/nM4991y66qqr6Hd/93dp9erV9OIXvzjuCwVAiD+BQCAQCAQCgUAgEAgEAoGA4eijj6bx8XFatmwZnXTSSUREdN999xER0bvf/W562cteFvxZ09PT9L73vY8uu+wyev7zn09ERGeddRZdffXV9IlPfEKIP4FAIBAIBAKBQCAQCAQCwZGBpWM53fPulzdy3EHgWc96FrT9gw8+SJOTkz1k4czMDD396U8fyDn1gxB/AoFAIBAIBAKBQCAQCASCoUEpFVxyuxBx1FFHVX7PsqzHP3B2dtb+fODAASIiuuiii+jUU0+tbDcxMTFPZ9nB6F5lgUAgEAgEAoFAIBAIBAKBYJ4wPj5ORVHMud3q1avprrvuqvzttttuo7GxMSIietKTnkQTExO0fv36eS3rrYMQfwKBQCAQCAQCgUAgEAgEAoGHM888k2644QZat24dLV++nMqyrN3upS99KX3gAx+gL37xi/T85z+fvvSlL9Fdd91ly3hXrFhBb33rW+nP/uzPqCxLesELXkB79+6la665hlauXEm///u/P2/fIZu3TxYIBAKBQCAQCAQCgUAgEAhGFG9961spz3N60pOeRKtXr6b169fXbvfyl7+c3vGOd9Bf/uVf0rOf/Wzav38/veY1r6ls8573vIfe8Y530Pnnn09PfOIT6RWveAVddNFF9NjHPnZev4PSfhHyPGPfvn109NFH0969e2nlypXDPLRAIBAIBAKBQCAQCAQCgWCImJqaoocffpge+9jH0pIlS5o+nZHC4a5dKL8mij+BQCAQCAQCgUAgEAgEAoHgCIQQfwKBQCAQCASC0cOhPURf/wOiNZc2fSYCgUAgEAgECxZC/AkEAoFAIBAIRg+X/z3RXV8nuuB/NH0mAoFAIBAIBAsWQvwJBAJBAKbbBQ3ZElUgEAgEh8O+zU2fgUAgEAgEAsGChxB/AoFAMAd2H5yhJ73zEnrNZ29s+lQEAoFAIBAIBAKBQCAIhhB/AoFAMAd+cPdWKkpNP1mzo+lTEQgEAoGBUk2fgUAgEAgEAsGChxB/AoFAIBAIBIIRhBB/AoFAIBAIBHNBiD+BQCAQCAQCwehBFH8CgUAgEAgEc0KIP4FAIABw9+a9TZ+CQCAQCIhIFH8CgUAgEAgEc0OIP4FAIADwvTu2NH0KAoFAICASxZ9AIBAIBAJBAIT4EwgEAgBaN30GAoFAIOhAiD+BQCAQCAQLCzMzM02fQg+E+BMIBAKBQCAQjB5E8ScQCAQCgWCe8ZKXvITe8IY30Bve8AY6+uij6fjjj6d3vOMdpLuKkDPPPJPe85730Gte8xpauXIlve51ryMioquvvppe+MIX0tKlS+n000+nN77xjXTw4MFGvoMQfwKBQABAk0j+BAKBYGFAiD+BQCAQCEYWWhPNHBz+/yJKuL7whS9Qq9WiG2+8kT7ykY/QP/3TP9GnP/1p+98/+MEP0lOf+lS69dZb6R3veAc99NBD9IpXvIJe+cpX0h133EFf+cpX6Oqrr6Y3vOENg7yCwWghG7/rXe+iv/u7v6v87fGPfzzdd999Az0pgUAgEAgEAoHgsBDFn0AgEAgEo4vZSaL3nTL84/7VZqLxo6BdTj/9dPrwhz9MSil6/OMfT3feeSd9+MMfpj/6oz8iIqKXvvSl9Od//ud2+z/8wz+kV7/61fTmN7+ZiIjOPfdc+uhHP0ovfvGL6WMf+xgtWbJkYF8nBBDxR0T05Cc/mS677DL3AS34IwQCgWB0IYI/gUAgGCi01qSiSDwh/gQCgUAgEMw/nve851Vilec///n0oQ99iIqiICKiZz3rWZXtb7/9drrjjjvoggsusH/TWlNZlvTwww/TE5/4xOGceBcwa9dqteikk04K3n56epqmp6ft7/v27UMPKRAIBAKBQCA4ArFt/xT90keupv/xzNPobb/4BGxnUfwJBAKBQDC6GFvWUd81cdwB46ijqgrCAwcO0Otf/3p64xvf2LPtGWecMfDjzwWY+FuzZg2dcsoptGTJEnr+859P559//mFP/Pzzz+8pDxYIBAKBQCAQCD5+xVracWCaPn7lQzjxJxAIBAKBYHShFFxy2xRuuOGGyu/XX389nXvuuZTnee32z3jGM+iee+6hc845ZxinNyeg5h7Pfe5z6fOf/zz94Ac/oI997GP08MMP0wtf+ELav39/333e/va30969e+3/NmzYkHzSAoFA0BSk0lcgEAgWCpjib9fDzZ2GQCAQCASCIxrr16+nt7zlLXT//ffThRdeSP/yL/9Cb3rTm/pu/3//7/+la6+9lt7whjfQbbfdRmvWrKFvf/vbo9Hc4xd/8Rftz+eddx4997nPpcc85jH01a9+lf7gD/6gdp+JiQmamJhIO0uBQCAQCAQCwRGHgVXrXva3RL/1xQF9mEAgEAgEAoHDa17zGjp06BA95znPoTzP6U1vehO97nWv67v9eeedR1deeSX99V//Nb3whS8krTWdffbZ9Nu//dtDPGuHpM4cq1atosc97nH04IMPDup8BAKBYEFDR7R/FwgEAkE9kng/zhrK2CwQCAQCgWCeMDY2Rv/8z/9MH/vYx3r+27p162r3efazn00//OEP5/nMwgCV+vo4cOAAPfTQQ3TyyScP6nwEAoGgL/7z5o103UM7mz4NgUAgECwEcLKvmG3uPAQCgUAgEAgWMCDi761vfStdeeWVtG7dOrr22mvpN37jNyjPc3rVq141X+cnEAgERER09+a99Odfu51e9anrGz2PGFHJd27fTP/jY9fS1r1Tgz8hgUAgGGEklfoW0+7nfZuSz2Ux4TNXP0xfvUl8twUCgUAgWAyASn03btxIr3rVq2jnzp20evVqesELXkDXX389rV69er7OTyAQCIiIaNPuQ02fQjTeeOGtRET0d9+9mz72u89s+GwEAoFg4UANzORPEIqNuyfpPd+7h4iIfutZpzd8NgKBQCAQLGxcccUVTZ9CMiDi78tf/vJ8nYdAIBCMBFJcpPYeklI0gUAgGBRKUqx0RTz+QnFgut30KQgEQ8E9m/fR6/79JvqLlz+efu1ppzZ9OgKBQNAYkjz+BAKBYFg4EpZ04j0vEAgEVaTo/TZwJbiMrwKBwMP/ufAW2rj7EL3py7c1fSoCgaALaZSIYxDXTIg/gUAgGBJKmegEAoGgigTmb98hrlyT8VUgEFQx3S6bPgWBQNDF2NgYERFNTk42fCajB3PNzDWMAVTqKxAIBAsBZakpy5rxhUrh7mRZKhAIBIOD5v6AklgRCAQexEJUIFg4yPOcVq1aRdu2bSMiomXLlonP7xzQWtPk5CRt27aNVq1aRXmeR3+WEH8CgWAkwNd0X795I/3Ws0fPkPzGh3c1fQoCgUCwoKASJH+yXBAIBAKBYHRw0kknERFZ8k8QhlWrVtlrFwsh/gQCwcjhxnW7GiP+tOj2BAKBYEFAiL84pJCtAsEoQZ51gWBhQSlFJ598Mp1wwgk0OytND0MwNjaWpPQzEOJPIBCMHKSiSyAQCARP2fVD+3OpSzGuFggEAoFgBJDn+UDILEE4JEYSCAQjgW37p5o+BSKKJx1PU9tpCU0P9mQECx4X3riefrpOSrwF/THdLuhbt25aMGPcsDEoe59H9x6aeyOBQLCoIPZhAsGRj6vX7KAf3fto06ex4CHEn0AgGAm889t3N3bsVIXhOWojXT3xJvrJxJsHcj6C0cD1a3fS279xJ/3mx69r+lQECxj/+uMH6c1fuY1+9V+ubvpUGsGg1uX7ptpzbyQQCAQA2kVJd23aS2UppSaC+cfFd26hi+/c0vRpjBQOTrfpdz9zA/3BF25atAnUUAjxJxAIBPOMX8huISKi1Wpvw2ciGCYe2Xmw6VMQjAAuvaeTpX50nyiCBcOHBjNbZalp8x5RVwpGA6mJhb/65p30K/9yNX3o0vsHcj4CQT/sPTRLf3LBLfQnF9xCB6clkRWKr960wf786F6Jow4HIf4EAoFgiLjuoZ1Nn4JAIBAsGAyqFE9J46VgpFzz//PlW+ln3/9j+sFdWwd3QgLBAsVXb9pIRET/dvlDDZ+J4EjH7oMz9ucLb1zf4JmMFtqFm/tnirLBM1n4EOJPIBCMHIbdWXeQHjF3bNwzuA8TCASCEYd03RwtXHRHpwztj790c8NnIhDMDSUmf4IRwQGm8rt+7eISCdy0bhf964/XUBFRUn/00rF5OKMjE9LVVyAQCOYZWha2AoFAMK+QUVYgEAgEo4p9h2btz7PF4lKw/4+uF/bxyyfo/3vOGdC+x68YJyJNRIryTCKBw0EUfwKBYNFgz+QM/cMP7qM1j+5v7Bwk+bx4IEomgWBuyJgoEAgEgsWOLXtdY4pbHtnd4Jk0hwt/umHujTwUM4foh+N/Sf/Q+mSUYnAxQYg/gUCwaPCOb99NH7viIXrZh6+C9iuZ+blMKgKBQDA4DIr3E48/gUAgEIwq9jDF3/5F2tzj9g174H0O3vsjely2iX67dYWs0eaAEH8CgWD0EDmux0woRJ1OWwY7D0rHKIFAIBgYBiT5E+IvDmBTX4FgpCCCYsGooC2NKaJwxX2u0VS+/Z4Gz2ThQ4g/gUAgEAiOMByaKZo+BYEgCLIwHz7kmgsWDeRhF4wI2kyt9vInn9jgmYwWXnzucfbnH1x/e4NnsvAhxJ9AIBAIBEcQ7ty4l85718X03u/FZT6nZgt6eMfBAZ+VQFAP8fhrFjtExS4QCASNY5Yp/k5dtSzqM2bai081eOysU/w9sHVvg2ey8CHEn0AgEAwR0vBBMN+44AdX0g1jr6eV1/9D1P6/+i9X03/54BV048O7BnxmAsHhoaXudOj47u1bmj4FgWDeIBGXYFTA/elmI8p+v3/nFnrc31xMX7954yBPa95RJvryHb//Xvvzbr089XSOaAjxJ2gUuw/O0J7JmaZPQyCYV8hSVjBM/OLeL9Ox6gC9sfWtqP3XbDtARETfu2PzAM9KIKgHT4Z87454Eiqjxad0EAgEAsGRgdkijfj73xfcQkREb/3aaJW7zpYl/UH+ffrx+FvoZNoJ7792xbPszy0Sm5vDQYg/QWOYaZf09PdcSk9796VRA5xAIDjysWnPIZqalYkcQbscjMYhz0QrIZh/8FLfGx7Gg/5U7DwwveiUhgdYx8jF9t0FiwtKvAQEIwLe3GNmEa2L24Wmd4x9ic7KttJbWl+L+AAnIBoT4u+wEOJPQJMzzbQM7yj9OgHnganF2bZcsPigSnnWQ3H/1v30+n/4NP3OP32r6VMZKeyZdJ5dKYv6DbsODeJ0BILDgi/LUziomOX9xXduoWe+9zJ613fujj/wCOKvv3mX/Vl4P4FAIGge7UqpLz4w/2Z+Ba1b8jv0DPVA1PGn2wXtODB8z9c2+64TahbeXxVT9ueWkjXW4SDE3yLHf968kZ70zkvoPZEm8ClYessn6daJ19Pj1frRK4UsZokufx/RI9c1fSaLEk0+LzGLJM2WpOdt+OIAz+bIxg03XkPfm/gb+sah/9X0qcShIaHBr9JV9ufpQwfg/V+S3Ub/OvZR+um9Dw3ytASCWgxKkBNT6vv+H9xHRERfuO6RwZzEiOChLTvov2XX0CraT3r0IjDBIsLNj+yil37oCrrqge1R+4veTzAqaJduDpuNaNLxgbFPEhHRNybeFXX8l3/4KnrWey+jDbsmo/aPBVc3TtAsnLDOCkdWnn3sxMDO60iEEH+LHH/e9QH4zNUPD/3YK654Bx2jDtD7xj4zeqUmP/0M0ZX/QPS5VzR9JkPHdQ/tpLf95x20bwrPyqTildlV9L3xv6JVs4/C+x6aKWh95GQ2yIYcZ26/fGCfdaTj5H13NH0KI4lx7YKg6SksezvTLunz4/9Iv5JfT29tfXXQpyYQ9ICX4qVEAmdkODGQL9IywL9pfYk+Ov5v9O/j54viT7Cg8apP3kBrtx+k13z2xqZPRSCYV4xP76H/GHsvvTK7qhELrHU7O2uky+/fNtTjcsLz5flNlSYnIVCFK/V93rF4snsxQYg/QePQo5iP27mm6TNoDK/61PX05Z9uoA9dcj+2o9ZEX3st0bf+d/SxPzT+cXpKto5+Y+tH4X0vuCFV0TGY1VFMFm+xYtu+qbk3OgyufXAHveUrty3qBkLT01i57nZW5rFa7R306QgEPeDc27BJqEXK+9Gv5p1qhZ/J1lFiQ0WBYF6R6nW2WN9xwejhJY9+nn42v4c+NP7xRefxV/kdnJSy0sWtv7T+gwM5pyMVQvwJFgQk7hw9PIKq5/ZuJLr7m0S3XUA0czDp2BMa9x6bnIk3fM3KWbp4/G30z2P/GrX/mcopFLc34J8xqrhr056k/X/n0zfQN27dROd//77BnNCI4JbyHPvz1HT889aWEEEwBFQV1cONBrJFygrwhOvXbt7Q4JkIBAKBgIjovH1X2J/b7TSvupRKumEn4HySEyb+WKnvVLZsIOd0pEKiekHjUKSl1GQEsXE3SL7pAXZaGvLzcuruG+mJ2Qb69fzaqP1f3foR+00e9lAMakm+bmca0RyL2PPXWtPrvngT/dlXbova/xnZg/bn6SlMNalL954er/ZFHV8gQCCKv+GjZKPT2u3NjI8CgUAgcNiXH2N/fsbk1UmflaIYRIm3VLRnqgnqNnjuGSv1vfnYXx7IOR2pEOJPIBBE4cFtqI9Cg6u7RCzStWHjeH7mOm3u2h/XYfYoOkRlQ8/b3ZvjiLONuw/RD+95lL556ybaO5nmpdme3AVtrwtH/D0vuzfp2IIwqMXKPnUxqK6+ccdenNe+XKTfW7D4sFjfccHo4YqV/83+/MoDF0L7+gq/FFuhqdkBCjUCUExXk08o8ZiXjvhT5fD950cJQvwJFgSkq5xAIPDxq/n19uef3LsR3v/PW1+lu5f8AZ13aPim4Ot2HKTPX7sual8ev333js1J57H6to9B28+2JWgaNkauudWAUVH8SSwwJAgZIlgcWOR5FcEogVVcjJdgtYY3dc7MxNu8TM6klRmjKH3ir4gn/vJS7JQOByH+BI1DkR7B6keJJGCo5nycUsEXo+lBpDw7Mcind8P7/J/Wt4iI6A/3f3zAZzM3YtV+RNVnbNOeOKWjgW5jQdCFyU1wBAIMosgZPkTxJ1gsyDN51gWjAa5WW0IY8VdoTWvLk+zv09MocejWOXsPDTcBXM5W49x2gSkOq4q/4aoVRw1C/AnScN9FRFd9YORKNx/ctp+++tMNVEb7GIzW911wAJ+X3tbuzV3/9Eddnp0YPGl/nL8iEVGLRkvFxp/3/VP4ue9TK+zPm099ObTvo3vT/L7KUtO3b9tE63eCzX8ESfjWrZvoDz7/UzqU0MSoKTTp8bdYoYX4EywSLNYGPoLRA+9Oe7zGkt1FqSknV967fxKLwbgn4P6pISv+ZjzibxaLe1uaEX96uOc+ahDiT5CGL/8O0Y/fS/TwVUkfM+xY/xf+6Sr6y/+8g876q+/Tu75z99w7CAaA+OBrtijpbLVpgOeCQRQpzeDrxYvsz4dWPS76czId73USi5SSxXZZ0ltbX6GLx9/WUwIRgvtz19UXrJggzYK/GRqDj/3dOzbTm758G73oA5fD+wri8eav3EY/um8bveE/bmn6VJIgvN9wIIo/wWKBCP4Eo4KsiE9Sl1pTxmbQAiTPZpgnYD5ksrxozxz297nQ0u67ZqL4OyyE+BMMBgcejd5VEdFN6/AyvkEh1odLkAJ8ebeUxLdhseHYpWyKSjDszWm0MoCz7YLe0Po2PTFbT0975PPw/pzo1AX43Vm2dH1+BnzsGx92zURuXd/cuL5Y8aP7tjV9CjC4wvWRhjpwLzZwxd+pq5ZGf87//NyNCZUTAsH8I2PM382PYM2uBIJhosUUfz9Sz4f2LUpNLeVIr2IWWzNx4i8bMlteeudagBY1VcWfEH+HgxB/ggWBj/5oTdOnIFjgkKTt4sPSjE3gYAaQIx+xQGD/fucPeHYbHxszct+3BIk/XSaqI3VJ/zv/Nj1b3Ue3rN+T9lmLBIu9qy8H2s1PEAdO/I3l8c/f5fdvp5seGT7BP+yuk4LRBS/1fdUnb2jwTASCwyNnyrWDtATat9RELZbkLsGYeXKmoD/Nv0UXj7+NJtrxHtUx0LNVP0JUrTjGFX9S6ntYCPEnGAwSjXlGr5PfYl6oaWq+IGu413/0ns8jAzmfwMESiEqn1CZKfRMemQuvuc/+vHwih/fnRKcuUcWf2zcmc/ozu35Ifzn2FfraxLvpC9c8BO+/GCFdfd3Pw74Uwrmmz+azxXDH14vv3EJPfOcP6MIb1w/1uILRBBcvzQz5WRUIELRYkwpevhoCrTWNM+KvPYsRf/95y0b6i7Gv0hOz9fS8Xd+G9k2FT1KipCUn/kTxd3gI8SdYEFjk656RwufG/pG+Nf4OUgQGUAkrrN7nY3QfmGyEz33Y4J26dIkFAlw4tEKldcYdNl74mGX258ccvAPen7+baKnvaVMP2J8z9B0nomOn3GL8Oft+CO8vWHzgHqoyOg4fqfFXb/Ot+cWfXHALaU309m/cOdTjCkYT0txDMCrgir8WaFHTUfyxag+QPLuZKbdLPWRxRdtX/IHEH4niLxRC/AkahxI91ehAa/ov+e30tGwtnQs324iXdVx05xbwWL1YKOTyGEk2KhQ8CNq59wC072y72euc8rgtU87fZEmJk5ZZguLvjMl7aj8nFLsPuX3OVRvh/QU4ylLTf8+uonVLfocer0ZPBcXX5UVqqbkARmoEViyUyVUgqIEQf4JRQc7WBy2QwCq1pjGKr5I5dmnL/jylsDLjVGhf8VdgHn/VUl9ZYx0OQvwJBoTEUt8RCxz3T8X7jY0y+H3SKeW2YOnl+l1YW/pBg3/X1Ec16botMvDM3fdufQTat402tVhA4EbHtyx/Mbx/pdS3wIKg/DHOUDqPIanZImuC4huyLFZ845aNtHE3Nt4VWtM/jX+ciIgumXjbfJzW0MANxgWjgVGL31Lw5RvX05lvu4iuuH/0mugsVmSy0hWMCDhpBSv+ypLGWXMPKrB16s+f7SpNdm15GNo3FT3EH+jxN05ufyH+Dg8ZDgULAqMWNoppfQR41vXmzzd6eHjfwZ3GyD3rTYJP4ONgEISaAy8kKJbt3Jsdje/PS31Bxd/KCfdzTFOUvYfcdX9ytg7ef7HjLV+9nV70j5dD+wyi1HLXwRk6MN0MWc4VOQ88iil7BTj2T1XHRpU4wy0m27S3dcuLX/u5nzZ8JoJQiOJPMCrIUhR/7er2GlT8ZTNu7v2T1nehfVPhn2sBkpacJJVS38NDiD+BIAKj3nhw/c5JajcYre9ff3tjx45B03Hjhl2T9Ip/voq+fvPiKp3k5savH/s+tO+Na5tVZKSoYFTbEX85WPJA5BF2aHMPFnBlEYq/cvqg/fnYpXhjksUIv6svOr/ct3V/0vEPTLfpGe+5lJ7yt5ckfU4smhxfU6/dKGLPZHWRlVzq21BAdPzy8aj9FpNCUSBd0wWjA57sHgOT3dony1Dib/bg3BsdBtv2T9H/vuBmuubBHfC+PvGnQY8/7kcdE7cuJgjxJ7BoMhhauz1twBk2RjmOuOTurfSiD1wembFOeUbcRduyZ7SaLTSNf7zkfrpv635669dGizBNBe/qewZthfb90d2oB+XCAVf8tcoI4o8FPvds2gUe2wVgMaW+v5VfYX8eA7vSCeKwZzLNeuLhBudfrTX93XfvmXtDwUChmXn7hl1p83FTxN9Yji9hpmYL+q8fvore/g28aZJgNJE1HK9/89aN9MXr1jV7EoKRAE/a5mipbw/xh8UFihF/95SPgfYlIjr/+/fR9+/cSq/+9A3wvn4TuhIkLXNmHyWlvoeHEH8Ci6Z4v6dlDzVz4EWKL1y7joiIro7IygwKm/ekefaNMO9KT84wrzqixatQiCk1NVAzo5VM4Dh1x9X25xzsZkxUDXwOHsKIQ8WCxTymq69y5SIr8sXphYoi9f0ejyBAOFSl79Jwx5oHt0lpbwy01vSnF9xCf/TFmxqfH8qGjp9HMDo/vOdRWrPtAF1444Z5OCPBQkTeYKZea01/9pXb6Z3fvps2NOxVLVj44Mq1MWpjY3vbI8tA8ozHzBv0amhfIqLNCYKOHsUfSloyUUrKumExQIg/gcXipBbikOqJs9jhewzNBUXVgX2xYTGWoxFVM54bljwe2vfxB52i9YAeboeyVLTJdVdD/UoOzRS0UrkFxuNOWHaYrXuhSqb4SwygWhGkpaADJOBfvWJi7o0Og2nWUGPY6q3mO8Jqenl2I52hHm34PDDsn27TRXduoUvveZS27puC9x/kVR/mHZwtSnp1fhmtW/I7dJ6+H96/aZJUMHyklvoup0n629YX6BnqAXhfPrbuOICr9wWLC9VS3wKy/fDJMpQ8273frTOiGrulwCP+Sp/EnAO5lPoGQ4g/wWAgwdTIYCGUKaOn4J9zk0/bD+7GSk4HgZFWxRzaQ3RgO7yb1roSfDy85InQ/ruWulKFGOVak9iz5DT78+QhbFG/6+AUHU0uc7s0x96WrOQef/h1u3zpf7U/P3TCy+D9BTj0JFbO7eN937+Xfi//If1ufinduC7ts1A0qcYhIvqv2U30ifF/pqsm/qzR80BRshVh04nIYZJpM+2S/n7ss0RE9P+m8A7W+1jzobXbR3heFQSjXcbP/9v3T9NbW1+l/9m6hL4x8S54/3+/Dq/wGBS01vSFa9fRdQ/tbOwcBBg4abWMpqBEnF8um5UYefbju5yHeCsi9kuZBXqa0MGKP3e+uTT3OCyE+BNYSCZ0cSBpkZDyjCQs8Bp/NJs+/qhCa6J/eAzRB88hAktv26WudPJVoPrs6aettD+3FB7EFKWmKx/YXulSOyzoMt7guaVnKVPugc1K7LpxxV8rInPamnAKw3YWZ74vwNDaVVWioHP5A49soveMfZ7eO/Y5et2nsI7Co45nZriKZyGALwhjplY9QLJwmPPzTDstiXPccqeOvXcLrqR/lrqP1i35HXpBdmfSeQiGh1se2R2979rtB+hstTl6/02s/HHYYeQ1D+6kv/3O3fSqT10/5CMLYsGrLJapachGoWz7ij8sduWxZozibyMrZYf5hHJwir+YuHUxQYg/AR1L++gY2ifcBoBjC1zBJOCQpy0WB6dHJ5tVsgzkI2uxsqyZdkmtBOKPK9digpjPXfMw/f5nb6Sn/t0Ph29ez75rS2HnXrarz4cCs5++xx8cwDGTZZWgtFhMSC1FK4vqMzJbYPeMvx9Labjl2Q31hRh58BLpphNjMV2BN+6ehC0/iDqlvin4xFVr6c2tr9Nv55dHKcG+PvFuIiL60vj5SechGB7+29NOid43dXxqyv+SiGjdztH1OR4IHvgh0VUfaH6ABMDn4pxK7PnxiD4FEn8ve9wx9uexiGT55r2uOuX6tWDlgKdWRMqUy6KknCW7l2rc+mIxQYi/RY5xmqVblvwx3brkj3tkwhhGZ2AdBH7mwDVJ+1/z4A56zWdvbMTst7nKKsV+GrHnpeHy6KPpAP1e/kNaRfvpS9cPt3SkXZT06Z+spXs274P33bXPKSoe+e77oX07xJ8LgpTGApGz111of85IE4HKt2/e6roC/+AuvLw7SRzLyh6WZdh5F365B0j88fKQMVWQBlc+lY5qUnIxFHBPSCKiGZAceWq21v78uAxvevD1mzfSiz9wOa15FFdQNbkwJmp8aI8G56xiiLdBAr2FG3ZN0gv+4XL6mXf9ED4W+mz7aG++g97c+gb9w9inaGLIJLegGRy9dCx639R3iycNh11V9blrHrY/74sg2VOxbd8Ubdmb1jE8Cf/xm0Q/fi/RGnycaQpZxauuhJLOpR8jg6W+Le3GwzPVFmhfg9PVo7SUpuBGHz0JaoC09BM4LbBKZrFBiL9FjmPIBep6RvxOhoVXf/oGuuqB7fRnX7mt6VMZHhQn/hI/KmKfEUr69eBfxz5K7xn7PP3b2EcrZtHDwLu+eze996J76Zc++hN4X04ivejgJdC+M0VJYxXiDyPATnu0WrI4PYst8vjzEqNMufSe+GYBmgUyqFrRL+8YL8HA2yNIS5AwbTPiURR/YUhdEM62jrI/t3UGf967Wl+wP68iXCXy1q/dTo/snKS3fwMvf2ya+BtVlImKv8dk2wZ4Ltj2r/jnq6KPxUt9i4glzFGle77PfhSbkwSjifGspN/Mr6DHqAh/Zp1WFl+Ums5RG+m56t6h+/1xm5JyyNLqdlHSc973I3r++T+mqdmGSy/3bZp7mwUCXuqbkSYkhNLexqjiL9Nu+5PUbviZ+dnsLvrJxJ/RP459Eo+ZfdISUvxVib6hNyYZMQjxt8hRskdAF/KyDBsx3fiaxMLxgVwo5zEcvDC/i4iIfi6/m7IhS1S+dP366H2L2fgudrNFVfGXgYo/H1t34YmNU2gHPS+7hw7O4GPjtQ/tgPexSPD4K7xxHCVM/e17TJfnwI59bmGNlhkL4lCwAL+lyohFntv+r8YuiD6PGDVWk1PKbFHSc7J72bmMzrzCib9U8vRYwtXcHOh14+Pp7oNYQoaXsZcanwxLXnkwtQfen6MJFZUAx3nbvksfGPskXTnxFiIi2rY/PO5OHRFuWb+bLpv4S/rKxHvo1ttvgfe/4v5t9MYLb6W9k/iz9kcvPMv+fGDIFjH8HZfmIuHwS32Rrve9ij9sbM08sq0NxhGvzDsJnV/Nr6d/+AHYcd2POxHFnxfzCvF3eAjxt8ixTLEJEFzgCTpI8f9aCB12hwf3ZX9GPXyY7erxutZFgzyZkUWqH9gwkUL8lYWmMeZvp8AuY3ef/qrK7yiBdXS5m65d8kb68vh76bsXfQfal6jTJOPJ6mH4vImoUiKLdigrfZ8XkPjTXvC4fxJLTlQ6KCeStYIw+Ek7xB+HqFoqfKqKX6S1IrISTXJt0+2SnsbKnEfJb5Bft50H0kpWPzH+TwM7l1CYxdkhUA3EPf5ilFi/ep7ze9MzaVYrD22TKplhY7qNL+pP2n935XdERZVKqj/wqHtGHq9wG4XXfu6n9J3bN9MHfngfvO9JRy+xP//nzcNVvfFkwPUPC/EXih7iD5mUvGcV7eqblT7xh8VvGaPJ0XFdeZUlyLn79jYtKke7xGueIcTfIsf/bX3Z/jxK2e6FhO/ejnX8arPAtQ2asA8CC4E4Oj3Dm6P8Si6dyZrA09UaWrfkd+jDY/8G77tmc3zA125XSUOUwNq17KzqH8Ag6H8e+rz9+RnZGmhfIqK/0x+jiyb+mt6YfxPel39XtEOZX5qLeiP61/m6B7GSwBXkSovv2QgaPBPR+p2T9O3bNg29NImoUxr1z5c9QA/vGC1TdJ/s9bv7zYU25QM5j617cQX7Qir1Rc9ltijp27dtokcjlfsbdk3S+y++D1IgGfBz/e1PXhd1fINnJ3Y2Rq/baWob3TPxv+hvW1+gv/4mVh7OrS5KUnDcOkFuXtm7/GxoXx8L6dldLLjsHrxEvd1aNvdGfZB6i3niL8Xbeu12fE7iz+dD24dLUvPpW16TcHDiT4HN1XTpJwCxpHHuxcio4o8Tf7/5zNOgff0ksQIS9X5zs+4fseMvIgjxt4hRlprOVS4LJGNzHNCg/ZK7nffXloiFUioUES2j0Sox9rHv0OI15d4Flkal4psTf0tERL+R4w1tLr0Tz3Ab+FJ/lMDylWtoELSydP6nZYyyRHU8Ef+khasFedAyThhhWcymXTc/YELLdX8+v9X+nEWoHV/0gcvpTV++jb5+y0Z431S889t30T9ftoZ+OcLPkohoz+RM1PuZmozxn21/ATDfOIb20W9kP6Fde/fC+zZJnvjHRtX7n7xqLb3py7fRL34k7nn5zY9fRx+/8iF644W3zr2xB36qU7PNKmvRO/i/8+/QhJql/9m6hC6/H0sCcsVfSRm8OP3ZTZ+1P0/TOLSvj1FSiB4piBkvuAcqitRb/N+ya+3Pv/iUk6M/59qIctmi7MT6LWrTd0CBAlGnlP3fr3+Etu/HKzeabGoyyshZvIaW+vrz1zVrMJ9prrJr6wwWpvB15colWDLRj1MVpPiriXdAocBighB/ixiX3vtoJQMlQ3McMnDRdnC6TafQDpqgGVq5pDX3DgPGy/d9ne5Z8r/o17Or8Z0XyAQ+28bPYwEIHQeCz1yNl0kPCm3Qwwvx6fBRthNLVr0yBbS7LS8j+7nsLmjfZCQQfz7pAxN/3vbLx+JfnIksnpD4yZoEj8RI3LRuNxERTUZ4Opalpqe9+1J6xnsujWoGkwL/nvtm13Ph1vKcpOP/+/j76cPjH6O3t/4DXuQ1SZ74rwY6vf3o3s7CKjYZYzx+f9p97hAsJLUZei5LVHzyqs3sI0pSsBLqjAO3u/3Bknj/2Y5RJW/YNUmbwI6XgjQcGjvG/ox2ck59z87JHOE23hrukjuf3kv3LPlfdOvE6+n1Lzpr7h08fP6adfSOb91Ff/ofuDchJ6ESG3EvKlRKfZWmArh4fsybg4lXpatewWip72nKJXHG2/sPs2UNfOIPiFtrG9CJdVlfCPG3iLFnsjoBou23K2ggCJ2cadNN63Y1UhLGgao1Vu5/kK5d8ka6dPwv6JwTls/TWfXH7+z5BBER/fP4/4P3bSpgbXqJM+qc4a6DM/StWzcld1ebmgI9kdrxHn+FV66Iqsd6yx7Akln288tyPPBNASc5l6ALFV8pCZYK+wTr8cviy0DPWIUrapbRFD1b3ZfczCUGKckB3tjiRf94+WG2HDx8og9V/OVHuYXx/Uc9Gz7+U7J1RNSxY0DniCbVIL6aAl3ko0m/vucREcNorenZ6j765ax5Cwz0Fj4/u8f+fPqxS6F929Pu+SpJwXHro0scAVLOYgS9f5vKNlY5cWimoBf+4+X0c+//MZxEE8SjyCbsz7+OVi4kDk9PYX7W+exwLSSO3dmJW1aoQ3Tu0fgX+eJ164iI6MaHccsOboEUM0zumZyhX/zIT+iTVz2E7zzC8BtTlMg4oX3iD4sDMi9uaIN+mpxofPqO70L79iT2gUS/7/FH1CscEDgI8XcE4OZHdtG3bo0zbuWKv+/fuWVQpzQUvOYzN9L/+Ph19O/XP9LoeaBz2qmP/piIiM7IttNEazDeSsPCP12W4AV0pEjuhoxDEeojHx/8+CfoO1/7LJ3//Xvn3vgwKKcwn5gJFZ91097EvfcgtsjqUUGBvmdZgxlDbnQ8QbMQOeL7ncAEml8iDV6H20qmLIgg774w/n762sS76Qnr/h3eNxVn6g109cQb6VX5j+B9HXmjaTfYgTGV/Cq9e3RoCnvWTzzKzUNblz8x+jw0KZppY/e8ybydT7j53QHnQuqUdpraRn/R+jKtpj3wvqUm+trEu+nfxj9KZ6vhGvf7QG/hycoRCScfhS1Dypkq0YcSh3etfJH9uQAV6T4xvPr+C6H9dx50ibBp8D05ErBux8FGCM8icwmopYQlI1MVf/8ldwrT5z/y8YhP0LSSIv35Cvddl03itis7EpoGXfnAdvpf+cX04/G30Fnje+D9P3HVWrp3yz563/fxpiajDJ+sKxCvO+9ZbcGKv+qx2mBi5HGZm4dOKcDS8p5S3/C5uI4crSMDBR0I8XcE4JUfu47e/JXb6I6Ne5I+Z9R8GG56pFMec+GN66H9Yoy0Dwc0+C+zMfvzkrHRegUHuUjbl1AOp9RoPaspQBfSPmbbbXrf/r+hz45/kH58Sxrxh/ai+bkzV0Qfy+9MipYt+IEEvMibbdAHk2U7M6WpBEoufL83tETaL7FAy0Z5sJlp/B03jQb+ZOZzdGB6uMHb/5n8f3Sa2kHnj30G3nf7/mn61vjf0Lolr6ZfWzbs0vDqdfrSdZgdQOUZSSC8lxOuCG+yZNWU6hr8dC3mN5fqzfjV8XfTn7a+Q/86/lF4X37ZTlXDL4vnSIkdlxVYSVjBxuUxKuAywrs2Ox9KVBVSak2Fdvc8m8HOnT8vqDfhqOOiO7bQSz54Bf3xl9LU8zGvHI+5W1RAnzHI4WnlzFZoe601vav1Bbpjyevov2S4D2jFJ23Iicx2WdI7x/6dzsq20gs3fgLef7ph39KmkHlplNrGFX3g+1rDij+P+ENjZo6nbMWa2vWU9iKlvt0YlY/NhSj++mK0WAfBYfHITrAMj6qKv7QJrrkg5r6tWPDV9IRSKufrl2ej9QrmSYRbNdr6dqRKdSFg76HhTSrT3sR/9NKxPlvW44FNzhQ6m9kHH/8yeo79GZ1Mc9BXj8NX6KWW+k4ewoi8cdVg4OCRdUUbuI6zVXWAQgnTnhLp8OtQlrrShRjJ2tbBt6OYb6yKVVYQ0Xdu30xPy9YSEdFHyvcN6pSCoL3nY/Mu0F+HLwoTFohL1CwcCTRJ/F12T3UhPjONqYFSNeyndJVvz81wVUvKdVPTeBOWwyHlFr72wKeh7Qum+BunWbhMmo9PbZT4K6ver3kLm4s5QTq7yEp9P/WTzth42b1Yw4FBY5rAe0ZEL8qxztMc1y1/WfS+d27aS69t/ZCIiD43/gF4/8nWKvvzk9d+tv+G8wD+Xi45hN/zxVog1PLIOsS2Y3xfVQTjf9Zc8OM1VAGfgt5S3/Dx0ZxnQRnN6k71QgppeaRjtFgHwWERM1ByFc1QFX+b8ezVQgV62Tjx97yDPx7w2cwv8kHOxiM0s2tviffaz904tGP7ir9fe9op0P4Tu1159s9ld8PH5woyVP2lEzz+/GMtA5tM3L62al3wH9evhfYfpwZLfb0gyC/lPCx6mqKAA5T2ib/wYxfaI/7QhizeuaYqqlA8PovvJJzin5n6PX1z61xhpEKmOVkLvuPePUPjiCYLDXxFxHFLsfvQ5BSWQvwdd/HrB3gmabHjS2auwI7FFH+50ngyisW8MzNpZZ8lYVYtvEvmYiP+BvWupI4Xd5RYk4vUddFkFt9ROLZpkAEnjcZ2xFV7wIlDA1axccL26/Djak1/mF9Ez1VpVSqjhh6PP2A+PvuGv6n8fs7xS7Bj+4o/JOGciBTFn3nONWVUdGmt2k6/AiIS4m/00Z6mdUt+h+6Y+EN4RlSk6DHZNvu7TlLtgbP6tiNnMEevmmJZ4hdNjRbxN+yF+EKBf49vXb9naMee8QgFtEvr8ls/ZX9+X0QJ4xgLRPyGG3OhmI0n/nylGfq9n5tVx5itu0F/QrCb7iDhE2bI4rbo6eqbVuqLZJyLUlcCV7ST8pUPVEstswaHG7Qz72PGBquiQuCTszk4K1W8fUDib9ar/0dLGGMaWwwKTz9YNfpfNdFnwz4YVHOPGKTwEUvXXxm9b51H2zBvoZ6tlpOjyaWKCqbE3vFC60oSELW++Mma7fT6/Lv02vwHdOX9WFn5qKPRymb2sqBvrH/eKBGYs2fspuN/A9o32d+ZjeWfmXoJvPuT1Tp6eMnv0mXjb4Wb6PwaXWV/3rrs8fCxz9r/U/qbsQvoKxPvgfcl6nTPHkX4ljaIV13ern7n5W2sW3xK3JmMbtw5202mIHGrSXyWKqN2d39p7tEfQvyNOLbd8FUiIlqpJunELYkkUtLMvLj8SjjQQMBIkYmIlhTxpWVNYJADhiris5kq4nkbMQtLi9mZ6mSel9h1e2AL3pGNo8WUbzv3YV3pvndrfOMdn8zIwLKFDfqE6v4gAXZn+Vho+0HCL7mAspfevmiJtB9wIYq/UuuKxx+qHvM7wqoG+2nfuR57b54448rB9o6fNOjTOSy0d8/wbn7uPqH3bMYjgtogG5KiXEtV4zxmxmtWBZJIDzy6n5qKffh1O0NtO8yWg4VP9BIN9wpoz3u1BO8ZX1ifeuCew2xZc+yy00nY/Y69Z5/78R309rEL6V1jX6RvX4er70cZBeBTO59AY8clB6sq8BvADreKjcX7W8ccZsterJhIbP7HrvkejfstXzTxV0REdE62GX7HnznhmolsPoATmKtmMT9EjrLU9MJ/vDx6/6agvYoJIiKdoAx+yoFroe39RG07QfG3Sy+HtjfK0jZ1KuIg4q8bo5aknOJPiL++EOJvxHHtA65zzvIDzXa3XaxA1x4zzGPk1INY4Nk08qQRo3qhsjZuBN8UYojGQaF9qOrX1QLL+FIzX8szt/83bsIa6Yyzrr4bFUaG+KW+aHfaA2pZ5XeU0Fh5UoPEn0fWYT57iYo//9jAdStKTbniij/s2C1P4lc0yNZnBTY+cT5k/fLzoH0NgXU87aUfj7+F/jj/DrQ/ec/HOauX9dmwHvwZQZ+XaU+RjCr4Sq1pgmZoBeEKjXu3gF6G/rG9c1VgUmXpwQ1008Sf0J/m30o6jxjwU3/v2OeGfnyOFAK2DZbL9ir+sHv2svxm+/Mz9/wA2rczHjHiD5yTlmZuLF27pdmGLMNGURKdqbbQeKKSPk5kyxV/vnHLHMfzEtSov3NFQY/GIPsfmHujw+Dh7U6F3lJp6kFUfa/YnDStxw+zZT10hnkxcvjJqFFBqetKfYdXsuoTf0hjER/3rnoJeOzOsex8AIytJjFeslLfUjz++kKIvxFHizWHSNVGpGTeJ1Ml6SC01nSa2kZva/0HnUhpiqbkcwFJob1T7lp9fdlvDvp05hW3bdgzsM9a2QKCoAUl1xvuubRnqxPYY4/FfDt2qGOTjj9BTlHhd9qdC2NMLYiqkHzC6WdoDbT/mcdU6/ZWTqDtt9353j/2JGzfRKSUXPQqJVHFn086YsRfpasv6JPol06WDQbwx637PrT9wfHV9ucZ0EDe4P+0vkFnZVvpbWNfpu37w5VM/rvy2OOwMSJL6Oo73fYVf2BioiS6deL1dOeSP6SlhDXgSe36fOZxSyu/K3Cx8LbWhXS82kd/MfbVpPOIQVNNUeqIl5RzgQ3ovTmoBO0kTkvogFzqarQ3sX9D323r8PRTnN/b4zNs31HH8Y9eTVdM/DldMP73TZ8KBu/ZRsv7s4SkSmrS9u4Nbm2Evmc+YEsGVuJ8RflU/ICZ80JH4/8mG0alwK+YIErzqtufHQ1t39PVF0yqrNGn258PZpjizxB9hVX84cRfx+Ov29xjiP6EowYh/kYcPNPql/vgnxW/76bdaLY+jabUmujCsb+nP259jz4+/s9Jn5UK9Lrd8JDzdtm8d7SyEmu2xZcm+4HDeEIG8rnZfY2Rga/NLxnq8WY94m96BpuMp07A1Ec+KoQdSAo87wy30EEVezpVqu+d6688eXWfDeuRaXf8KYURKanIyvisr/ZKqtDmHj2LE8AHq0P8ueuOKv5yT1aQb4/vphiDKwv3ruSzmGdfRaEa2RmX+2l+4JL7kYNXftXgYoHfc/Se+eM61IiGOiqqZapD3pytNs+xdRXT7bSYZ9yPgMHERpOOt0NtxlY5btjf5g3e85XSQAo+tK6qxWZaWOOGn2HE3+taWGLB4Gs3baC3f+OORr0xY/CqvGNF9OwsTcUWA+Up/pArd9+WPWnHriRVQOIvsUEBL2uPUVRzXHI31pmXV1jEVMwUrAnioSksITTbHq13w6AsC8qUd+6RsQQR0aaxx0Db+3M/SjpyO57n770Y2tcQfW2Fl/oay4WSEX/i8dcfQvyNOGbZi/ngo2llLynljGmNQXCUWtPpWYdAe3r24FCP7eP07VfNvRHDuawMa+X4aE1Qx9G+6H3v2lxdSM+mZmTWXJq2fyRiOuOmYNabwP71R1jgfM4KN0ZcW+DKNZ4pPn5mE7TvC3Y4JQyq+EM7CPvwS1aXZmCJDg9cE5MqKHq6+gLviq/+UqiixiNokftQeBlrlEQ6ds9d1c8DywBTMaHcM5KBJBAvLSnBTLlpmsRL48upcOKxx2sMJNl5Nz8FNjzwm3mUs+h1c+euwZA0tTPqbO4p/sBFVpMWEPdtiZ+LB42hclA9JDf2vN2p8EYDBmu3H6woqA8uORnaf2zame0ft/rEqHP4i6/fQRfeuIG+eztGkg8C7aKkmXbcO1c0uNzkxHQGvrP/eXOaMjOl1Lf0xmKU7D99lVOev23sy9C+PlYvx8p1Ny9/sv15DFT+ExEds8KR5JMHsbHuP2/ZOPdGCxB11RVJ5C/4vPldfdEYnK8VVpRY4jTzPP6QGMYkxrVSVKi88jdBL4T4G3HwUqgHtjbXVdD3ypn34y0gvuyFa86Htj8zd0bcJywbrS657xz7ov059RakZjNp+5HTGfpw8EkftHTzeQ98wP68lzCFgtaaWiwY+L1DX4L2L9kUg563rzTbpjFjbL9BxuPWfrHPlvWoNDxAzz0R/vEQFZUf8KBKy54SC+jYVYLXDyTnwsRM1bahVPE+PzFYxsval2MLcx4k79wbp4xeQo7EWFKEKzR8hZ9qY+qOFI8/XxWAll5y0hKdU1KVZjuPfkrl9wOHRsd39m++NVw1rAGvdHys2kJ/1/ocHTW1Jfrzti3BvFR9Ynrdo5jVC1ckPzT+BGjfi27fTGOsUgH1+Hvm2o/Znzcd/SxoXx87DgxP6UjUifFf/IEr6KUfuiJKbdgk8ceBEn/o9j6mpt19KkArAX9cR6/7yStxb72+n6WxEvkZNnf/+djX4ePtnXLv6dh9mOet3yRsVFDnS5dCYKEN8XoSzuCxU8rJzbGjFH/W4y+n0ij+EoUDRzIWxkgsiEabyaGffDro5dXDOcUvbofNw42qhwMR0Ys2fdr+nIHqiqZxknIZa5Sy9L1RUjpGERG86oszhW4e/gSWMrmuAHmUUldNoXO/DGEO3LHiRfZnlPgzyrVpGo/aX3mk0+pdN/fZcu79UeUaRx4xrqZ01vXVX+ldfcO/e7ssK88net3aqrpQQZqaDAKm5JSIaPqoU6F9eZOBVoTCoeYTkYNXfn3y2s9CR8oqij+wVNcrtUS7rPLFRTnkkNRX0HzzJqxB2kkrJ+beaJ6QSkjEgl+yb46/k36/dSn917vfFv15m5eCCjzv+VyWYc/ruHbP5z7QA6uVVa+5b6swFw4wH1C1Da8cuGuTS+6jXnOp2HlwhjbtOUQbdx+iPZOYypKI6NdzrMPoIMGVuWdlmFISTlh64HHuqdMPQ/v6818bTZYnlIn2fhRWbpt67ItudY3k9NQeaF/UZ3ahgMf6M13lG9o5nAONv/xnHVf8Jdzz7sRSdAljxOPPKv5YV18p9e0PIf5GHKeecLz9+bij0oLQFM8YMP5JxkIi/lAPLY4XTf0Y3mfbvin6/DUP076p0RrYDs143jyJGZnZhST7PAxSvZj84O+5GaZ0vKJwxsrLWti5+M0adh7/HGh/TiLBzT26z4dplIDu7yvdNpz48+D+gyH+xiK8LP3jQQFYNwia1rhJMlFaV9+yrPrUwfdsvOqlOOys7RKm+EPLdfl7Oj4Q4g+Atzg4cddN0O4pBvTFTHVBiJZe5tOujOsxCvORSob3XdfvxJSaS1rNhdBNlhkbrFIHiYho9YF7oj8DLS33ienlLWx8411l/eTQXFi1pHq/UUXMphXOQ/SW3UsPs2U9rl+70/7s+6HONyZZ/DZs0nGQOKQnsK6+ie8ZJ1OeMH0HtK8//6ENC047BPjEetBa0/rSEdVoEg71mfVx9rFO1DJ1PNYcxLefGBXw+93uxr1Jij9wLk+r9tCVku6d+fGH2boXRp1oSnWROMRUj5Uqo1KJ4m8uCPE34qiUUoEBdzLYizW+f/1hNqyBFzgcT6CR+gIa2McS3qIVGi8Je/Wnb6B3ffce+qtvNFPqY4DegW/f5mda09jiK+4b5iIxPtC9d0ua96Zf5vnS/FZo/4Mrz7I/+1275sIjOw9Wsng7j38mtH+1aQCo+OuOL7PKEH9pyrVHj302tj+77mjJRCpSiD+TIW53Sx7wco/44K8o2hVz6hwMPJdOVIm/YSr+ilLTUk78oYEjU7odBRLsdckBKF/gNzxQmDdiXnlPQR+qWU8JMnMQ2v/Y7dfbnz8x/mFo3zr+AUm0lF7GcmoWXSw0F4c0pvirOW5KSX6uwXfcH4/AMWIsofnQc073OlWiVQfs3McVPrZ95uqH6c9aX6Mfjf85LWkP1+PxO7dtpve0PkufHvsArjxrHO4+oQq+805ZkXTk5QpUyjH0Kv6w8ekJh26JPna71BXP2QJUUJ2xH4tTfTxxtROyFGD83S4WzvoQASdLTTVfikACjZn9eA2xY2qXulLtsbGFNRYxcWepYjz+Ottqylip72gJY4YJIf5GHHxiUOVwib+9Bxyhce79H0/6rBNYCWkISpBEmE+g/l+Xr/69pOOZzrqX3oMTX/6iaNs+LChJ1K5Vf000X735EeyZSUF1gYmr5pLgTfwThE1oK8ZY0Asu6jfsnqxM5r5v3pxg27eoxK6FNsRfp/wTVY/1ZAzRDrMVxR9IWiaqPHs8/oAAzBF/XcUf6mmkExR/XpknSjr2dKYfYtZ2tigrHn8lqlxrO8IL3TcZ3nu5a/k50O4ZI0NQslbPVv2UjtqOLfgGXZYFdZ5PjCN27HJz0K79w/WV4n6Qw0Td0FaAxN92WmV/zsC41R/XVYGVlvPxDVW3rtjmKWnRd4XF6xMRquAte6foTa1v0tnZFnrS+gvg/VNw64Y99Huty+gX8lvp1huvHOqxB4lcgR7Jj8W8hXv2Bys0KvDm3lmwcdJdE8+IPnRR6oo6VoPE35P2XBF9bCKqJNJQEqddavrdvJnmfymo2l50CKxhlvr6jeB64rHDoNS6Uu2Bjq2GkI8p9TUxaqkyKlS31HfkkhPDgxB/ow62wFBDXmys3z64ZiLo4lQvoIwOeu5o9qofYq7A+l1V0/fnvO9H4DHduaPfoofzSfQAGd1iEwy+8gj2VizjFQ5+6eahadBQnCuJqKQ24gnQ/d7tbiDQohIi1Ho7nYLqDF7+CJL7qVxvr8kyEPh2v/dsN3MKN/fwyTqkq69XigT7UXpjAtLUJBXtUldIdQ2WVfHnDe1iqGqka9Aj5D3rD57wCuj4WeU9BceImeqYsGfsBGj/yCahRESkakbD/YgFRmLy6Sim5vnYj+9L+ix0fHpeFl9em4K6sywyjPg7QMvsz6jizy8NRhfGXPEFL4w9knI7mDjlns4xnU45ETNsFfpvPO0k+/Om3VjzoNRE2CCBl+4OLjGxNT9p7o34kb2594p7t0L7/8LB70Hbc8wWZSX20yDBftvRv1D5HfXD5OtZ1K8tbx+k9459DtqnDj9Zs53u3jy8pplGudbWGZXdmMBXpSNItcdB1IaFp/iLbSpXmOYewHtXq/gbMf/8YUKIvwWCD15yP73qk9fTLJj9rij+Eok/dHKenkwrYeRAJ+OZ1MYQgwQ4wO2bHEw3tqjOag2WSPf4MiIZnQGfSxqGTDmWPvEX3+QC7bJ64ooJWqrcuPL92zaAx3bnOqYK6PkzWTyj+MuohNbGPcoQNAOp41VQqR6k/vFimnsYjxi8uYdf6hv+3dXBbZXf0cCTCv97Dy94a7erZcq4pxFf1A852+y91+hSIU9oyOJ7+qHNQXYuxbq6zgWkzCuVkLihfKL9GS0T3n3Qi9fA68bVqU0DUfxprSskQA57/HljBEz8xT/rh446vfL7nRvBqoOS+4DiY9vLs5/an5Ua7vJtYmaP/VmDMdAg4846sn8uHGDJALjZljdGpER/+9RKbAc/6ZvgNYzCV/yh5NuevNpsEi0V5utZdC4+b98V0PZ1WL9zkn7vMzfSL3/06uTPCoUZy0pSpA09k5D8xBV/8cRfuygrftY9CeTAY5c2YY1UuXTOUzOPP5LmHn0hxN8Cwb9e/iBdt3Yn/fBusHyTDYhoh9hEjQEdvQFvTNEP6GR6xf1DNgFnmJzxJ2MskHh0L5Yt7YeYYGqQBBr8WT2Kv7QgBlaJLiD2sGfRdxj4pZYHCDMF5wsrVCWw5NCWyu8wieTdY8gbyMr3O4vKMVVQAdzEgZb6woq/wZb6IkbZlvgzARSa9fW/K0AW+98aVfz1LOKHSPzNzFaPBXvEJCj+HCKfG++6oSX5PMhG71nhLw7A+TDFiH1samfP36CP884VnVP2azcWoybsP7qvSpKjzWQO0pK5NwIwEyi9rCNLS0Dxt23/dOU6w4o/b3tkcTrTLivED0xyezE26rM4M+Pu8c9meFffZ2euWUMMAZaCMx5ypcVowU3PO54wrn/z1k3wPlfcv93+jN4zNL4/HFKftzNWjffZsh63jj0N2p5jtl3SBPP4Q++ZH38VoDCFq2vRufieDTug7evwyC7Mq3YQ0Jop12yTigYVf0ipr0e0oYo/824Y9ThCcmur+FNM8bdw7MAWGoT4W2CASuGI6PoH3cL8oa17ko6NqoH2rTg76XgcT8mwNvd7DjaX7Z6c8QkF7J4tYb7rD9FpAzijcDRJfvkLhqdu+PeGzmS4qDND/+w14c/7MburneAuLZ4FHV8NULl2xiqwc7gf/M2GB3BmMm+zRSWyuDYLvFnjdQeTIfEl0qnvmR80IY0mTGa9sMQfGoB52yPH9gjKVOJvmJ3Z2u14QoGoukhruquvBuekFMWf76WjwBimhzgEkOnexWTdeNsPyMKmDpx6KcGaZX8+bIP+XT0JoMSFTmiyorbUl8KbyUzPlhXyJVXxhyhMp9tF9dgoyT2bRvzdv2mX/fnsbMthtqzHa1rMt2zInXXztvOwDCWJDXpi5oTqpMvuxZP+qvKzxpQGiWPERu0646Jjqz/3ogTYbMKQ0J71u7XHJ8KIcMVfxp6RHXsxEm6iIf/TVJiYoyRFZZee0eC6nAMm/nyPP4B0LAqf+EMVf52xVJtSX6S5h+3qm5Pujot6gCX6RxqE+BtxlLM8K5K22Hjezm9B289SfCc3P+g9f+wz0P6+cggp2UmNl1pZ9QNas1jJ8+rlrk09XAq3gIB7/FXv0dk70hSjaLlJ0rEGTJjOAinzZzzwkcrvJfi9ucdfCyQk2t6C7nGrMbWhP3m3gRJ9QwKZQICIqAT2N4GHIf5QNVXm+RMiSFX8+QEY4nVXmHKRrlIyQ70NPcIUUfz5xB963Xzi75aHt/fZcvAo/FJNdKHDvntLFVDn+dquvsDzqvx7BJLcPCGAzkm9cQcY8M/GN8WoI/OxbsjV53NpQvnsrRt61YeHw1kPV5sztEHFH9rkaS4gcdFSmqLLxt8adZxC6wphBpMhfgdr4Fkvy2qpJ1o6uWF7tZNuBjaKaKkBxntDJv52sOY1d6zHnvWPXfFg5fe9k/GdblORWuqLotIcDT22R4of9SjWpRdVXXEUXiLCt3SYE37SFyX+mOJv5z6gYRNF3OMFAhM3lqRId0v5kWqP28qzKr+jiX4/XsMau1XvL/qsm2fVqccB4s9+T14iPZrPwDAgxN8CQwZO5icrl0FEgxAfJ06thbZPaTO+bmdauavHvdGND4TL/1NJnNQSCz4Zp0zMRDHlvmlf/hyFl1kYDHoYxk2aB4X046YQQ+j35qVU6CKr8DJ+PQTDHOhpUoGUrBqzX6b4Q9RBhsAwzUFSyBC8Oy20eQ96xgXE56X7PWMVf4astcQfcN38RbgCL4R/f29eF0H8Pfgjop9iiSQiorZH9CFBLxFV7tEYtaGy9GT0NLJBG7rEq6B8Jcj0NLbAW35oI7Q9Rx1xg4ytvjLyLa2vQ8f/GVapsBlsePDMu8+v/F6AxN8f5hdB28+F0LhGa6LfyK+hc7LN0cc6PXPvNb5A9EvLgcSE1hVSAH3Wjz+qumR64dHY+DQxSOJvyPHP9Zvcdd4OKrCuX7ur8vss2iSM8HmMQzHvVvxz0iJX/ozBHdO9+TCb3gPt/6zyjrk36oOZ6TTFn6/ELUFFM1f8HTOBrbmaWxukwZB8HU20UfyFP3+3lecQEdH3i+cQER639vo7I0nfVMWfIf7wpnTmummm+Eu1kjqSIcTfAgD3+0KTeAW7halZjq17sSwcf9GnCfOeqFM8TbfDX9RnLq12t3rS934NOn4KECVGHfjgmtqZDS25SF2LHq3c4gamHBeSyV4C0PKeOiAG9D7grr6aK/7S1Dyocb+/qGsDWWPr28FLfYHg01euoeqOnKkj0bE1ublHT8kFcN11lfCES33NdYsgTHvKPtGO54nBIxERfem/E130FqKNN2PH9hR/cHMPz+MPScqYrr78eqU0skGJPz4PtXQBjdU+WfvtW7EGQJNlfOVA3fOFXLdNno/Tk7NHoOO/InfNFv70sWm+w4gNAhHRC3LcI24g0HVjCqJO9ZoloCR1jw8o1nkypauv76P9zIM/gfY/bWX8s96DIS9s79Jn2p/R5kVv/PlzK7+jjSJ+Kbue7pz4A3pphine6gATfwNU/MHH9uKt6RbYHCQB373ZE4KgQg/vvUYtHbjiD03CDSJGbwIm5i0po9Iq/oAql+73nuqux9G4tSfuRGI/3+MPjjsNedc5d2RecNVBGWlTpTRAb84jDUL8LQC87MNX2p9RxR+fgNGXvNWuBr2KNO08EJ6JS1H81WHbvvBjP/1Hv1P5fcX+B/tsOXjUxQF+w4/DQaUEAl2sok55MUz8RR1tMFhSDNosd3jfhr+WP5/fmvx5w1X8xZf69hA5CZ1xibBSXRsEMeIPKXsw2XWjfEMDgUpzD3Df1CaGPSUXwPc2C2ObOY0MwExXYITs9QNFuETam1POOQ70lOTYuQbavKfUEi1tKqsEe0rTCiJwdEv0+OP3KVcF9Pz6cQAah1xzf7xyrG4yRsbWezbviT+2h9dveUfS/qjib1TR66uINluIL2svExV/qTGvAv0MD4fJiRMG9lkh4NetpcDr0K7G9u02pvj7f+MfpaPUNH12/IPYcWuAN/eIJ1i11lX/VFSB5T0viOWHjy10HLR9tvZHld91CTbn8Ks9wPEtZ/6tN6/ddpgte7F6hS9Ewau0mtApmLFRs5JVxIfWvKMzuhP7ofG+iQNmbLUHUupbvb/LNKaANwmhMscT9ZWmKN17jcZAiwlC/C0A7DjAFH/gvmescotiPJPld7QjmgKIJL5IQweYVOTgJDRI1M0H63YAgxybUVpUQl5QRESvyS+h25a8nn4/v4RmwI5Pg5zM0Gf1qQevHtzBRx0JN2K12gNtn1eae4BETE8JYVrpAJT1NUFQRfGHZD+N4s90CUOJv3jfs1R1qzn3UneDGCTgNyXSsc09rOKvGzwjnd1K46vYybrmCrsOPjF83inLof0r+O6boM17/AnbmAKeK5HGqU1FhKo31rfUD5Jxgr46JyFNxnrK0cDnbQIlEapHD/hLf6QoQ/YeGqzHnp5J9D2b3juYE5kDmjQ9L7un8jeopD9R1dtb6hu+f1GUlLExCZ0P/S6rNy17IbQ/70g8qROSGkQ0C1TIDALPyFxy/WjCkrgrt1fV16jfWyqqVgbDU/yVuirOQBOIfiIthXhGx+VVujqeKPCe9XT1BZK+RNWmP8v2Y80fl5X+emw0FICuSYUi3e3qizTYcDFvbGO3znVqd/eHFH+JcYB5L028D1lAWF/rzHkjCvHXF0L8jTj4gvSX8xuhfesIJ2TByl90dDIdjWG4HqlG7H7TgFnQhPTdY18gIqK/G/sCTPylliBywJNKEW+cXnfa6BLZqPZelN1Oz1APRJ8LikFnDv92DOuGzBdKOUjQ+0Qd2hm3t7kHEDwas1/W3CPF4w8v9a2qqaGxMfGeG9JxxgZggKJYV5t7oGNz5hGHiOLPEH9tcvcMeQF8onnN1t3B+/YAJO58xRUS9BJRj8cfQp4ZxJf6+iqoBMUfFZAVga9CQZ+3p5yINQziqJsDkPc0zTcsetdatGcwhcR1x72y+odt9w7wbPpDa6JfyW+o/g3Y33/HUQV7zxwEjU/+s5rmZ5mDnrcpjbZ8XHpXvDdmDP649V378wfGPgHte2hsVeV3VP01SKBk/6V3492XDYpSe3FEouIvgfhDSe5jHvuMyu8+6T0X/Hhr4859fbasBxd3/M/WJdC+r5z5NrT9QoEhqzoef0a5Fn7PT1/VSSYsX7aEiCJsgXp8sYEEoPdOwwkdn/iDSn27+6qM7LcWj7++EOJvgUGB0SQaeHBMzvYGYMhiI7WL8KgilcfhmYwWFUnNh2bBUt9BEn+/ll8LbY/6ww0an7pqLZ1EO+mL4/9A35h4V6PnMky/wzzB488vM0DJM3/7qWkg4DcTv8qpsMo3PPsZXerLFmYZlTSNqKEHpPizPnsRSski0uPPLMRt8Ico/roZ64J3g0auu3es+8FSzPZ0fNOono7T6HjFCXalYYVDCnqC5EhjbaKOQgUh/noUf2CTsUwnqH9qnq18Mrzj6NIs/h4pIrq2eFL0/j6QxkdERLvGT6r+YUhzSt1RIPLOI89QJXaK4s+/xigR4587Gn9zgn5cFUn3bJmO74adiqMUlsT1E3Z+x9hhAiWaD0zFn2tZlp373AXu8RfvueYDPfYxS/PqHxKJP/SetxLmhQPqqOh9m4QlsChzij8g5h3POs/2sSuWERGehDPvho3fIDW1NzbCx64Sf8jzauyzOtetS2uJ4q8vhPhbYECzyIMkU9DsQMokVHe0B7dhLdtjceemtJKYulgNid98xV9K98cmS31PUTug7dEAf87PAwO4/dNtOkklKIhGFFxZgBJ/Rdsn/uI8Qwygxa3x7VCKyu5UVSJ+J939oxV/bPsWFRCZ10sSYs+qX6YMjbXGKyVjij/g3E3AZjwCEZWnUSa2I4k/n0RCn9fpneug7Q93bDRj7F+nHs/Aw2BCT9Fr8kvoNHBMdcdOO3ff9wwq9U1U/KXZdvQ+10+4+Z3Be/91jqmnOUpN1k9oEIATqT33aDTqKIpEH1BfSQIpknv8KONVvUREOUhOZInv6e2ZI5r/v9bl0L4G+6aGW2ZL1GvhUILqVh8fvjS+YiOWDIlBj30E3MjG6zQPNpzigKuyep5VlOSuHu+Ycez401PxxPaVrZ+t/P7ITvx5G7SiOwRO8adccw9ojKiSZ90PDd7bjMU2ZoY8/tJKfe32Ju5E3hWm+DNrhSRFzREOIf4WAP4wv4g+PfYBGqM2bdyNDXYpir/UMHHQir//uHH9QD+vH75566ak/VPVWnxAa1EZ5QVlgDb3GKTirwCHD5Q0OrLRnOIP8ZT0y7JQ+b4/eSNdeZ3iz5U9IM1BTNmCU/xh19zvxod0af3u7dWGBV8dfzd0bLMgNYo/zOPPNPdgBtdAEOWUkt1jR5RclCpS8ec9bzBRncd7AvoZa9zP0m9kE/6sv+bQv9O7x75AT83WQsd0x3YLhu7Rg/ctS10pf+t4/CGKv+p1Ou1o31j98EDJk+rBe8/zqH0PxX8edGhNObtud5SPTfo8NJ5K7eQci/r4B3hevDEc7urrf29gYdxDxJDGPJZ9dWtCwygivHySz7/r6WRoXyKiM992EZ33rh/Sp3+CjzNrWo+D9zHoGVun90d/FhHRR36ENW7igBXJCbGab22CK0x9xV9CqS9K/PnvCtjsquc9bYevbQ/NFDSe4P3qjylb9uL+qY009+jeX674Q8Y3e80zHn8hxJ+p9sA9/nxFKJ7Q6ZJ3+Xh3fyTZ3VX8MY8/JAZabBDibwHgb8YuoF/Ib6XX5JfQe753z9w7MPCyh0OEmQXXGTIjg13KJLTQstMImTfIUt88UfE3CxqCp3qPcWiY+JOB2GDt9kF3OO4PHmy2VEltQCXqT/y4x191+4m9gEmz2VdllmRG3tPcI7BQxV9VKVlC786kp6p4TnZ/8L5l6TpPGsUfUuprPf541jdwrNZau8YiCu+uVl/qC4yt3rHQhVI7IRnVq3AAF2neubdnw8fmp7Vvr/vA4P1NHGC8FZGxtmD3nKhzzWehMaJ63Y5b1uqzZT16VFAImliddVHqTgdkg/MyzIC+5/NANU9Kt9E6hPoU126FvOPe/YY9/rwFHdT90Tt2iwrMY7mHqEsj/tAmF5XF8IlPhvbdvt+V5773ItwPcp06Bd7HoEfxB3b1TQV/xlBC4nEq3kvR9zLES319xd/wSn173lNwnPaTxBoIoCZn2vSszKk6H1jxXOjYp6wcq/yeVp02PNjEKWVufQWMb5Y8qyj+4pO+UKmv96yjsZtT/EV4/NltnccfUiK92CDEX8PgneHeMXYBvD8fXPeoo5POBc2ELVaPvzo1BFbqW11kIUoiH60d4YQCUcdzZFAwHUdDgWbH5wOxV1oNsKSLiOjqh+JK+mIwpn2D6PDFRo8Re2Kp7/IdtwXvaxITmiv+gMDXEX84gaW1rir+lKYSIEPqFpOTM2HXrtCO+Gtb1R2Q9S3riL+w/UvNrpvZHwrAPJUlEW3YCVg4eOd55jGYeqydsDDqUZOi/l2+H9MQDezNsz1rm8EAxB8jmok6yQFkkdZTIg2X1Mcr/i65q8Z4f0hkYOmNEanw1WhzYeMu771qkASFZsee5h5xir92d/mClfr2Jhag+Ks7d5qmS7Diz3teenxF59qfv1vgsbfunSIiTccQ1mTB4GntO6P2I6pJqiSM06lAFXx/MfbV6GP5ayR4vCh9hSiQhPOea7RBWW/SN02RjMQwfmMutNv9UX7uKaFEephwxJ8isqW+gNedGRMy3lwNIf6q8RuUXOo+69M6bmy072Ue4U1d09V30ImxIwlC/DWMbftwCTIHzyCiGZ0Td9/c8zekO21a15wGDBQGBEQxVQflLbJSyLjWgc1zb8SPPTs4Q2jU3yhlIK7z20jxXmkaw3z6excb4YSEv1BCVZv+sfcc9/TwnZnRsfE78bsyhhy7MCWvwLnPFrqnNAY5dl1m/jM/CVMEcSLGEn9Qc4+6rG/Yu1eUTv21tyvKeGDLnvBDd793yUKLbfuBMccbC49flvfZsB7oQrq6s6dCAcdlf3xDytLrgHX1rWbqkZL8dql7YgckOZCqCk4xcb92iAkUH6XW9IzswcF9Hrg4PTTtPa9DK/VN298nQ2AVVPcErBoaMqD3iZiSZgGrlazsXPOpbnUNSlq2qHqPUcUfn09hBVZGtG7Jq+nWJX9M/y3DGrMREa3W4U1zfPjfE/HqHQR4vNVJI8ZHYIj3W53iDykt77nHwBhRaE37teuYnoFVCz3jOupn2aP4A+wnvLkY9rJPIR0bhDnPSskqkvQ1+8cSf92x1Sr+EH9nmxRh3tIADOmoclzxZ6sXFVdKju76cL4hxF/DaOVptyBLIP7qTLWHVer76P40wjMFqeNBXRMShDD1MyFopr+yL0q+gp4yhwPeKj6hDK/m8saEbmjm8EhAy7vuxSxCYHm+HYkef1iTClfqa4ikmK6+RgU1A3zvqXZBY/51AwjTOrXX/umw45dM8WdJS2CstcFfHqP4Y8TfTOddmZ7BFaKm5JSIaEkOrZQqv6LJAk783VWeCe3rqwzQZ93vNppazoZMU0aJ247wZSw8jz8ibG7vKQlDr1vCnNRk8mfQ6wq0jK9nYTUs4q/mmiOXwve1q7OcORys4s+oiiOaDxlkSkPxl+oShzNkfKhA4s9PDoBkb4X4Q+83u84fHf9XbN9EpDZOGiRgojkB/hzQsQwBiL8eT0iA5C59C4eS9iONXfx3BSWaKT728zsA93TyngM7ljym8jvk49kgXFdfxbr6Iu9K93ty4g9ZmyaU+pZ2bIwj/sz2Jm6FFIMm5qXcNUUZEbK3CQjx1zDyxNZBWSUQQL1S0gK4HDBr9fGfN8f7ZjSNL/90Q8/foFJfTwXlZ6ERaMBHioio3R7cYIhOpehCunqs3qOdkW2DPyd2oQgpYRcYxnp8hcIJidM2XVz5PbXUFyP+XHOPMqLU15TVzHRLD/ZOhr8rU7NFb1nOTHjJ6uN3/Sh4Wx/tUju1YgSRYxs9RDT3KCr+gt2SDSCAM/dXtRzpuKLYFby/H2iiiw213ymg0eZDPWQXTHJ724Nm6L0nhCwQ/bJ2jPhreTYfBaJWTCT+fMXfC7M7gvetj57Cr9u27ITgbX0MslEWUQwJVL1n2/YP1zeNA5pXezz+4kzg24SrW+vmj/Zs+HtqFH/Tqqv4gxXw/lwcX+qLzsWoH/RA4RNYQy71rXr8DS+W61H8KayZTI/SDbjnRVlNc2dKQ1YYqqiOJ+hc7Dc2gewn2n5yADv2wWxF9Q8RSZEmIn4TP5XEFH9AzGzHwmiPv863LrMIf2eT9O3GIJnSwTGM1tq+o6rb3AOaF0yVi3Il0tLVtz+E+GsYyIKuDjwQQM00/XdSkYY8IFTqwsb/vIF+GgZI6Zg4I/R0OgXLPTjQxiDTM4O7Z2ipbwrxV4fRLvUd3rn7BBbyvO056qzK77CaJ0XxR5z4w7J4vElF1uoEEivGw5/X2XbZQ4boQ+HeSKuy+KRIyYgYE4AhQYwdXyIUf22m/jI+Vkjm1gWurkS3tfsheH8DNOBfddNH7M/HYL2uqPSTIvCzHv+e1SFG8VdkeCObos66Apjb/XuGqjN8j7/X5JcCe6eNo+tbj5l7oz4YtIpk/yFsbj5jVfUB3zM5JOKv5mtjij/veUE9/sgsMM2zjqhTe98LpNw2M+Vsqqv4A+N3X/GXUuqLLmzb04OzeYHhJbfX70zr6psCVImUgnK2805yP2zEMqTn2QaIu4KRKfbYSJOwHmVuWmICUWD5ZPz+g9iz2/OeR6yzWzN76TjaC++XAsMHxHf1NbFfRKmv1h2yjohKFeHv3B2PClbtEVo5wL2ls25HYmiNZEukc1fVtQA85RcqhPhrGBnYnMEHJ5Hgrk3ei6VQXZM3MSCB8CiXXNZl+qFFmrc1XK7LcGjsWGj7qenBEX+rFTYpDr6rL77win3uRvl59RMCxXS4cm1y7JjK73D5o3dsqNOWNSp2vh21JEXdriyQWLp0afdcwo9dpwJBguYTV4zNvVG/Y7Pg3nTWhcoWbIl0ToVZcATuzzsKn3D0ciIiWoLY7JVVpSIR0czKM4N39/3hUKL50d3u2UafVe0tshS4sO4l/obX3MMc21338LGxTnEOEfR+SRhI/LXA7TnqFgcZMFSnJGAQ9XEILrg2nCAn6h3XkYYsKag7ClJt4ntfogosE0e0Y3yozPjElj6I6i7TnXd61ij+wGS7r/hDG+RVKnzAY9+5Hq+Q4HiETo7e1ycAlmLWrQPFMEt9dbe64hA59T2i7O1R/AGkYVHomjECGdfT1Pe91R6Ix1917kSbovjfExZraE0/9/Vn0s1L/oSW0fCUsra5B1OuIeIgOz5UPP4Cvzw7jlX8QZYfngUDhc+RFbuRHI9hiHn8WcWfEH99IcRfw5iaTlMF8EAAndB2H/T8u9Ag2AtaZmaHp3BoEqklPj2mt2CJz510tjsXMHBsD7AT88vyW6Dt/e99VfEzwfvuOjg4b8LFBF2WlCsv6zsbrgzp8USKLPVtdxVgUHfamlLf8AyiI7BMkwtEncGVGNPaLDCBwDWpu6w7drurLIG8DbvXWGW5XeCGXjfeUfjEYzrlMietDCcxTaMirRTtoRXdY+NeLQboYmPPIXftfNJ57kP7JatpXQwh1VxiYsGVd+PPah3xB6kV/WYNyV19gaqDmr/tOwQsrBMWB/7i8u7xp0Z/FlFvB/W58HMHL0vaPxbJFc49pb7YB5rnyyn+4n2oiHpLEuf4ACIimjWKP/Dce9T3QOzXsZ9wzyvaROczl99rf76/PA3alwivKKrAO9c8G+6ivKnqEEP8mWYwRBjRbJ7tKTJxAOLxV9K48ok/hMip3iO0+/pYguLPV8Kiz17vuij+/p+qhthAqjRedXGlvmY+UzHNPdhxbBwRUepbMOIv1MaKe0ur3JQZ441GeSNAIf76Q4i/hjHdWpa0Pw+y0SD2qgeqGcBnZmuwg3sD0vRMcx4zw0TdeISUSPd2UMQmtb16OdsXW5yi2w8SfoC+VYerFS+8cf2gT2doqHsyzjou7b0PBe8YbdRfUDOZnq6+qMKhSvxFlS1USn3D3jNeOqAjuoTxwNOUvCLKXNSvq3JsFpzHBGDme2ZZ7q5bRAAWQ5iahYlWuSN7EfLOOxb6vG0qVtmfYcVfj9oQ9O/q8bEaouKvuzCy9wxYKNXNP9ACUSeOEQmKv7pk56EZ5PgJhICvEE1UEqEliMt1VbndbtTTCKj26L5nxnsVXdSb61xmuMef8ZabZYpkqPyxe6wywkuTqM52I/zYa7cfpBPUnp5zCcWzTnUxx/r8DGhfIrysuYLSHxuH6/HnI9FaPRgz0zWKP8SzrXvdXAdrRPHXu22BeHz743qi4g9KnHqKvzGUdB5AqW8TsIo/yohMqS8S+1mfPDe+hSoG+TxuSn2RqgddU+0RGgdzxV9miD9gPrQN7XhX3wYbCC10CPHXMFInQL9r09Rs2uchJLvv+TA7PTrE32/mV9AdE39IF42/nU6l7dC+qbnDXuIPIwl4oDtKxJ8foJ89Dpj+DwgLpWT35FVLgre9e9lzoo/TZs+WadYAKUN6fF7A8kdL/HWbVEDNPTpvmla5zX6GPr8dxZ8hQ7pBN+Qxw66babABBL4pij/eddlmTxGPPzO+ZI58Cz0framH+IMWmNZkmXdiTmkUgY1XV5dPsT/n4MI4uUkFxS9uaxttIQ2jDCFhieLwnXknZFsCicxJvponsQEQgrrRHFH3+OPZNcWTg/f1F9GpVhZPyh6BtjcNJgzu3rgn6fh7A5WSyY2uLJlhFnhoqW9n+xiPP+OvVlJG7e6zjij+tFXWdsZVVFWc0il+XPnjE/a8vfScFfbnleP4PUxT/DXb1bepqO/ORzriikOavatADG6eL+Mpiag8654tJP7qVfwh71lamXHbqx5LLfVdvzPc3qZJaEtgKebxh1d7cH/n0IoLHiPGxH7W448p/kKbSfIKnSyLmBdY3GlLfYdY0j9qEOKvYXCj10N6/DBb1oMHzRmVYLY7Ed5kPguUEDYLTR8Y+yStVJP05OwRetfYF7G9k0t9vQ6KIEnA7zlaJpyiREqFHyQ/s7wzeN+jqXfiXhgUXhyQR2hahZOEPnhZSdsSf0AWz3teoA6KpVOPFcqovyIyzipzhG1oEMMCCcpNWVZc+aNTruElZTEoaxR/yLFNsJblTvEXSvaWrDTcdXaLKdXNHIkEEc3xiw2i6gLB99Oa+9BpyjW/Oy1i4p6KzFNBYQG7O09DxoQqRIl6y7FTfUARpJbwmf0N4TdJ4WOtr6hJJf7+qPV9aPvL2tXS4rNWH5V0/B/e/WjQdjv215BVwIRmnq1Z0/0RjKfM81J0EzrIdTeLW00ZFd1xHWmwYUvqFa6GJupNDmBqwzTbDW498Nzp67B9KZH48+1tBtzoDcWAG3L3xTnHdQi/KVZajjxvZv4zpeXIXFrWWC9h6vvue9atFEGeN24ZYucUpHLAU8u3VBrxt3lPgx2tARjyjJf6InN5XalvERozD6jUt6x4/AUm6kvXWIRa3RgmgvjrkH7G13pUzMOGDyH+GgZ/2Xboo+H9eeCRUzk0CTtRb/apDZX6LhzaZhlNQcuH5z62t0QV2d9f6CBkXKdbKRugwcwpNPEPGCmlIseo5rrANY6E6zbLib8u+Rbqu0FEvQbPiGqu1NaTyKgzkODPBjFKRRBY2hJYrtQXyJZ338mCLRARr7rdS07v+VvoiMfvjw2ioOCvs22Mx1+lNHysoxCZ0EBHPVvqm9nOvsiYY0vpulcL9bHi5ZJwF/HEsnZflQCpK2qeDmROyU3G2wbsQCMbdp6mpAzrPJl23VLmhVqlJBBb2KYoEaHwrLewTiEwY+B/y9RgPtS7+Gs3b0g8UOfZMomoTGlokaa8Zx0iuW2pbm7HdShJY833cVVKWeqeMQKZi/2yYJRoXrn/IWh7H0ndcBtW/DWGLoGVjy2xBFqMX6/1lCzDFaJ16wqktNzcI9fBGoifeNKXcOWa7zGLKv5SfUSbglX8kWvugczlvk8eUXjMXBGgRMTM1uYlc517gsdW9myoiISzYoo/LR5/c0KIv4bBy4FOz7CSU6KqiqWlSqxUFz6at7+XAZqt6YR5JOLs49My6/4kBCmJdDUAQ5QZRES6Z+If3oQ47IXRQDHg7BGiGk3xjuLy/SJC8WcCqBndLW1CMoDMLy6mA6PL4rlS39B3pRLs5LgyxCglS3Ilq0j5borRPn9HY5o18KxvAZ47D9R0q6N+QlR32gZgORXmniGKZrPQIdyrjojoCaudYmuVxrqO+wQl7N/le/wNcXHrytpxP0v+bFjvsxJQhntjAlzq6xOHyXMSMrZ21a02FEZKpNNsEFLR01giUUVVBHYFro8bcY8/Q/x1/xi8v69ujfH44+M6EkOZTrpljJem1j1eZUjFhq8UQwn2gt2iWX7tA+CXbm5Tx0P79yRwhl7q2xDx0yX+CjXGKgfC77l5tvfmxxER0bL2nvBDV6o9sMQpEdl30pw31ERH86RvV/EHVUxU15ITaDMYbzxBm/DsOtjMWtYq/lSs4s9Ue7RgoplvV0bEEU6tmFNbY88bVwBnhnQMPjJVq4MU7ie+2CDEX8PwX4yz1SZof19+jxjQp06FvtkrpvhbWBmYR3YeDN52+d77ev4G+TH53a6ALFxR6grxh5aToUThIOF7bt3dCvdTmg9vvlnA6Phbt2HvJUcdyYf4JKUsKNuVDrFG8YeUXla7IGZA+SR/Vq1yDSlZJePx5xZpoQvECtmUd8ptMDKk8z0LilSuJShrjQqkTZlzIY9RSvLmHqHXjZ23jin1tYo/xY4dQfxZhQN2HU9Ynld+n94PdORLUK5prXv8u1KJv0AehohcHFCa8keorJ0r/iJKff1OzCBZ68+HyEif4g9I5J5tQ5AjBIE/jqaSC2tXPAvavkeBlZicCiX+kmlZc80Ve1cR4s/sb0t9EULBEX9FxLhuvaS6YyNkH6Gd4s80e0DUhton/sD3zBABREQPlieD+1bjTjiJ6zf3QLqOIwNhIFIqo5B9zThaKma7EdFMZibvNGbJNaD4s36WiqnucAWXIeihxGmpKVOevzMSf3Wf9Snd2ddPqs0FP/4y5xKKv/6msyEaKmlsxhdiBFZEc48sc/Y4ofEXbypHhviDukA78g21UeBiBBXR3INYwll3X9DUZltHMoT4axi+GoJ37QpBT6MIRMqdCF/x1waMihcafu3frgnetqx9bYCuvt4EiAQChZd5RZvD+EThMCc1P1hM8oyJBP+2n79mXfB+0+3BTiJQq/oE4o8/W0bxh/nsVbvKoaW+ZrFgDH+xUl+WxSMse1l5p2wGEVkgmqA5p7IbSJQQAVbjrxN8bFN+mJPp7IaQZ+Y96xB/3XMPVUoWTE0ckfWtBGCEqTSJiLLSEH/489bZ35uTABW6P5Zi6laisa75/nR3UZ+aZEHG5t6GLLjir1LWHuE9Zsgz+J71EIfAGAEdqW5/X/EXDt+AHi4t97Br/BRo+5flN1d+T53JQ0t964F4/JnnDfeCInILOtO0CVL8dZ9VrTIqwYZRnY094g95z0rn8TcdQfwVPX67YFzA9kcVUAWz7SBy1gLB8O8RQOTMsjlpn16KHbeLQca5y/atDd7WxgzKkW9IxYUb1/FyWdN8qFK1EGHhYKo1MHWrK88tIuxKTJnytE04Y89bj/0EsO/B6TZdfPdW6HiDAlf8ua6++POSZS0b+xVF2LNvkyJauVLhCMVfqTJWaRL2vPHki4po7mHjHZURgcnuxYgk4u/9738/KaXozW9+84BOZ/Eh1XOth0RCyvgS4cv3y/ZoevyNqTbtnwK8VhJjiB7FH9Ltqiwp5wMi2KwDbQYySPjfGyohrHlefim7Iel8rn4QUAMNGD936PLgbdMUf+7ZKmMUf92geyYi68ube5S23AMnkZTKHIkUGDxWAlzT3AM6d5OpjysJyxLes7JLGpbEOpRFlPpmuQv+QhMEJb++tjNcDEntFtYx5d1to/gDkwN+MgryCOxJimAKB2dmbhqyDG8utqW+uelgjatbS8ocQQ8tELvfu9tlFi319RNAS1U4WVu3ODhGhXdwNPfYekoG70k06zf3SFYfpibCUhudDCkms4o/bkCPJzbKHCf+zFhURpLcTvFnCAnE46+kcWWsDPDkgB+7oXGBKlx8/vhsI7Svn3BG1YY9yiEo5nXX+EF9KnTc+cAxj4Y3RrEJN6Wc3y4SG/h+lsAYY8bwgnL2rCMkeVWZC5V9at7YDa/2MFVQptIE7vzdc50AC4d5UJiGwlqlkIoq9c1sqa9LvIYmrJ0NgiLKcGsfzRL1qD0OJ+mc4i+uq6+7bkL89UM08ffTn/6UPvGJT9B55503yPNZdOjpJAgOcD0k0vS+5HMKhb/I8g1Z4c9L2jsez8nupyUEkJY1i6KUUl+kuUeP4g8t9e1Z3A4PvkEvoviru7xLVOrzBqgUBnylTmkDBukJE5gtG9V8MkYCuHgFFu+sW0R0CbMvVeZIpFCSvEK6tPCSMLdA5Mo1hHxLIP5qFH9Ycw9D/LHyotABinv8RXhoKVvqywlT3KOm6D5vKInkE30IoWBUKKYMD/U0MiRAVAfrRFhlSI53Gy1qfM8oohytHavS9ObDE2h38L5GZVn5G2BHYJTXUaW+frOF1NKiVB/ZIXVKrTtNRMFuFnklK/VFklH22Y5o7mFVLay5R1081/fYnpcm1inezQkHy87+ew5MBu/vx4loV1/l+aaVAMFRlCW1WLkkrMDyx0KkcoDFK4f0BMUQ3E/P1sD79AfiZ9m1K2Fd7iEFvBnXI8i3gtmVWAUWsl4oTRIuojkaS4TZxm7A82Y8/kxjEbSxjPJiNZw4bIj8Y/ETZSZxiiv/edI3lHA1XERBmesKDHVi5qW+nXMPbV7E3wlluvpCDZ/MdXN+4EiyfLEhivg7cOAAvfrVr6ZPfepTdMwxxxx22+npadq3b1/lfwKGxHIgf0DUQLltKpWReQMKcuyFhqdnD4ZvnBigpyn+ql4r8OIy4XlDGlLUodfLafiT63x4Bc43Uq6TVfOwTFicwbPxNAKCv0rW1wR/OIFFEWWjFSWFUYYgwWPhsuW2sQhCgCUo/jRrLBLX2a2b9c1y0tbgOTT4Y2NLHpFtZ6W+1hsxxuMvwr+LqFdZApWsdu/ZDMWUEBL5CgckKTM9Gx+kamakTt3rRpAypBs0k3K+a5ABfdcOIItTafrer0jjgdflF/WeD9Tcwyj+8FDYVzOkdCcmSlf8QfYRdfsHtx3vjfNmsonwA5kFJlf8AX67tjy7690KEc3aLawN8QiRIQkefyWLj01y4acPhTf084k/lGhW3js9G1E2atBCx2WfpATigBlGsP9cfjddNv4XNE7Y/PrK/Gpo+8OhhYgrbNWCiiot7+lgjShMmZK7jCAdrf+pwknuTqmvb/MCzKfdZ71NuNKxs73n8ZcQQw91zaDdfOTI3oikb5bb8y4CE/0liwNijq2Z6q5E1xo1XX2heN3MfSouZl5siCL+/vRP/5R++Zd/mX7hF35hzm3PP/98Ovroo+3/Tj/99JhDHrFI9Vzrae4xxOYNPYq/moDwSETdBIbctR7iL8XjD1b8xStMUxXwaNaOY1CTL/++KQbPKym8nKz2PIbk8Vew4M9cQ4T4015ZFrK41awDtSn1RUovbbCnuOIPC2KIKM73zCj+IpVrKR3FClZmbLK+yLm7xQLzJwz2+KvzWolbWOuIUl+r+MsiFvXUq4JBOjEb0tCoDCDVXE1pE7LIqhsNtA4boDrvWbXUF1P81TSyQRanVhnSOTZKCqQkhF6c31HzebhCIkbx5z/XqY1GUhcqqYm50IRm3TuFEKcmfio58RfhYeoSOgih0Fvqi6lbPbUhRPw5smofHUVERM86Zazf5j3wm8Dh/qfV+Hx2NsFfEH3WE7r6tr3zPCfbTD+b3YUdPxJ1qshWEd4I0LyTOpJ8cx5/uNWKtgquPOrY/nsaX+qLV3uY+Wc2gnQk6p3/Uoi/YaLq8YcTWGY8UkzxF1rqyxV/Lu6MiHkVt1EII+gra2rjLwh5/DGlpBB/cwIm/r785S/TLbfcQueff37Q9m9/+9tp79699n8bNgAlbosA/kA8AWayespGh1he5Gfqj1t/afC+J6jwcp5BIzU+rpMQJ3X1Bcg7v6svgc09UjwlU7urtfwFXvKNSEX88f+i9dUBnsfhUbe4ODAddh9Npr4gR8QUSMmqJcBMWRbmaWTKg2Kae1Q9/rDutmZcLXWcXwnZjnhxTSrqgtxQnlnXlvoCij+b9W3Zcw8doJwvkDOXjiKpOWGKmJlb4q9b6guUbRIRbdm9v/I7QvxZtWGEyoCX+paEexrVPxuBRAzvuGl9GRGS2y02nB8Tct1NOb8hHdM8/jrnFD82TwAWEL1dfcNRal9Vkqr4wxbWNWeUdPyVh9YHbfe4k1f2/A2yzbClvqy5B6D4c886nhyw6laV2zktyuOvuzhFkpmc+Ft6VOca5oCytrfUF1RBeYn52emp+GPDRIwncEASE7UWQmmJ4NC9az3Tofe0+7ywzrqIx18P8YcouVm1h0uc4hYOMUlf3tyjbZt7ILGjOXY3dkNLdb1zXbUsnGBvEi4+dvEXktgwz4vKlIuZgxviGcVfRkrhMbMhGDXrYB1q4VAp9bWKv7i403xv6erbHxDxt2HDBnrTm95EF1xwAS1ZsiRon4mJCVq5cmXlfwKHHfsORe9b+iQQgaqUVDNobzI/Y80Xgvddrnq/d9M0UCig0rWefWvuGUj8ZYpdKSBwJOoNcjHFX9od8hd4TZf6pnydk4ZJXNec6J7JMHUtV/yZcBcyFLelB10SCCT+7HkYj7+IJhXE1GPBir/uYqGgjLLMnDsQCLDAE1UbdjaOHyNMcw9dKfWNUMRkymV9Q+cF05mNMsq6WV+s5MIFf2hDFqLe0qYntO8PPzYRTU37PlaIp5G557hXnS7ddWpnEd2z6z4z8F0raog/aJHGm3tE+J4pS+Tg3R872/eeazGkpJAjayOKX3wfqWSFQfj+tQb0iZfslF0/DdrunNXL045dOPLN/Qnw2TPX2ZjAI/6CpVvcusQE/qyrCI8/Q/gUWsUlwkqffEMVf9X9p2fCiT/fzxL2XOvp6ht+7rPt+GR1Kuo8Yn2Lo8Oi0tU3ptzW+Bzjvme2aoEiqxa6x7KKP6irb11jN7zSpCRGAiGeb965LhuL72M61HWKTUyoOJsXe41cqW9ow0/NFH9OYYpUTJhtuZ94qMdfNwGnFWWmOUdUV9+cXbdRYRSGD+htuPnmm2nbtm30jGc8g1qtFrVaLbryyivpox/9KLVaLaxbpICIiL5xczXLirDchdYVw10izMw8pfSSCA88OEbPac2hbvIMLbMpdW+wiEzG7VJXm2Sgi0uQKORIVfz1Pm/NDszNPoPDKfUt65RrkOqOSeg7O4cfm036pS33wMsWKMuZcg3LIHa8UiLKlLvnHlui09PFEIAzoOcGz8gzYPxOWi74C+6G7K6bUUpiZcYucC0jSEuz/5kHe0s4Q7A0j0+qmLG0HUFgFVzxZxUOaaW+wfvqXhUUtEgzij/KmAoK6TzZbZBhVJrgeFWr+BtS0G794rpl1UuAjsI+OTpMxV/tXDxgD95+qCekccWfVhkVGlucEjFVSx6hguLNh1QEyW3fM9w31nj8tallF6fIXOw3z0MVf36p70W3hik8iXoX8LkCiRjfexWYS33SMRUvz8MIbqL6ZB9U/mivkYI7nXb2Mkk8/Fl3VQus9DLCdqOMILlL5jtbRMR+NgHJkgNQ7Ohte1wR7qXZKCrdafH4y4zDiid9Q0t9reJPsWoPXN1KSsExsyN6M1IZTvxVFH8R/oSLDRDx9/M///N055130m233Wb/96xnPYte/epX02233UZ5ns/9IYIK/MEU6xJWEzADmdPfbl0RvG0d0I6LRwpSFH+8VNcMzBog44qyrBJoKMHgPTMvALxSUlUYfldfLJM2KJrOfc7kTMrzm3YtoG+e4vHXduUeOmKxYTLMOiILx0npMqKrb63iDyz1LSijLDclE0gQ4xR/7th4SVgMNGssklbqywjTQNLeZl4pI6ViFH/G58WVe2Aef51jrVn1gvBjMpy0vNoYAulgTUmlTayDdUQjm9rTCXzVOsfuHEvluDKkngzBFaZlRHk294LiGFZDPrOQPifbREREz8vuDd7Xt1VJTaQi43y94i/1ogWOEXVdfSPGCN75G+rqa4m/8Yhjm/mQl/pGEDlGWQt1gTYNC/i4DJx7T7ktqPjzSn137d3fZ8uaQ9eQbzFlo/1+PxzaAyb+TlG7KNsbZjlVr0SNI7ljEq9GwRXTTMYmPytVCxFK7ixGRe4qk5x9BE4icTsALAaqPl8vnLoieN9G9Qi2NJwlfZGY2RB/rOIilGiuxH622gNXt2r2vAUfm3mvxhB/9n5zb2nx+OuL8PZpRLRixQp6ylOeUvnbUUcdRccdd1zP3wVh8INF5GHn3hezlNMYFaSBhc55am3wtnVI7WI3qqhV/AXuy72gZmmMJmgGUge1veYeMPHnbX+22hy+K7KIrkGu4p/1+cBNjwynXLdOnYHQmCleFSWbUKPa3HulvtOAFxOf9G0AF9Hco+NXgmUQjdKxUCyQiPD40yojrfFS35RsY8mOndLVl7KcJRdCgz+nElARir9qxjq+ucf0+DFERLRdHUurw4/e29wDId/KKoEV7fEXUdpUi8DuQ6UmmjD3vGV8z2JLfSM8/ozir9vco07B1/fYutf79XHZJjowZMXfM7IH8Z39Ut9U6xQo6ZumuqtDaGl7HamskEMzhalVJAMJaxMzZy28aRMnubVVQSFlxlWC3ZYghryrRlFMud0eUvz1NAIElbW6SvydPD4JHLs3OV0WBeV5mHdab6kvQHLPQ8PCbHIbEZ0z53Z18wf2vDnFHylFpPnf5oYl+iJKfYlXPRiiGSK5q+QbpPhjz2qZGQV8ouKvLJiH7eGBNr5ZKOBEsfX4g2I/EzNnNvYLbtpk404V1UzGzoeKNwkLFLXYdYaKSzgTv26YH/hiRHzhu2Ag8Ik/JIPIM2HGkBzxNEoNVJEAvxejW38PeX15KEqncJjtLpT8TO7h0C48j0B0cektjJF7mNoxOoXkno91YMrzj+z799+vUZEgZTI1E5gKJAVM6b9mwV8MgbVvGr9W1eAvotTXXCOWQQxv7uFKBygmW84IU5ctR0ikhKDDHjtn5ba4ak5lTq0YSoA5DyxlM87IdeMqzZLi1WM6w7vTdrb3SsoiFjrO4w9Z6LiFeAzJXXs6ga9cUZSd0jsiUi1cBVXaRRZX/OENMsquAgsp9eXzYRNISV76XqnDLPWtI0OQrr5fab8k+vh1pb5YCWLX6y5rWd+zAkgq2rnXqFshFTpXpeClvmaB6TpPUvB7buwWNKkoVYq/iPab680F3+PvpYd+GLxvWaO6w3wZnQKfCJvP6knh4awf6prOYISred7w0svKsRLK2isefxEdhW0iDOrK6561mK6+PunI/xaCkW3sYO8PL7eNUPxlztM7NPYrKzEz3tyDd9ZFY2YerzuPv3CIxx8GSPFXhyuuuGIAp7F44QeLkHk+mxDb3VuJ+UckEn8Jpb5Nqr0COZO+SCr1ZSVhbTXWyQACAZTf1ddvsDInvIHYV1sc/thpC9kk4m+EXSFvXb+HyOuFhBU5x78rphtfp9QXVxlYMiTi+vNJ36qgYkp9s5xsGBD6DDJvQ6Ncw0p93QLR5scg0jLB48+cu8pt9hNT/DHizwZ/gWV8vOTCBJ4RXiu6Ul4UQVrmOFlLRMxgugOouUePpxGiXGOlvhnu8dfnhMK2Yt/REn8Rij9dIbkjFrcRpb4dL6jm1BlJZJ13f1ES8d7ydHpixkoOEzudTszsCt5/inqVM6ELzHqCEfd7K9SYnZNCYwveHE1F+OzVlbXHlD8aj7/OBxQUspQy5GbJjPuhZFJ3Lm/rjFqqhJ9dv4PwrhOfR6cE7mvGiEIrm2RAVJrm2ZpVY5TraSwpkqqcTkAtSQd1uTfJS0UmhkFiIKf4i2lkw8rajQIrgnzTMR5/vLGbIf5iKk0iPf5Sq9EaW23w721iv4jEq1KqM85QONHMieIY0pGrFa2fZei7aywYSLFS34iEc5axv42m6nMYEMVfw3jTqp9Ufn9S9kjwvvylalsvqNFQ/KUOrHvHT0r8hATUDKTBfkxM4dA2ij/E48/rCow2EciK6crvS9V0ny17gZDKdeh5XkYoIzN44jFN8ReKkqnHnK8QTsQYc+h4j7+Icg+zwKss0rAgpmAlq0gwqJjyLaYjXso944vTuAYbnPgDm6JYDyzm8wKVSDuvFbfQwRWmMeb5RDWKvyGamdsFsS31HY7qgI/LUb5n/HmLILnNe1VmeKlv04q/uvEslCQ38ddsl/RBPf7u02cQEdHd5WOICBuf6hR/T77/34L3r5vNUpp7QB0Yu15zpWoR2lmXPy9ZhJ+l9RckpviDCKzqsTsfFnjfSkewm/cMKhvtnudMhCK5s301ziwA3UfpHZsI9GXsXncT82LlsnX3ZzjUTB25uefE54V/gH3eeFl7RBIvx+0neKlvTHMPc89i/AV5FZOZT5E4wCQXqsQfXjkwCAxVdMB9rWNiP6v4c0nf0DiEW35YmxfIP9Wp7sx9Q7v6co8/pPqRHzsmZl5sEOKvYTxh8pbK729ofTt4X2646xR/ESUTkUgr9e3F1Gz45x09s3Wgx4bUZwkEGFfstU35I6z4Y8cHB7exourr8if5d4L3TSf+qucKDezzgJTpfJgZwbpnM/T4tlMX876IUd2ZEp0xqFuoCTxZ2UKM+iuCRDJdQTUpyiIUfyXLvGqbVEGy5fHvilXdRSv+Ot89Yz4vwcGfDcByFvzhJDUvpUPuub1HtrQJGyN8khLrxGwWOjFm5m7bdtaR9/pJlvlCyRZZxvcMahLGgm4d44/jl/qC3ZAR1fmgYa7TgVN+1v4t+IkzZAZFdNwk92wXhCs76kovW2X48/aa1qU15xN4/ER7QWVKfdWYa+7RDjs2T3yqFk6GVBV/JhkFlKxaf0Gm+ANL6TS5jueQ+r5LgM0Q/p4R1Shg2kjSd7ZybCLQVsgSf3jZaGrc2eeMwo5dc2+LseXBR9FM8edsN5CkSpfIiZgPSxZHOL/dCAuHCNuNgj0bprkH1g25Sjp2fhmO4s9PbAyzOs2q5sipgqGENSv1tUkV0B5Hc3uciDiAFO7JrdnY6Dz+kLjTJJyVi2FGtdx7CBDib4TBA/627SSIKP7SgHqMcDw/u6fnbz9ZsyPldIKRKjSrk06HduYtmAm8VfwBgafv8YeqSsaKQ5XfWwpYbCQGYL2L0eETfwtFYzi05h6lU3DFePyZydw8syeoPcEvEO9Oa7KXmE9L9ziZaxQRSiJVveoM8RdD3ClWLosEnvHvSsnKlKM8/mx5EO9IHKpKYaW+SVnf2C7S1VK6VMUfNGYZxV/EsfkCcTZfSkREOUD81akKQj3gK9c3i/GC6l4zTrAjPqBkOk8awhRJDmhYKTdImHM/cM6vEhHRTr0i3CvPNGtQcYo/tzzBF3jt2Zmev9191HOh4/cg9HvXec5GlPqWWcuNrYHPTFn2km/QGGGJvzyy+VBVgdX5sNBzZz53EWOjVfxR3Njo39/QmJWIlfqSU2CVNeXm/WDG5Si/N7SB3QCRkuQnIrptfaeB3KY9UxQztrpSX3PPI8gz7vEHCUO6ZEyEAp4fx9m8RCSTKs09kOs2omWerDutiii3tUnfiLlcs7VCnMefi/1Q/1TXxTmjjJXrhs5Jdv5ROSlbtbBQVnsLD0L8NYwrjv2t6H2N1L7QrhwN6mKYiBTF37OyBwZ4JhiSh4Oaa7xqy7VBuxZ1pb5Acw9u5E4ETqaU5nuAeLrUwVd2IOTXfMjtG+0qDExKKcpI59/llGsxRMzpapv7Y+DzagKJgrI45ZrpoMjUY2j2khNYmBeUU65ZxV+iL9EFN6wP29fcM8WuG7KwZsGfIy0xwpR7rWDNPVzgauYk5LrZZJIl31IVf3gZX5ynEWtko3CPvzQfT7ev7TYKEQpcFWwICTzbbq5biwpavzOsY2iPgn3IyKxConPPpmg8+E44OwFXCjcLLKwNohR/NXPxxXvOgI/NET7DJkr+7LPJ4tZAgoUr/jJT1h7R6bSyOEVKfb0yYyIKntNKrqgxiSxI8deZd2eV8dJEFX/VYyHdZW0ST+XU1qYhS0SpbxZT6ttcYqCoPc/wN2Xbvk6ivWQNXQooqdLdthVR1m7m8koSLoLIiSH+jKqXNYrAVOTdZFJscw9v2/uOenb4sZsE73geVerbTUxkuWsmA1Z78GR5lEqT+TsHJ15Z46NMceIv7Nx53OkUf0L89YMQfw1jf3509L68Jt+qeYDJeEwN2LNthIEQS3WBSKgSiZf6FqbUF1gYF/5CFpW0JxDD6c09qvs3QbzFEoiNNqOpCbiCG9Swjp0xZXyqe8/49w8n35x6TEdkL7nizwbbweoKF8RkMWULVhnCOzDifnEcB6ZD/U4M8cfKbaFj9/q8BMvH2GJBRRiK84YsMSXSNnCNUfNQb8OpGMVfjNqQl7SY8qShefzxcdku0oCSMM0WGxEEvXlPOSFRBj4zRVnWqs4R4jEWWmv3vLFSuuBDm7HVNjUp6RBgV+KX+qZ29R2WdUbd9cH8mHi5LUYilVrb50VFlLXbcT12fOp+eV7qG66ocXOSJWKAmMqQb7Mqbmz05xAkAejWGrl9XpFEsCH+yphS33lQ/IXGgbqmpB6BeS86didYEo7IqYhVlJLbxF+uuQeinjTPl87d+BZ+bJd41RHjG68cKLRRroWfu1lrbB3v+Kfuap0QfuwmwRpkuKQvonTsxn6Vcls8XjdqQyzpa85dkbaekqGKP/aexCj+DFGcOXsc8fjrDyH+mkYCmWIWNUVkh7JUNFmi0yTqsmZ1htd1KEtXXmuNjoGSi54OwENU/KWWPfjdG6GuTUdY9gbq6lsz+bWLsE9wJa+xpb7OK88gNINYDSTiyz5VhpeN1jXIgBZKzKvOLdLiM84QWDmaDYIisr5ZxoK/4OYe5nlxARQ2zpuAXUWV0hlyVkUsNohqSnwSFH/IsXlDiBjFXy1CuVp2nMwQWBElhJp3Eox4T2e7JYir1T7Ks0APrQiF3KBQalYaleOEqXm2TAIvVwBpyD/GlPomevzlgG1HHUKTSfXfEVCPWd8zXJHMifzcNjxAju3GN9eEByFDOvtnLadECvdPdXOSiknCWcXfYEp9EeuKkin+yhjir3vdiijFX92zkRYPqsCHPbQEve9x7Hm6rr6Y4q86PkFxMPNcK+1cHEG+5TGlvkzxFzGnVM49Im41cUQRQTQ3Ckb8kW2uhrznzuNPg57ertw2skEGa7ABx8x2nZFRluOdnK1AQcUlLxcbhPhrGGhXVo7SltKxyXiIsvgWNee9kYJc9xJtyISaJdwzrpozZQ/I4rQn2ELvd8IE2KM2BMFLlImwUt/5QJNkIqKWrVuMhpaNKk4iRSjXTKZ+1VFL7N/CF2lOkRzVnZbcApHAwNUGMaQsGQIFrqz0IK4bckKgaYNWp/iLNXi2wV/odbOG4OyeRWR9SeEdhYn4wjqiOy3VKP6G1FGYkweGOEQCz3qPv+BW8fZHFbFIc35KjoiBCPrusU4cn3J/nAkt9W0uhihZ2ag1MycdnMSznpCRPlRW8aeNQgEgsGqShcndkYM9/mqaTUGddTnxh1WqcGVgTCMbO4ZnTIWOjOvde5bnjvgLt1Fwc5JTG+IEmPHzRj22lRdzIKpamxygzCr+kFJfc66mUYR/LnMcPHzbASNVtW0Vf5o19whMduhKI5uIhI52nm1G8YeU+jp/QfOeAepUlvRNI/6cZQhScWTmpNI0BxkRvzfNCE/n14uvFZTKWVIF8+TWpKzCFPOUdPfMPeth87tNihBRxkn54FJf5/HnbBRG4543ASH+mkYCK22yviUr0UFKB/qcUPCWTXbjS8HPHfhh0v511zh0jOGdmK3RMUL89RwbVMQkefwNOgADAs8B0ISvzK6iiyfenvw5ROmk4dNmbgvetm7y3bA7bGGtNSNyzIQKBbOdbfPcTRVF4GTOyz3cZIyTZ4o1qQheBDCvlBivOru/ijg2JZpLs8YkMd6IqhL8oYo/d8+yKI+/GqUkUipsSy87C0R0jvEJdUSl7BN/yMKaL4JtJ8LEufjY2S2Bx2bXKILkds81TrATuXs+lrn7HKpq0UCDgEGjZI22jMoAKfU145udxwlTQZkZzZX64gtrjpV0MHj/Pp8auNWAPP4U7k3N556o5h4VH6qI8kdt5sPcliCGEvRcfe/IEKQpSuddmSxdM5lQ+wii3oUwUnKqaxR/yNhq5kNTFq+QGKT2nRpO2rjufQ62WSF3lpop/kKTKh0/cDM+RXjeFi4GsjEMMj55jbZyiKR2/s6uagEnkapedXjlgH3ekLG1Qb7IJSGyDolFccnyLGNJPDhZztWGEQQ975geOrZyxV+W8/8QtLu9v5nrhoyujRcThPhrGH4XQgRcUePk0GmLjfGd9wZvO6oef8vKA2kfUDsYhg6ubl9b9gCU+vqNFeCSwpRS3wGrSaF27QNQ531o/OPR+w5aHdii8HuedOwar5WYctt9K86xfws2BeddwiIUDo7AyqxnSCghYX3LlMteQmWjNYu0mK50MbDd9CiL6tJqu17mPCGELU5LykjlpkQ6ZlHvnjfkWhiyTTEPLSQS98m6KDPzrmoO6XjOn0tL/CUGnn+274NB2/HnMsscgRUMS3JHdmLuHmtqxZn2b6HqjGE2I+s9Ni+l69yz1Wpv+Ad4vmWdz8S/j4ndIP+ubhwwq90i6fdbl8LH5gjlM5Yc3BS9LxFVytmsMiR0XOdkE/NlDIVizzpFEH+uuUcOk5bmO5aVsRF4Xgz51o0bc6Vp32Rvd+d+6CE/gHGVd5o3nX0hrzpLxOCKvybHiLqYd9neB4P3t8ozUqz0MpD4064RYIySu6y8Z3iDMvusRyhrub9gjLq14vFHeDLKEs221BdR31cxzMogkyTlNi/IuTuVJo/3A5O+rMlXTEM8Yqo7VzkQGneamJc65J37D0H7V7r6isffnBDir2mkKP4Kt0ijASn+1q+5K3jbsREl/pKR4ss448qhClvqGx8EoZMSUtbSe+xBl2WFn3uxiIeqOuIldKFlyj2qHTtx4m/PMefZv4Uu6iuKvwwj7ohc0KFUDjcm4UbqWY4HMToxaE5R1joPLEVZNwiKyfoqXroZeO6qdM9LnMGzybzmThoREbhy83yoK7BvPxGh+KseO5CQqDT3iFC11OBYvSvw2F3lGSkWsAPPHyMkkjz+ljkD9VBVcNm44q/7vLHkm96/NfADjIqJ+b1B733nPW3HmN+bsk/K59gwHKGxxNKDG2v+iicHFHGPP6wkjIisEgmyA7CqlDxqPjTPSytvWSVS6NjqFH+u0QOWTOrsP8uI5jbQfMK/v4gtkFH8lZWOneHvriVictzjL1U5nYK65/KsW98fvD9X/DnLkNDGR7yDtfH4A8ZlM5eTu2eYzYspM3ZEcyhZ7J6XLCoOMOeplGKKP7y5h1X8gUm489RaaPuBgSesVUTFhUlkKUXaXvbAe8aafClT3h1hCxTj76y54i+pq6+LO6XUtz8W72p6gWAQHn8lH9gTJ8kvXL8h8Nh6ZBV/qVruuixg6EeOb7/T/uzKHsIDKL/04Bi9J3hfIkzy3nvswd5vZGAuGx6qnqQeqfy+hMIz7XU4qXw0eNu6iT/UnNp6/BEvWcUDCaOC6uweutBxHqQ2CxeTQeTyfbhJhaoq14Lr+FzZQlyTipR3hRmCR3gjZpWuvli5rWYl0q78EXlemOIv4nmrJf4iFIPTuvO8ImoRv7Spc2xMudbp3hihcKg7n9DSS6bStCQ35LnGnnXCF2n2nmdujCjaOGE6bFRKffl4GhqTdc+dl/rGJF5dcw9gPixYKd2gEJpUqTnNuKYDrqtvuOLP3Rurgop51jPueQsoBrXx+Ivw0OL2ExGqFOvxR+x5AyqG/NhvyVR4DKJLRvxFVBeZtYLuJruR+THdvigeqTGv7YxbIXtDy9pLyrq+2HkrvrmHZhUTyLVUNXNx6PUwx+moQ7vPOmQfUdcACI8jTFIG80bU9K2Jd7rfh+hGbhvaKVbtASXhTKmvi/3QZnxaubgzRvGnK/7Ogftb0pEqpb6hiZGqr7WU+s4FIf4aBpqJ4LCLDTawp6qyysBBrtB6ZD3+6iZPqFwkoTx7ZqlTRczmy4gIDYKqx35OcSt0/CSPvwEHYMg1/4X85oEeG8Xbxr5c+f1n83uGduz65zUMvLutI7BwBVfGVS2h5tSlsyLQtmwB8QUq7bGN6i7YL67iGeLOPZi8Sy1/TCF92Fd0QRBOxOQqprObm1Niuvra4J4b9wPPm1U4tNziFlEpmAXmtCFjIp43FaE25Mb9KsbTqO4zA99yW9JFcSoB63tGrNtoRAdFlfNOp4GEKeA5NWiUpSPb+PMWzANpQ/zxsRFZWHeN/2NKfbl5/oAQPB/XPpZxhASBYwSvWIhrZOM8/lAVOT9WHlHqa5NRFUUMXv6Y+rwZnLzj+vBDF7zUF+/qa5t75AuD+AtNnKba21QVf1j5I28CYsttIQKrN4aJGdc58TcTqtBmsR9FxDD2ncxa7HnDz11HKv4ag3bxeowvtm3ukbnERHhCx5Vnx5X61iR9Q/evxOtuTgslLTOWvHQd00Xx1w9C/DWMpNLLwilqBtXcYxlNB21XtNs2GzVyQNx561B7jcOuBS/NMYo/gjz+EgORAZSWDwoI8XcUTc290TwhNKM/H9BMlRL5AUTUydTHedV1AwlmZh7cXa3sJZFilESKGRWHBkFWXaFc+WPnD4HnzhenVsGFLLJS3hVO5OBdfe3zkimcfGMKUesXBzXnMIqaFlw2qrV25vmtCfYfEOKwWw7XVcVABvRecw+i8MVttYvhYBR/oTBEfEfxh/ue1XmuxXj8ETNiDyWa+13fYYy4pdbMs42RKcEfUC0nI0KvWweFHdvw8sfQRO0gUdaUF2OqO54c6H73iFLfzBJ/SNLWHTul1DerlPqGJsKc4i+ODOlVmCKJfp9s277iSeGHtglERngiXX2N4i+mPLv2Ow4nJktNdmfKJYTIjo1h353HWa7LPeLd6qoebCMbRCFaq/jDGrsVKofjAL6tUty/HnjWTQwVUbLa6KqWqeZg8k1ruyZXisV+ofFXwWJm0yQMSnbzygGsrL1kSREVQfy5qoPcxl8jQ/Y2ACH+GkaSFxTzUYjxoarD0SqsM1y7QW+eVCTX/g9ANbeflkUtEEuEJKxB5ntgAUAm3hAM0zQ3BUXi8wJlzTxonTiBcY+/CENx482TZXgDIW7wrFJKVhVbKAWTSKysihN/oDqDmDIESdIgAZMPV+aiogyeyWZ9M1jVopnfmws8YxbWrrQp9NilJspV93kbi/X46xyrTa3uoWMUf450LEIJCWOMTRlT/AHqjOAta47NVVAZrtLki3oXEiJkryHo8Q6MuknFn2YeWlwVHAqrjuUKLPz7OMVf+DWvltINF5NHndbztxiiWSlHSKBWBAWzcICsCJjiT8WooOzzksHPemnfs8ju2d1nqzW+xP0R6iLducbr8scQEVE7Gz/c5hXwUl8dRcRUkyrQ/DgPCZRgUW/ieqqi+AMJME7qqgiS2yn+8qj1oY1bWSIs1LuVV3tY5VqEulVV4k48AVjknXclT1w3DQ2MPCM08cq2U5nzVgxPTLikr4n9EDuvKvkGqqm1+UdFKf5czJwT2UTaaKwvm4AQf01jAJ5rJTmvlFRpeuiCYWYmzeNslJHmk8cIiZhMWKLqLkXxVySqDX0MX6swWKx5dH/Qdv809v+ij1EwxZ9R3BEBotXSBX8UUcZnn5eIRb1bGGekY4i/mg5loefOm3vkOa74qxJYYJkxpTb36P5LyhISWFdfQ5jmcNaXl5oYEglr7mEW9dxTMtDTiJmZ52O44q8stV3c2nK4CA8s1eJedWipr1P8YQ1Z4mGey5KVtWNemlzdGtPcwxH06CJt0CpyBIXWHcN6IqbAAmIoW07miD/IU9I29zCqXqT8kT1vA0Kwp2TNOJje/TGUPHOEQmbHp5jERJznrS0Nz1uw95h7rlTUe2bG0RVHLbN/gnzP/FJhhNSqbe6Bk0g674zr6Yq/4SCV+Dt2WedaP/+c1ex5C1RBpZa1l45Eiukibd6VjCvgg59111jEChwiy0bhuJPcdSpanXelpcOJv0b5IhZ3wvEXG0t4lUwZFfullPpGqA1tmbGqNPcItoAwsVsWl3hdbBDir2GkLRCdmseatyb6Cj2iTwzarj27eIm/uoAp2LfDds10ah5kokn1cEzz+Bu04m+0B+YHHj0QtN2v59dGH4Mb0HMj92CigPl3RTX3MMFflkcsdFxiQkWoW52SqAVnELm3YbXUF2vu0QlgIoLmpGfbLRBVRFdfuzjlBvZw58nMlXtE+AtqduzQzGtRui6reURzD67gMotbJBFmFX9jTlHTDlU4sMA1xpsnBdzjL4tQ/LnnGlcJdPZy6gxH0AcqJYd0jepQ6XbIib/A/RUbY9o6vrlanOLPEDHDT5/VjUXxTQfirAhKpuSGPEjNuJ5lZGfRRI+/YHKIWV+4MQKfiznRrAElkx2bbVIEIZpN3JpblSmi+GuZ79nCPf7qCcbU5344Hn9LusPKkrGIxALfLiKhw9X7OiL+sgnEMea3GzgfmtL9+FJf19zDvmeQ169JGuPXbXKm+h2HWZlUtSIw8Vfo93bnmUUkXnkyyRJ/Mb7WGauSAZt7UI/iLzBRTyyZFNNIcJFBiL+GkeS51naldE7NkxZI79PL5t6I0ktORxoJ98wNrjmpBG8fg3vLM6Dj+4vRq4qfCd63aPdO+lv3xnvvIQqqhVgW3E4MCkOgtQtiuLoj1JyaN6lwyjWEyHETahG50OHljwgZYjt1KcWae4RmEI1ZsLKdTjt/wIJurXLXmGRIXX0rz3oWT76pjBmKh/pUssVp1iUdcxXeDZl3pUOJ5oIRd3kL75TaUcd2iT+7OMUVMWPs2O3ZsHmu0rHTkkgAkVPzN7yrL+9gXQaPr45QiEwOVEp9MSP2Zpt78BLpCI8/VjYaU45mPf50REMW7hc3KISW29YSf3HKkBJcnJZsXHed4mP8BRkhAexfVaFjnm2OoGfVHpGNSYxKFPIwNXGEedYjOgprlbny7IiuvsZGIaY8uwmkevzZJ4s3sgl83mo7WMeoW4k1+YIUyV3bjZwp4EMTYcx3llASiIge2dGpptk3XcBemkS8TNmce/h1+8hla4K3HThYebZCbV7Ydhkfn0K7jtsyY8WeN1whqiLIXl61oJSrbgqNYcx5csWflPr2hxB/DSNJ8cd9NyIm4xQgAcfCQ9qAUB+IhCr+nDrDqiuAAcrPsirSQytBrFN6/fYnr4v+PEVEDwSWyzaJfpe3GELTj44BfbX7I1GE4o9nwpDnhU2oZpEZWvKt6xQOMWWjzDMkNAjSrGwh4yQpGkSxbHmMCXwMbKmv4ovbiEx9pVlDaIkzJ2uZ7xlIInXUzCDxV1SJv1JjixWt3Xe3BvhAqS9X8xgF12xNsqMOZa2aJ3HRGCpOZSRQxnwZg1/zih1AWhMet0gL9fhrsNSXH5uVF5EOHF2ZHxP6vYmIzlUbK78jC2Ne8jooBBNoNecZQ0goTjSHLk5Zw4KYcjTF5gVYlcKOpRSu+NMsCRdDsNttM5aEgzz+jAIsotSXKf5SmntQt9QX6k47H119h3RsbhmCdtblJZqqFdO0iZX6GvuJqG7tbi4OJkK7wpBS5bA/MxHR9Gznebt36wEbd0aVlmd4N+QHtjW4JmFKR7y5B1eIOkVzcNzK4oAYr2CbxIgo9eXvRKYUoR3T6zz+oKTKIoMQfw0jpfsjL8tyk8qwiL/mMvWNo+4aB8fMxvsCb1jQ2bR67I6yI3j3nknkRfmdwfvWqTMe2TkZfvCac7lj497o/ZtGeyjEH/MrYcP18TMb++1SAV/oEKiu6GxrGkU4j7/gMaamLCtqkZVFnDvzU8p5qW8omAoq5rqlEOxuMFF2jAgNXHkX6Op1w8harVxX384fQksuTPDXSlL8tVpjztsncK7hpcJFipl51mKBJ1bqqym2IUvNZ4aWo1VKfZ1CNLgpES9rjyhBtAtEToYE+zI2WerLFtZMFRyqyFFsoWR9z4Dyx7OzLURE9FutK4kII7DM9R0k8RcexPRuhynyGQFmy21DCXaTBFN2fMqVtn+fC9zjD1X8VcfW3O4Vqm7l5Wwxjd1c10z3ngUrJUt37oYMiVP8xTX3sARCV/EX5R3WAFJLfTmRYwmJ0NJLlnRSGe7xZ6seImM/nkB0RDNmGRLreXuC2kNEROPUhitNtNbU8hV/o6L+4qW+YMzMr0/Gkip4cw+X9I3xd66KDLAy5U6i3o3IoWpFxUjHKCX4IoMQfw0jSYE1D119g4/dYMDeOGrvWdgizQSJpcpcuSYSgBU+8adt+UsI0hSmg73no97cYxjzSsW3jA3Xy4vdYR/AFH9wpy3y/buMWTAY/KmWDSRivOpUxrrSBRNgjgypevyFZiC571lEtjwl28i6+qJBDO8CrTJuno8tTrXKKsRf6CKPK/6coXgg8ceae2Stln3eQz0lqx5/Y91DI6UqRt3qFDXBKgO+0Ikg/pbRdM/fwgV75p4pUrlreBA8L/DFBpqpJ97wIGeLDUwF1fP3wFO/tzw9bMPaY3DFH3vWg1t+OiKmAJ/1OkALFdvVd/ilvnXfEfOUNEQxX5yGKv7qEzqhY0SmewmscBW5G9czNr6Fk9xubI3xblVWdZcxK4Ow92y2LJkKyij+gHvGiL8SfMeJWKnvmFH84f6C3l+D969FcHO0RMVfxa4ErfDpktzaJQCRMaKqbo0h/lwcgSfCzDont+sc5Fn/lfx6IiJ6dX4ZK1kNtQPg5x7R7MpDaAJuEHDkvov9QmPJsqKaw60I7NjKGosg71nF5sWS3Ni4rklRxhSDwV19GUntSG4h/vpBiL+GkaQKqCnjS23uEawyGILaaf6Qdu51QYsOHZy5MsTeMyTg7y31RW5FUgnigD3t1FCn1Hj0s9MLVYakQJf1ij8VeuWYN09cx06nkHCqllDyjJWjGTIkxquOqTOCM4gVAkuxP2P7d5QheFc6pLSk5uDd/+cBf2DwRm5Nkyk868ufF8VMlkP3N2OjiiCauWIvy1pRAb8ti1e4j1XdQidU4VBZ1Ecc26i/OMLL0VzQnLOGB6G33C023HsKBfyVUl+MFEhtGLVGnxa9L+/YXClrDwVfWKP+pzWA1Dys5HVQCCcV+pxnMHHoVFCOPAtX8xB1v3eOm8DzcV2D4xNvtJUpp4APJ7lZtUfE4pSb57v3LFwNnVvir5sUiWzugZL7REQt6xeHK/7mxeMv1PI2+djme+Kll6aqqmTJS4Rgr6g0rTAkLumLJ8IcSe0aJ4Ufe7s+moiILiufiavIWQLQeNWNjvqLK/4w1R0vDc8yvGu5WcPymBmxcOBWBHBjkYp3K8Fjq7KVSSpqrbHYIMRfw0DMM32YQZgb90NZvAQ02Y1vPoCEz0mBCLtnWYQCyw9wMyohxV8K0ZyyqKkjN6Hs5QKcuIeRUKp29cVLVrn83nV4TVP8BXeIZQtjq1yLUvyx8S20e7YNJDLKM2XNgoMziMybJ6Zx0kAUfxSR9WUNLmJKfS1hSrktGyUCvFZqy4zD7hkv9c1yVl4Uqvhji1trYB9xz7jiL3RhXfEeA+9ZKnjZpy3RURog6NkYYT8UIeg5kYOSIWnXqJUSP3EPLe7xF1rqy8ZWuPFRDSDfM5bYGBxCv3ef7YIXab2Kv/DmHuZZVxVFcrgXVHc75kEaGluUmhEvuSMOQ8uMq422cB9QVVGYYoq/dk2pLxTHsoRQQa3un0LVX4yIGYso9a05DkRIJCDVg/S5sz8lIqIlk5vh+dA+6yx+ykhHEOyKHRt53nqJ5tBu7U4Bz5O24ff8uvJJRER0W3k2U5jixJ/OO12kR0b9xRITJvEaOi/w+b6j/MdiXqMg6TQfwhWmzv80IrHBYxjlJCFl8DPTq/hLtVo5kiHEX8NIIZFscw/KSWd4F8Pa8wktKRvhUt9kEqnuGocubnlzjwwjM4hcuYcBWuqbJyyUIG84D3WxsSLdV023kNDv8g4jlCi1ppbqVfyFy4F6FX9QV1/WYAMtvawEEtarDidiuF9JeKmuWWQpUswsuAj1qOGEaYQ/YdJ7xp8se93CCc9cdVUpnKwFm6KUKrNlo0Thmf5aDy2guYd51lWEzx4nycuIUt+ML3RQVQtb6Ngu0ENKjnHSMWP3rAj+7r2EBDIn5dq8p7nt+BmsokpcWI+lvGe8qy+7bsEKfLN/RYEVH3/FlPpyj7+Hxx8ffWyiwxB6Pvrd2wg7AWsHADb3IFKekjtUkezecadIDh9breKvUv4YOrY6NY9C5zPiREzLdUMOHBvbhUsIUURXXxv7ZVzxF0r89Xb1jfGz5Pjv+dXB+9citH9PInlwermJiIiOf+QiXIFVmHdcUcbU9+FkCrcrwZ+3ukRYcBd21ngyyjeWNbQrwWNXnrcc90ZsEq5JBa7442NgVfEXahNjEgtkx9aYbu1cFYzG6/ZXuJOzI/7E429uCPHXMPKUxUGN4W4KOYNg0GWfo4QXHLi452/hSTizsHbeF4gEvre5R3ipb8lK6aKQcM9TFX8LEUNR/LFrXvVzCotcnc+LK1nFym25mTlI/HHFn1VnxJQQtphPTGhJlzMqzjP3pIUqlbkyBPUXJEoLNBXL1KPqMW7BoCIMnu1gojLK8hjFn1lc4ouNokLEtFxzj8BjF2VJWZf0LCI6V9rFAiMdwxV/nGg2RHHaABG8N1O38numQ5sOWG+fSDsAS4bg5dlIg4A6pLxnleet4vGHKf4qSscEogCq/qgh/oaTiqL+MWaEOgO1qDG3pmSNbIiQ8YklwqziL5S4c9tmOb/nYDKpYuEQUUqnWEl9qBWBrmnuAYyN9WWj4cc2ytx8DO/qq2qO8+zsvuD9UzAfXcfD/SydVUq10VYEwR4Vw5j31CXCQhOnxBOIEaW+y8Y679avPPVUF/dGlLUPotR3qOsUblGjsPGJj4E86Ys0RekckJNn4XDltm5sDS8z7o5NZj6wYyumQldM3SqKv/4Q4q9hpHmu1fgxDYn4S83U12EFhXWIDS6tmCccVR6I3tcEEp2SMNz0NiuqJvBKhSv+2qVOKo1K8Y+sV/xRo4q/4Am9z8SJKC1jwSftQkcM17yMLyXrWynjwwyetVJM8QccmwUSGiz1tcG1Ut0uYVn173N/QHf/uLKspHE9weOvrJAZeADmvndVZRC6sOYdXmGPv/as+5wK+YYZRBOxUl9IpemIZtTTiHcxVOA9S4WLAxTl7J4VwQ1Z6uIIhPgzZK9T1oY+L6kJxLT4iT1XK09xfw+WA/HSS4worgNSvjg/XX1Dj91PAo+qgiMUyUzxxz1IQ9VAXJGsIxR/doyodLcFx6fIcrTMdD7O8FLfsuLxZwhT4N0xx2FkbejYWJSFVaHHdfVtsLpokOSBJTUwhWjHIzme+COWAKwjUfvBVVzwUl9sPoztFH9Ul/hbOjHeKRcmsp6Hc6Fid2KIvxEhgWyDMR4zRyn+Mht/hZJnfHzKYuJ1kzhVGeyf6ixmVOVf2GJGcY+/0RaWzCeE+GsYSb5pCVm4VKQ2EanDE9T6oO2KBenXEBg8ssFVRZT6nrf165XfT1M7gsfWNuvsFoWUZ7Xm+iDn8sv5DdHHTsbejbV/HkqpLwuuq809wlAx7o8gmnmpr5PfY+Rbp9QXN9x1SiKcfNNM8ZcpxdRjmFqxqoKKKBuNgFOKucVtVGe3DDewd4uSqodW6DxlVUs5HvDzxXuWs+ct1P+LnaNp7gGV+iY0qeDPG0V07ExBxRg7wveMl+iklGVllTLA0Oc1VfEXPwpXrs+yY+2PoU2brMdfxkmg0EV92nzIk772b8F79/3UsM36jf8RXaTRpgPmupXK9/hDVZrsWQf8Uw2B1RkjQMVfjccfQr7VN/cIVd25+dQQf0iXeltdlLXg6qIKIdHqeK5hxF9zpE2qIrkCMP6qJpN4qW/Y/nXVHsjzZufyjHctB60vVMvFflBpuRsjCjtGzPbfnh+aeXEOQvH3qbEPRe+Lwr6jKoeT5ZYo1p0GGeic5J4rxdSGEYrkLCdY8ecRf25sxVTkpOIENYsNQvw1jCQvqJqOncPzFWqOfCsSj61qdkcGuP1qRfSxbalv18S088fwAcoYK3OEkhlTsyW1kpoOJKgr+ij+QvHUbG30secNQ1H8ucCTqzvCVSkDUvxVykax0qaOuXSMT55TG8Y2qSDlEX/BqhQTSOSR5z4Aj7+KUjLUp8WdI2+wERxAGbK2e93aGlNwuXNvwfeMlxFlFaI5dH/3rhRdjz+IrGWKv6RSX7OwTnoGwsdH3tWXE3+hZWoVBVbiGFHCpEC/stGwY6cs6MyxzaJ2SptnJpREYioo2/golESq+bxEj7/hod93xMi3zpxiYiCMYCfWwZoofE5yFg6OpA5OTFRsFPCydp5MsqV0APmmrBVBDnv8VRoeRDT3cEokJzIIVfzxuSPvEn8x3Wkr5xO8dz+EfUKw32fIZ5k5JVRhWjjFX9XjDyVcWfwEJcI4yY3Ffi7+IkqxmMmyjKlbw+diS9B3nzfk2P7a9oxse5LNEQQ2NlqiGBSVlKQ6jSNRT8mKvyBO/GU1cUQwyc27tRNOWpq3Wamc2XYsRIHQwoAQfw0jRRnCFX/TRefR331gKul8QgmFgWbCQKQSf6nDwT0T5/V+ZrDfrsv6uk6C4Wd0/zEv6vlbaOejmXaDir+ar5gpTWoAIVwsnpGtSdo/b4eVptdhtobArUPBfLrarKtvaIk0L+NL8e/iC51w8qxXPYY8f9bjL2+xRjhY2YOmTqkv6olUUfzlw/X4Ix4EWY+/0EVWtdzDmeeHBmDue3euWzcQC/SLyyqLejDwZHOKYsqSYNKRfUeraoki/iIUfyboZoFnqsdfMGy2PGPKjvCEEO8WmpIcyLKckSF4eVIM0kp9fZUBtjDnDQ/QZjB1NhExKqhKvDbk563376HHZwtMVClZmk9QpHJc3WqvscrJLBeD31N/bLX3HHteNFNyQ2QIUysaMiQ0JiuYv7OOsEGwaw0+rocem80dWQtvtjAsMUMd5kPxh5a1l15CJ67UF09emrmce7eGN4pgpKNV/AH+zlzxZ2LlwFLfolI5gCv+arcdkieR6xTPyV6sVNcQf6jvLE9eGsuQvE4l0/8TiKiTmIArB5gtkPskhPgzIgEFE6aLEUL8NYw0xV9ngNMqp/u2dUiIR3bG+89Bh26wq2+/Ut9gI9CaASFYQUVpCzqesY7p7FY3EAb7UFGTHn+J5UHzgH8a+1jS/q32weh9t2QnB23HF5Jc3RFKmNYt6pHn1xBOnERCy9l4c4+oEsKYMmWmNqw090BLwjKu+At//hFFgw9X6cvGiNB9KwbPEUROpdwD92xzPi8RzWQ4uZi55h6hZApXDMY093CkpetOixLFHV/GrPJ5sQimUSy5z7L8FO7xZxVcGe82ii+U+HVLVvwFYhClvvY5c/8h7NiMiHFKx1DFXx3xB3j82VK6fI4twxEcAfUl/kKJZqfkhpMDjPDkYyNKcnc6b2PN1fqZ54f7WboyPtSzlogoM6q7iFJfrYkRf0bZGkG+qdzaKASrDSulvp1jI/OjqjlOatR456a9YRsOcp0Dq++Z4o/HAeB7xhVcWKkvmw8JPHce+0VUoyl27MLOxYGlvmzOjvH4O67cGbztoMHHRmfzghF/HXsbsjEzmshSPaXloetqrvgDS3V58pLI+YiizT0y3lxtSCrNEYQQfw1jMM093MCcsuAkCmfJGy31LfoRf2H7T7d7JyDsug1AZaByOxlD3FdNIIL4vOQqRfEXv2//Aby55yitHDNNrRL+nvFSX7Y0C68D7PzDF1lQ8McW9WDwpxmJRBGKP67AskomdIGoOiX1bpGGEofOWDvcX1AnPVs3rN1BRESP7pt2fiWohyhVs59xAbsjm8PN8115EK5wYIF9ZXGLL8zL7uIW6bLKu9Piij9D/DlvnuE193BempRY6ov6nulKw4OIToKpxB+kSKg/tl1sWAIwQvFnx8ZwIqbmr2HHZceuJoPS5tIl04EL3tS5vKbpQJQXlFJUalNijVk4qAjyrdI4iSfC0Pmw0jUTV/x1iEPMiqCuqy9CxNj3lB07nPB027UiPP5SVcF1+PBlDw7l2PvpKCIi2vTst5MN2oKbLXSFHZSlKf74uB5Z6us+MuY9xTtYKz5GwHOKeyd0bhSm4cf+o8lPB287cLBkkhsjsPFJUzX2Q5vjaKUoy3AleZYwrvOEMxFLxoHxQUyJ9GKEEH8No45wClWluC48is5c3fGdM92Q5hvz0dwjFEWfySf0Nd+yp7ccGis9qNs29J650ssk01uGUGUHX6RFIeGe9886NTc46+ThL2HRGbgdJ3LaEefLPY3iOgk68q00JFKowtR6hrhSX2Shw0lHlJDwM4gokVMlQ7AMIjeXjsHL6RoiInp6+zZWEgbOCURR5bbWY6ZrklyA5JsdR5lSMlgFxRVYzJcRLe8mItIqptS3e41Zd1rU00gzleawiD/yyBCDuOYe2DUvtd/cA2vWkOqdlBLcmzjLKf7MtQNVwSqHF6c8ETarTVIE8fhziQ2DcIVo/ZaP3Xpx0P59x0FQGdIhikFPSGuDYMZ1MKHD/FO1XSCGjk88qcLmw+Bn3ZBnKi724yoosNS31JpaJulrPUhjiBjujRhaZlyv+Auu0Kk5zolqT9C+/RD8zRPXOWvUmURENLvidHguNhY+pcooY2XtweWPrLmHBudiIpZ4zSMUf5UmhvEWMxknuYPzCuw9taW+4cdepuMtfFLBVXOOfAsk/szzYhNZqI0Cs3nhRHPofMgsPwgkLV11kHXr6/498FnnfuAR1UWLDUL8NYh+RMws2nkyy+mElUuJiOj0VRODOr3DH3pYZqc1KPoQDylGvFFBUATcwsB1H0IUWNaQXLXY30KzcImK0BTir49HWEqpVioqCrrDoJ8CZBhVyn1LfYM9/viiPiEAi/Fc4511c6z8UWvnScSbVAS/e6Vb4HXOAVuk1RN/uJ9SDM7LHiYis7hBFX9MlRJxz3l5NpG7bu1QxR9bnKKl5byLYefY5nmLV/xhZuYucI31+OPd+IbX1deRjkQuQYAuEJXCS31Lrd0YkeMEWGoCMaligndippgxgpc/YoQnz+0a79aMdPik4qkVEaTPW4nEHzORd35x6OLUnAlWbusWiBHjE39WlSsVDld59iqwkOQhV1O764aX25L1+ANKL3Xb7qvhcn73HY3nWk5F3+bQvcdu0OMvcQx3npJcgYWt70qvrD28S6t7z2LINzcfsuZFMepWW7KKiyt4tUbo81bwkuABdPUdKvg9s/7OoXOCIf664xJq28GueVZReUYky0Hri4qvNXHFH2bfpdi6emTueQMQ4q9BdIiY3peq3aeUtWd/W9OfM/P74UySob5y84GizyI09DV/QrY+6fh12aNQ0nFiplNOc9LMw1F+Sob03HDM8+zfgrurJZYgpqgz+gfHaYFVCtkbSvz13T+JaA6DKVsw3VXRT+CdJ2O8x+zzUvH4Cw1EGPkG+r2V2n3DPMOzeK7UpKr4K2BjbFeSH674S1TWMrimKFjwR0RRAVg1eOOlvoEef8yjhsDEhllc2mMmkEgpCoes0jUTLfVVUQudFPjPugme+82TPrihOOo7W3oEvW1yEazSTDPPT0kcGeVy6V238NIml3hFjdT53FGyJB7QJay7L+7FlLoc2rirjyIGVhUzAgxNTHjjejDxx1ToZmwMLmvnmyk+H4JzSmUuRsg3MydlVNpOp4GxH9tO513FH9JRmDUJix0biYgUU/wFx0/zsaYBCfZYZDVEc3DMyhJhWebK2svQMbOu1Deyyz3eyIYpkiM81+w7mbNjh44RBW8S1i0tj0h2NwGehEOTA6WNA+JUc1VPbjevBPvssaQv3tW3eu52fAff/U6lynCtVkYRQvw1iH4LRFiGzjywkEAiCQ3KaPv5TYXOp7+U35h2AjXfPXQyf/H9f09EREvKQ9awFyv17QYDraXsdIal+Ivft9/kkWDRlIwydPibh45ewWVZLIuHNKBhH9D5h6u/kMxrpYwPy7xqcsEf2tW31Nr6d0Up/jwCy1zvYN8zQ3iq3JVGBWecS7Ab2mFPpItwBZbbF19Yu+26gZcyJFIg8Ver+AtdWHe2M2VsqIeWmReKSidBxFDcPW9O8YctsnSl1CTtGUCbLVjCjzD1GSe5NbjY4HNKp6svSgrUn2Ooz14S8eeVF5XgQomXZeEKUffzxMRE/X843P7d7WaU23dKLQvaNyVhRUT043u39juroP0VI4rd+AQqa60ypHvdA7uOE3vH3XyGq6mp4meJz0lZRHMPW+qrMirA61Yh/rpkSGxHYUuYBp47T7ZZxZ/SuN/uAJFToD3OoLqOs2Yy4Qp4E/vlpJj1RXAjGxvDxHX1zTmRY84pdD5lnm0xnre8yQWB71lluzzCX7BJ4s/ajbiGLhn8vHTHhkj/VK42JAqP/biSO6WpHBGP10OTxswWqFsi3WQ12UKHEH8Nol+zhdDAjJvnlzDD3qd8MbT8sclS35rmHEThi4VU1A3EP1mzI+KD8HIPM0CWGS/1RRR/KcRfQqlv33Mc0uA8k+Db0bcjcfxHhi7qS6/80eBx+28IOw4z5Y7pIm1VULlb1Id7GpkLpCjrqgxCM6+VToAZM7cGAwnbXcxmELFAgiI6Eod3U50bzhsRK5ft7OR8rEITE37ZqFP8hXXUs8F9REdh07WvsGoeNOA3nm0uEYY96y54dIoaXGHqSO7hJOFcmXFVuRaqDFE1AX/4s64ZYZrj6oxkj7+EZFRZVZiiC0xVUfyZ7417/M2c9rPuP4DK3Bk1Tj8snklERAezo4L2TS317Zu8gUt9XdwarFb0tnNKS7wcTaEef16pb2xjkpIp/jAyxPieZZ0qH6LgUt9KwiuiuYdiIoOUd9x4rvl/Dzr2APF69c2wDRMVf3ZsVDmhnU6dH7iiTOFl7a7iIm4+zFni1Xlx4oo/dE4h4glnRrCHjhGFq5JBG2T0/9DhrFMs4ZnldpEQbPNSuOYe3Q/p/B5BvuU5U/yB/s6qEvuFPi++xQymjnUWDgo/9iKEEH8Noq/iL9j7gmWTzMAe3I0v7Bj992+u1LffgmZY73ldsHbf1v3w51gfBeDEua+QQSiZoSlR8ZcQBPWbPO7bujf6MyFc/BcD/0idci1Dj1E6FRMn5VdPPxK0f31zj/DnzZIhivu8oJ5GymbhoppUcD+m4PGtqlyL9e+qmgUHLurb9ePTU1VYJ8HqiWDZy8p7VgmCMEKBvACsX0MlHxlTpeAef9WMtV0ogd38SlKsyUR404CKpxHooWUWG1zxl1rqG6789xV/pvwRXFhHeELybqFZzhaIQ1rUJyn+PPUY+kkZW6TZxGuwx5872v7nvpmfVND+vCPxj8und/8YoQqOQN8xPHhhb8YIpx5DyTPbWVZhZIgjYhTugeXZKMCKv5KPjbgquKIwRZ+3igrKePwhcae57rjpfyWJx4i/UCuCVPKtDj+vbgraLtnjj1uGgEpJNz5llCnXcCrYHJEl4RwBhpdnd7rco6QlI9ijVHc1CcTgZ70bMzO/XWwubpAw4qrgSoONgF09yw/2H0I/oHNo1Xne3ClhsWOH+AP96z3FH9rYzRY3N9FcbQQhxF+D0JqoVTMQh3tAsMkYVKWkBn9mYrivPD3pczjOzTYFbRccMMwTBmXaHjVAmcxIFtPcI9HjL+GZ6UeS/edNG6I/E8IdXx38Zw6jmQxXMUWhN+sbTp7pim/HuUWHuFq549bAQ7PA1Sj+gjso8sCTqTPgUt9uIAFm2+11Y91pQ8+93/j0P1s/CDy2Qwaqgs33K7RJF8eVSCtP8Vf0ITN9mIVOlrdYuUjowrhL3Hn+gsGKZu7ZBn7vjqckV/xh2XLFMtbZgDLOwT6gFd8yRmQFl7WzBSKoROp09TWEKVf8hapS0ubylESWa+5RfdZRnz2dtWASqNTOt1WNM6UerGiuJoSCdk1W/PX7AGyBSRlPTGDJJN8LCm14UElMRCSjOnthKnL7HSPUhp39mRWBwjz+Kj57XfINUSRXSn0TSEfFutP2s+zpQYO2Qqn+gtUGZdg95+MTJ/7C1a3c37kb+4XeMzZ3ZDkb18HybM0ak0CKP+3mFIJJR6fkdvMZQjo2h4yR+8omfUO/t1krVJt7wIq/rEo6hiZVeNIX7fztV+jYWCb4/TMKUdeYRJp79IcQfw2CG2NX/x78Cd1/XRAT6vHX7xDh7berAdgg8Getrwdt189ovgi/cD2IykZF7m/3SVH8UWaVHaE+VE129e33UKf6MIyqmjt8scFUTJX9A49jFzrKlZYHl1VV/bsMzrznY4H7O0Iis+QZXgrX8WMyRDdK/FWVa6FNKnjQbLPGiYq/GKCd3fzOuLHm+X5zj9Dn1ZXLDkDxh3r8cQUXqtLkyjWmqAlvLOJI7pjFRh2C9/cy/fgCkb0raOll6fwsOfEXet1TmjMRpc0fZVFVj7lzAhvZ8NJw4Hu3lCHJx9h/wJSS1XMPvGfz9VwGqzN6nxe8uUdV3Qr7MrLyxeDkgKemxhfWLjkQ0/mbe5DCpb58HDOdTiEixpDcjAQCCdNSK8pYwhpuyNIEUhV/FZ+8uLJ2TRmpSqkvmsRjRExE4pW48gz1+Mt4d9rwa1klkeJKpAtiPnkj4vFXaXxkbV7CUNo5oZr0DVeRO9Udb+5RgOW2VXVr6Lje/dev0Ak+tkvaOi5EFH/9IMRfg9CUpvhTnCUfuuLPLNKGnx/plylM/U7h6D1OzFWwzT0iPP40V6UEZ17dYiMKCSUX/bqBnUwR3ogDQuoEP4znzagJehV/weFAd3Ne6htBhoBlB0RUId+yHOtOW1H8KReIBC8C+vieoQouqnQUDmzuMQ+lSXh5UDX4g7O+Paq7QMUfD/7ABhuO5M67/4Ief5qRnqj5Pe9Oy0pWwzvida+PykiBZe2p6NfwIJTkdvccb8jCS8B5c49wZchgPLRi0KseA7v6srHVNYqIUUHhxJ8r9WXG+0F7IonlevQdw8G4NcYE3hJYvroVLvWNUGDZpIrqEH9gOVp1UY+pefh58u7Zoe9PxaohiyD+KuXZ4LNuvQ2VjQM6u4e++80t4NM9SOueN3Au7zxubD4Eu7UzJXf4+OSOkWV8PgzanR2HE1gI0cxI7sgxoqL8H5FSX9fcI7fltuHjk7dWAEuk7fdWGeWM+AttsFG1SgGbF1l1aweuW3vosbvPCylylU0jqgoZAoT4axB8YV39e+AHVAIotIwv8Bj9wIOgIaNfpnBY/UbqlD9Rij+wqxxRNWg21z7UfyvYFLgfEjIo/Y79Fv3F6M9MRerEMIxpxXU6jRyqWckranRceGRI9LHJdXYLzcLpwp1jxspkgruW23equkAsQ7uEccLUdPUNLn8c3ECENvcwZHQZmfWtdGYjYso37Lpl3JsnOHCtlvrC5Fv33i6nye4CFcs4V5Vr3esHlhB2Sn0HE3gGq+k99ReqVnQ+VDzTH0FgceP/YDXPYErpomBjmCrRHE5gdX1AWRIuNDnGk5cqZ7YdYBmffU6Jgiek1IRVP+IvXHXnyBANEs1OGeI1bQrt6ssV8KAi2SXhvFI6tNuoykgpbE7h59lpFIGN6xVloFH8RXRZ7VwzkPizTQeqir9QK4LU5AAR0cPliXE7Dmh80ipn4zlaVdXxXHMWDqFzOSOaFVa1oCsJHebxF7qG4HFnRJd7F3eyUl+wTLmgnLKIDq9NlvrWNx8KRM/1MWMkVjlASlUS/WiyvFLWjiq5bcyI+YnbdypTQ0+8jiKE+GsQuqwvvQx9USuGuxFqnhSYFzWakEg5dj/irz0zlOPXDSihg8w1J/0eERFtPurJcW3umQcEmu1O9VNKWaTxjnivmH6//flcCmtSkY55mM6HMK84ZUfsB/CMM77Icoq/1hxb1+3PyBCUwKp4/OVEttQXDJqjFX+sVCXDSgeCFzQh5xGrEvCyvuH3vM91g31euO8sFnj2NvcIO/f8kFMPa7TU1yewbFff0LG1tzQ81Qs23HbDlYR1/sVKwqzhu8qZlyZWWt7ZKaNt+ztz8I1rw5Tc/e5t6COT1NzDjk/WGrz7dzA5EKFKqShq8nF3TqFZX3vP3QIt/HkJO0Q/9ItXUBN4Xm4brprzfRnBrr418VNw/MUaqvBzgLvTKmYHENHco9PVF6324ONbl3RExqcUOwBWnl3x+AuNR1MlqkR0Rfm0uB0Tk+V1DaPC/XZd8pJ7/IV7SnIlt7nugfFXUY2/XMMIUFjCnnVM3cqScGDZp2m01fH4A5VnDYOX86OWIT3VQaDiz4wlipGOnd3RsbUF8xF+cw8X+4Xtbp8Xae4RBCH+GkTZp9lC+BjFJmNwkdVvLg1VGWgvCBom+i3Gxm/4yFCOX0/8hWFaLSEiom3LH8eyIrGKPzT4S1X8Dcbjb60+2f58Au1OOaOkCT3cn7LfdkMo9S2ri3qD8DNnCi7U54V1HU8r9XUBf6jHZKH5QoWX+oLlQb4KClzUK5W5hVJwR7zBPRcKJExduWvVJBkuR/PKRkPf/YrHH7qo90p93eI2wrcW9LMs/ZJV8LrZMhvFPY2GtNjwCCy0PNuVtUcsED3izyQCH917KPDY9df3hod3hu2fQvwxE3gittgILfW1RE4Lnov5YoyX+gbbBNhu7SwBGLbnvPkqhn6qI7By9p5iypDeUl9MbVghsIIX1t1/PRuF8LjIJepjFqeua2YGj+vc9ywm4UyV6xZX1l4hYih8XG90AZ/6rliSm/vkoUk4RZlifpbodeMkUnAijDeDYWrF4MQEU65FJMK4xx9qV8LHdRO3pnv8DWcudypyVuUCK0Sr5Fl4pZZ7x/l7GlpR5vwslRsjQkVM1C+GCVXAd/9lY+vQ4q8RhBB/DYIvrP2/h0DxFz3BPD8GPQvMYaLPgmb8ge9GfyTyLerk8mdlm8N25t4XCR5/xEoHggfHRMVfEsnGJp9BqkTDz2jwk8DJKycS9kYn8zi4cg8FZz+LklkRRJX6soy1DcDAsigy6jFwoeSVrKIqqIxny9Ey5T7vY1QjpG4gZMpQ5z52NfhD1RnKJ0xtuS22v8rwxa0pYXJdfbFyW7Mm2Zidakt9wxenbKFT8TRCS1YzW16UumANTsJ52XJDnKKNInimP7zhASf+XMlrFuol2+dduXfL/qDdk0p9vUYR7gnH4i/e9TLYU5LNxaqFNzww123F0glqmVc9bM8BKP7qPyBcGWKSA7zcFkuquEY2mDK3vhwNI7l71YbY2KyiFX/u3HEVlPM9M0k4xPzeXTfmbRiTHCDXzRr2IG0CA/Ig5TYIwe8pm8sVL/UFqxZ4o4iYGKZz7tixnTI3I9RihojoTL2pe2xX6htctcDtcUbM48/G2ypnyfa0ao/g78MS9cQUf6FJlcyOEa3K/kGH9mKY3r8fHs5ixo2to6LybAJC/DWIfs0WYAPViuIvdJGV+FLMQ3MPVG1Y8wFDQd0E9ubWN4L2NQOZyhQr48OzvhXFX3DQnBjEpDT3YM9lI2RxDUIDkSsf2F7795VLx2r/PkiY61ZSVnk/dPDEWqP4CzblZqUqKkLxx0gk19wDJ/46/oRxZaOuZBUkcpiRegaOreUAPIkMDIkUiv7EH0iYZlUVVCj5ZhV/Stl9w++Z39wDu2dmgVkSXu6hK6VNGezfVadwSEXwQskQEonl2aRy2I+p4q3G5qTxwMiyX2AfOpUnlfp61+1k6qgM873rA4/t7jnuR8met7xFpTb3DCv1pSyn1/zsmeaPQbsme/z1SULANgoqjzCBrx7DeJnCpGOEAl57xJ9NKsG+Z85zLYaQ6IxtoFKyQiKZ7x0+T1X94uJUmrZU1bwrfZr09Tt2Cn4zvzJux8RjG2GHIkZgBZfLVhMTaLMrl/xkSu6Y8anSkRg9tqvWCBWlEJFdFy/ZdQ/rnh1KgBmv4JyyfNTUXy7uNFUXGemg797bcBNT/FV9PMnNScHNrphaMfJ5cTYKaMLZ/IB7mS9GCPHXIPp61QUr/vjADkq5+7yQ4SVljpAYFIL5zgF6aBkcTQeDt01TGfQq/hBw+b6TQ2PeF9FICILMORZaBRO8gZ88wM+qx7u/d/fAPxPP+vr7gwuljJcghgeeZtu8hXv82bJRpSxxGHrsyvjEyouCVQq2ZNV+SOfPoDF2RfEX0fAgFYqPESHBXz+fF9gXKNL3rHuOWcZIJJB8s2XZaEdiowaKWJxWPSVbEQsdRzRnEZ5GSfAa2ZQ2FgDvOevEHOzl5JX6nn7cUURE9IKzjwnav1+8cvzBNUH7pyzobHmRNxqvuutzYfubMSZvsVI4vJQuy3K7WAtNGrjrpqhVThMR0bNnbwo79jwp/kLjEOfflRG6ODWxsU9yBy9uyc1JZvmDe5AahSiopuZkSFTS1103uNMp63huknCI2tBEIJqrgSI7zZuKj2B16wCIv+VqKm7H1GQ5q5iY7X6NjbvC1hram4vR8kdbmcSsUkLjJ3Nv2tprLALHEXHltgbFyjPwOKDi8YcTf4HFFfOCSnMP5vEX8qppNieYz+h8JviF7NhqPjd0bDWKP+cVHJ7Q8cZ10N/ZnG2WOxFUnY2aoAMh/hpEPw+e0HfFlWXxUt/QQCCxDMmoK/TgHqFwMqRPKV1CJvtD4x8P3hYeSDl4CaL1cECCP2cQjSo7Qj2fDvMB8buywDP8Tg8Sgz9m0jsEGmPHEuxO4aBgP6Wy1KzTKX78SnOPLnGIZi87UMxnDw88iZwyJDiDyMiQDPQrGWR78SrxN/fn9lOlRF83wgI4rqhxwR9WHmQXOKDCQWv33dFyjyoRk8GLDbu4Vbgpdyrs9/bVrWBZu2L+hOFlVVXizyqZwHvu4wnbLwnaXSWs0vr5FLeXHBe0P29kY5Rr4R5/rLkHI/7QRhE6y+nkB78Sdswugrs89kFfjz+0uUdEwpq8xW2sEqlT/ogp3/wyY+szGEwOcQW8mw9DUW0mgxExTg2dwbYb3QN1zoHdMzSpYsbzparbhC+4PHtICZQ6DErxpzK6fVPHvmDvocAmhH2aNuHPG2u0FfysO/V8poiRvTEKeHw+PKCXdo5/zJnMLg6bk0rKbMJ5VBo9cG9D3tgtRAxkxicb60bfsyrRHGyPQzVjRHCZcvW5hMvazbFJoVXGixJC/DWIfl2tgnklXqoCejikN3rwZcXDQ/9S3+EM7ilKDteJmZeaAIE4K/EpweAvudQ3patvH+XaKCPlu8wGKs/CM171qCvRCQ2CuKmviujqywMJQxy2VElFgDKkEmxwQiK4AyN7z4gFz7AyJIPLjAeq+OOEa5DizxDFkaW+nscfSiJV/LvAxiRmPiu9Y6Mm8hVfoeCx0Z2jyphnW6C63CVknNJxeIo/80+1lC7cn8rNKWiZTMX4m103vJtfHAbh8Veqahi8/3H/PezYVlHjFjqhyTUTfxXUUYhqcJGlGXm29dxXBe3j9nVlXDHod81Du43yMcJ030bLRs1zVsLjuku8opUHnAzpnANaSueStpZ0BJ5/s7DukBloqa8bW8341G6HJ4KrSknzoVh1kH+9s72PhB28QeLP3J9dennc/rZ0s0WGrA5u1tBPKQl7/LlxHU2EldQhoFA/yzrrizpv9H6Y6dp9VDpYo+pWFan4a3CV4rw0c3vuuQpL1bj3zI+fQpO2pf2ps38XYHOPLHeiFpS07y31RUnHjDIp9Z0TQvw1iH4lq6EZWcUzOmjHzkQSqNdPYHjoT/wNR9qblj1yZIhbnCIydK74w6T/Sqcp/lKIP+VlLweFFGIs+ckdgnmsLd2MXqi5hRK6qK+qefDj2yCGlRcRhXWurJSNMbVieCDBCE/Cs+VOXZFHNGsY3DhUXWiFKP6qwR/c3MPes+riVgd+J7s4zRjRDC5OtTHshxMbhuzlz0uE/2nEYsOamStlFaJJynAAtsTHVJuCZTJmQaayCELCGyM0/Lz1O06or1DCNfaUSHepc4mIbEneXOClTVYhG0rcsU6nmWJkEmxFkNHU0WcTEdG67Iygfcuy7OvTF4JkxR9TSsZaEZgzsM96KEHPCCxYyN1DYIGko46fizv7GxLJLaxR4k+Tojs3HyCijhptph06pzHCFI4j6kvqi9bSoP2bVWt1jr1br4ja2yr+MkeewTYtfgfr0DGi0mU1LvYre0ikCMVfxLPu4gg2RoRaGnHSMor4a5BoZqpenvQNmVd6CHY7wGFqaD/pGzpA8sZuqI2V8p910Fva2Ufgz/pihBB/DaLs47kW7MHCAwm0uUeqKqVPFi8FqDIk+O8DRtJiwy6IqlLuUChWcuFMkgMXt6neiAmZ19IL2EcL9c/4MLxA+GQe9a7Z54VNiKEKqqJKhuCHdqq7jCkGy4DAterx5zoS40Gz8QyJLX9knkaB6Pf9Yu4fL7EOWWD6pb6w8o37xhIL/sInpc7uWUTAbzP13rHh7o8Z/Lz085SEzalZN77UwDP8uvklYYaQiGjuYd9zLIFYeMcOThL1te0I2z2puQdX3xPZZ+bQ9GzgsR1hio4vZi4uqOOh5Up9cYWpeVbPLNeHHTuRkO7b1Re0A8iYCTw8PkWW+lrn0jxnozGqwKrOKai/YLX8MTymqusQG+zvzIjmqbZRDmpqw+XZGSMEsMoBs5jfQCd2/h5oE9RoqS+7bjFwCtOWfcdDxywXM/tEDEY0d8Z10G/XlI366taI58VUiwQrHbWuKLhc2WfoOoc19zBqQ6WDx+aTy61B280HnFUKn4sDx2yvyiW6sZst9e3+G3jdeFk7qvjzG9nY8R199yOJ5sUGIf6aRL+ykEM7g3avdOEBy4v6DYInq13Q/kUDj1C/CWBYAUJKRsgFAnGZCevRUZkQI9QZMUjx+LOBxJEz5KR6JQUdo0+2PBS8Oy1KhhT8PYvp6mvHJ6pkL0PK4bQlFLoBBKjg8juUmUAivEzGlD+2YDP01KTKw2VnYfQv7V+vEK4hn6upushCgz/nbVhVGYTu78rR2OI2+NjOlJsfO7zEh6nQ0RJCX/FnuyDipKO55kPrJNjH40+hHYmZKXd4WbunDAG9fVJV00nqDH7PiOx9aweXd9cp/kJLfZkBvXLXrwCfN60yGpvd5/4+vT/g2ANqWND7wWH7c+UaSID5pb6wF1TF+gIs9TXji6/Aiuj8bZtdATFVraIGVfypjF7yxJM7x6YS8BNnCUTCxoiqvzM+pzRZ6mvGsdhRypAhnXL+NMUfmhyoJOFycFzvEXbEJcI6fpZmPgx9xztHJjJlo+ZZDzu0tQyhvJI4DU1MbMtO6HdS846K3y5PTQQQ/L0l9VhFGU9MVD4HtnDgpGXwTet+SDWhE+QHzpoQZpmyFTqj08l5+DhyVuEjCNvF0C/ja4dlnLk8FlX89WPx/238o0H7+0bsg0AwudFXJTD/AQLPRsV9ABvgMrfQCPE9I+IL8xxXGSQ290A8OnqObZ+XQZeGx9+LRr08grOfadfNKUTdIiv0Pup2muLPfkXlDMWJwgLX3rIFsDNcvy5hwQSWIdhZ6SbaIMND6D3foDuB50PlKayxSCDRXPrXLbJco6dEGg3+WKlvsC9jlcAqVSR5VzHGjpgPlYK7yile6psPOePsZ+ptYxJM8acqnkjYdfM7nSpUudaDIZT6av/cUZKbE1imuUeo0tEpiRTvmhmhqMlLFi8GJVXS4qS+pb5gcoBb1AQriu319RR/sAE9qvfj1y02qcLmpIhOp+aM80zBzyrv9n7KMcuIiGiCZoPJEFs5kLkzDq/Q8VWakc96A1A9ZAq4v7lGWQaX+joVlKfkRgl2poIKVQv6lQMIEdP9gO5J4P7MBVtjccuQYMUfT0axuDM04XFAxfk5DgKc3M/Ac+9t7Gb3Dju4/7yBDfEMadk578iKiZ5jByS7tfuqnRhm+PZjowYh/hpE2Q3YCm9RjRrQdwIoE0iEDW4LsblHeADWXHOPotTBi6I6KJYJU+SUIbdv3BO2P8vKwBL45FLoFMVfWgC1EDGMJKB5pHuvW+B1TPBaqYxDWYLiLyIA84k/lJDQ7D3rfA62QHQEVsuWyYQidWw137Ek1p2WMJ8Xk5BBVXe9hKm5fmGZV9MFuuIrFEzc+QudOEVNp7mHIQ0DFQ7d8uzCJuHQMj5HZmTgs5oMrySsRMkQ7RYbTtkbuqivJ5pDF3l9ib+Aww8qCecrJdHSzUpX31DbDav489U84HXLXKlv5wMC3tNk4q9+//DmHuZ542NE4HXrfj3tkdzh1Qw8/kKJGI8oBhOvPKnikgMRij/FVVBgUoUyyrrrjuPU/mC+tXps0PrCGyPMv6HzZLMef2mVKpVEGFjqyysmiJzSFG6iE+En7pdewh1iuZcmWOpb8lLfCD9LroDPFI+fQp+35gUBneuGJX3Lnntmxgg06Rv3nmbE4wgw+WnnYk9hGnDsUmt7nIw9650PFNVfHYT4axJ9/COKQPPWSuCKLjYSg79+nbpSEPxJfbLa/TwTQ3FHAPlWpC42uJw6c4FncMkFW6SVXRP84HuZ3NU3gfjr8XAYDFLuROq5pMwpisIyaYbUTc04d4I/UBXM36cYxR+T71cVfwHH7ykNN8EfWrbgBzGYmocyBRM5/RI3y2kq8NhOIVHxeQk4d0Ng9Sj+wLIqX/EXUvLKy1Fy1t0WXVjbbC+Y6efBI0p4+mbmMKHAO3ai6tRU9CG5Q68bb2TjrltoWXt9qW840Vy/Xa7nrnrQOrWrb5UwRX2srMIh58q1CFUKRZTxWVIgryQHkGPH4rHHLevzuaFjs1HzcKI5dGytV/zB3dqzjNrd8911cCZoX0dye3MSWtauWKd4YIxwZAgne0HFn8oo23G/+3uwMrc6xiDwYxjXiXk4dgBJSFjnVLzqKLOVXbGKP0eGYEk8yvDnrZesxd6zSqkvrCL3xggbgwQe2vinqmqpb3jCo7nnzSXhqsq1oLhV++MTGvv5cQQWc7vxSTGyFiS5/aRKyBqJqonXyhjVqE3AwoUQfw3CZH19n7zv37EpaH+3qM+IVDerkljqG4pGPf76BCupCoste+demJel8+2IQsWc2gUCoUlUe39VxuTQoeVFacRoCnE4b12gG83oJJQZKx2UbTcT35LxVuXvp0zeG3gkE/zlNpAIb3iQ5vHHVXcKJP787KXzgsICCUtgRXrdKdViAVgoGVJ/jJflN4cdu/tvj+IvqOzBWyyARExvqW94KR4/v4w394BJoGrWF+7qS7i6tWSlup0d4wjTUmWsPBtb4MXCL0FMaTqQ2esWtm/Rh/gLLy+q365VTs+5K8/0R8EjmkuYRGILJaP4iylHI/eehXuQunu25xA2L6fOmCetHO/zueDYGtH5u//iNJSsNcqQjO7ctDfsmPbQXvmjVfyFKmKcEglVsBO5a8SbooTGP4YM0aSIjnuc/Xs5O/d71v2EzjlElUgbFXlVPYYqJRuBnU9xlCwxkbFS3+CEUE9ZOzYf8rncxX6hRLEXf8GqO5aEAz3+uOIvr6hbsXWOJr8z7nCaP6bBrekVW1sH+Tt7TXRwmxcztsaV5JvjVDoxg0mRGO/WTqmvWeeoij2OKP7qIcRfg3DBX3VRvXHXwaD9ua8Q2iUsuTEBK3uY1RFlgCmYp1LfkDGiSF1s8MUCSmYQETF1hl00hNZrJHj0ESVK4BOVa8moYVbDg+75mTxC/HW4spab/R43vTHoGI7AUnZxGhxIV7r64veNH5sr/oIIaO95wTvE1pcOBHf15U1RwO7byaV0yo2tPGMdNEDZOaHzK2yy7PnFIcmFgn1vleOdK3uM+62KClO1xCn+vMREpH8XJ7lDF3hb99UnnPLQtuF9CKzQRA0v9cUVf54yxLyniR5/IaWfnYV1/NjsxlY/ORBR2pRhZZ829jN+lub6BVZ7uFLfjPZNYfN6cnOPPs9G+NjKy/jA91TXP2/h/s7uPUXXhGOT24iI6AS9w35G9+CBh3ZkrRmXEeIvYwtr1LPWkpYqJ3XSk+3f0XLbShldIEpPKQkrkhPj1hSY771WnwzvqzWLdivNPULXaN1/7RiBxvuMRALH9dIjkRwRgx8765b6hjeV00SMyEETWdYXW/k+eWBCpwE4rzrXpIIolADzqz26z1uk6s5532KKv4zHzGBpeEzSV5NbkytVTZbP19pt1CHEX4Mwir+2dxtCl9iVdu1msYEaoUdCMc+Q18y+LemzYDTY1bfUqR5/LPhjHn+h95x3fRq2x19KAGZILl/xt18vTTqnJpHaTCaIx+lRQWHgqmA0+Cu4qjeC+KuWNmGZVz/j7EhPPPAk4gQWlv2s+JUE++OkPRfm2CVVO7uFefx5ij/T4QztTtvjexZAUnPij2Xq4S6GXnlRKBHDiRxXZozNh44EMgquUIUDK/UFu8q1i9Tg1L9nmDqDlz/CyQHPrkSDHoH95uyQ55UrQ2JgYxi/RDpwYe3UPK5kNby5R73iDy5HU450DMY8ef2iSknFy7KCF/W8YoLgGIiTjqgJ/LJdvsoeVGBVkgN40tdetxyfk7gXJ1ffB1tn2OYeMSWvZmy1n9b5PdjPssHFe/fYa/Up8K6lrhKmrrlH4KF73lPsWXcxDPP4C1Zi1zf3QCsm+LPeCp6LqyS3vWLBz7qby1VUqW+TcOMTao/jFH/Vao9wQYwhW+NKy7nPHqHxeunGRiKehAsRR7ijcdIxdP/FCCH+GoQujMFz9TZkgZn+SqMHcGBPJYG40fH95en8P0R/5glqT9ix+wxE6ZnBgHK2MnGxYSdE54MAlXswxZ8dJIM9/tJKfZOI1XloBtP94MDNUiaAPuecSvwFnHvPZA4fpFeJFD5GmJKJyHvGnnWVKds4AQlibLAMLpSUR2CZqa4MXSAyIidDveq6Y2vhd2sPhBlfNHneiEHkm9/ZDWtyUSE8iakOgkyW3X2NKfV1ir9uxllhRExVUYP5WfrWFfb6BSvXHOmYGY8/paGy9mj4zT0sCYWpW0m1ItStXom0eV9Rotk/p2F4/Nnv6CkkAhuk1Xf1DZtj/WoP+56FLurNc5nlsJl5emKifv/QMMQSpjmvegCJP2+MUGDZaJbxbu1hz/q+Y3+GiIgmqZOsRP0sKyX1puEB8O7b66YUTphahWnVAwsmmrOcVh9aR0RET9n+vbA9tfkET92KXrcmYBLWEXO5ZpFTXHOP7j++Khhu1sDGiFDFX2Jzjzr7iNDjc3FFzpp7hKtbXcxcUfyFqqkbVfyZe6YqBFZQjNCj+APHJ6/iwjaeCr7nXWS4yMAkk+w8CCQHeKmv6qmSGQWyd/gQ4q9B2AWiV+oLfEDn3yxjnZOwhU4szOBaUFb1+RvCi9Z3AhiCAqtMXmx0oarZKBWoqOKEhpP+YyqDWNQt5s5WYX6Uvg/VoNBkQufEjT9I2j9sLjcBGEVduowHElaJFPb8lh4ZgoMr/hT0vPY8L7FlC57iD+/qm/f8bc5DW5I77rpVu/qycg+oG3I38LJjDJqp931iAggsdm2zCtEcq/gzi43Q8Y0FviChUPYNmjGiuZOpZ+rWoIVO0CH6wy/PBsk3p+bJOo0qKPyelZ5yzRBg4dctTUWetEjzym1R1Z1iZIh9z4KJmHb12N1/C5DA6sQNjMgJTF6moO+9BZVImcKTA/74hDf3MD/kNuZ6mnowaF9zjM15V/0FlhlzT8gM9D3rnkFnnyyHVb2VhFBFfY9dd6UUPXHvlURENFFMYseO9fhrMMhTbC5GwRMTmVJM8Rc6H5rkY9x1s1UPmeqoRIFju7jTn4tDj82ScK1W798Pg5KVSMd0sNZMhd7KXfxWBDZ/rL9Gw3kGK8o1UJnLPY6JeDIOJIoj7rnW2gqWMiZqCX/Wq4o/AuJ1TUyMk3G1Yee/CnohxF+TKPsp/sJ2d4t65isU2twjNevLFFyVV2sYDHufQTC11DdkiEguL+IqKMKDP05IoD4vqcRfXfnVjyb+InDv+VL8haFdc8tODFSY9sPE1I6k/aFSX5VFzmG8ZBVblFcMwaMOXSXfnHl+yHNoyl27AQRYNsozzp1Pw4JHrubBFX9pz3rGvjua9fUNnuEGGz2Kv3ClAF9EVsqLIo37UQ8tnulHn5fe7rRGKYl2FK4qsEIW1kUq88e+d+Vf8FnPKmXtoLrCK1kNVc0FNwGp2zNxLnbPlTl383dwjFCKTHO18C7Q1eRACS+szbtSLfUNSyalJgDrzxFVIlGWkzaLW1QV3KPMBRV/StFZs2uIiGhcgVYC9v0GVVA1Hn9RXX0Vs96IUEFViL9gspbcsUH4diVW+RdM/DXYlMFvcgHuyq+bbe4R7N1afdbt9YNL6vnzhpFnfiIM9bNUvuIv0ObFXCPuA4p7aarK81qEqvfDjjIvsEk4VSWwwuxxvNgvek6pjq0hiSJelVFp7gESxT0+oAHPq9bunVKEK0wXI4T4axBW8ed1zHzZE48P/YDOP9zjL3RgD5Q990XFE2m4NfX9iIPUACFM8Ze42CA3KTlVSvhkY8i3jscfqvhLLfVN6epryIzqkJMsqw983tqpz3vtsVOJ5iDmr7tt3JXigQTcbMHz74JRCWJYqUqQ4s8vWTXBDBZI2MDPnENo+aM2C8Qczl4OypfxrNXLq2ULIefe07AAVWBVj4EoJfmckmW8jA8k7rwFIky+Ea4kop6FDphU4dc9x0rpkr2H/IW1bYqCdRtVWc7KHzElUekdW4X65PVV78+9b6r63ipzvTEiNIRxY6sje8Obe1STvrja0JBnVU+jkFOfL6+r4O62prNuxQ4gbmxFSW6n0szopNmwagV3bHOOyn5G5z+A9yyiARC3mMlyvrAOfFh5vF4p9UWbe+DVSb1kbeQ9awIJFjVal4zAcirN8LL2fupWjDhUyo0RoaXlvjAE9vhj71mlsVuQ4o8lEBnJHdyQ0jayYQQ5EbWLBgnkYDg1dMVXG7Jw8KoWgpPl9cRfyPPKSdWKkhs+djX+CimH4FuoLLNdpHv/q8BAiL8m0Ufxt2IibHLlnWzIBhJhg1tya3PmfTHsTq19PZ+GUmb8/7P359G3JddZILjPuS8HSTlIsi1ZsizJRvKELduobPCIMZjupuyyKeguGtoMTXeVKbuAWlR3LdG1WKuqyyXWYhWrqaJwFd0UdEODAYOhGoyNwAODkQ2e8CgPsgZb1ixlKlOZL9/7ndN/3BMROyJ2nPi+Hff3u5n57l4r8/7evTdOnHtOnB17f/vbe485G1mB5+09D+NP5gPFxhFpG3moIQE3CDBkiYZnLmc16gZlmGFKMP5Wp6rWxaVTJ0HU+CvS+GjJDYmYMkw1qSiNGEzKeiV0l1b1nM2kETPK+HvBreN8X/+FnyqTpPpCUHOPIkUnRbw5xl9sVkA4G3mNv4Nabxybp+4o7Ij0symrJehI1gjU7K9ZOcfIPruAKUhNqSL1HOgZncE5BRDRldsqKA4z/gZ06LqueOfj3bm9aaMJwEogENpoKwcdI7uCBJorZgjkIF4P4w8lrqZUX9VFGl4vhY6IjD8+zXidOP3cDEyQ6bLrdIgBHVQ3Xqm09nme6P0sZ/zp8hGkY+4wBao6oGF6FuQ+g4Tf7bG/9LM4Zam+mJRA8zKxa13tSTGAyIGGiQE/kOp74IC/TJGoepZ4vV51z6ZJ2U/Yb3/BfeeDRayO5yJgwLrYi+kapBXQHAL1nO0nhwK0BGStbBg88JoHsqaC8Xc+3fFslgvwd0Yp29xH8aQOkIy/8Xp4Def2gz8/dFxm7lKeC11908abnAWY+i+6ELsyXOFaToOpvnD6liGFIfH8EL/TOckKOmlhQ3TOo6O+N9zcI9YFCoZrTPFhatWF9BiOrRjuzVQaEmTDg2Phfs5glzVnQbGSCtDPWW0gLOJdpHvMg8YfoWP0tZ0zhikJ3EUdwTnWOuU1Nqlw1AU6DnSmqsypdpg+7v7QUeAvv2dcSn2Z1s49Z2VwIKVIo9fNr0PHa9XlXX0lOuZgIEyxFGI9JtApL7tIx2ccZaYrtmHO4OLSsnzSOEeYYZrW2yGUFGCfs9jcI4AKHMh93BdI/RwAhZKVwqY4q/UC19tVdud0cKTSFevtKoIhHODqYfyFx6QETOluyOeQaId4hirm2pwydFgfrdRPdKrvfEjNrtxZC5z9lGpC5qmXyF6XgVzqOYXZ1NV+yI1/+IFz+ii2foIAsIJZm4K+6OrNwbeFeE71tT047K/qOYtMbobpGFjk2YfY/PeYPJ+88OeeFM5tELxLWDBEFLsCpXIPpxclgz+b8WO/NnZcaO7rYfxBhbFXoiuXIXpDFJcRFYzmxPi7qa6+I4y/0U6CzeOeteMbvhmXMoEwjmb8+QC4zZA48J22WunZ+NTb9Zlz5xYCqkvdSINvuYO4EobEcZ5w7gcedBy8brGr73Q0YqgOZ4WDx6bbppQLR40/zXBQDQ/4Gn9FyuqKdkpNayY0u3J3p2UZoioIl3divgnGXw5gpVRfFuS+ldYLnEJYPKcky7PtlADrbThroWRIkOnd2knb1huelp4zc1cSrM1So8hmMvA5tuYerPEXWS2Hg0yHUBuRBYpLVgrHHtON1WAp2fcTec9UEx228dGypOt2ZBQPMP5EOfV0MxnPnpbvSTyz9nwpmuH+eIJ4Wc3bKXkNeFffkpHMMeAT8JdsP5Z9v5R7sQNEyjrrQtke6n7rDtaj1210v7gBybL4dADRodfpTsxZUOR4Nse5++Ozxm4ZW5FbL6WOwALOObM211EX4M+SC/B3RinTstIHoGKPIJLcOOOvVfvizt1BJwaZusX4G3zIoRp/qtaKRybNyAl1N2SBmdE6Ws7Wt2lF5FEfbwYd8L1JAu3+uSSt64MAGnvXFrruOn3Rse50gWcRtg5o3nmSFzuCuACslhi9DEAC3aGsNGK4VLxDLAKv09EwWQdTpPP0bMX4wyr3H1+KVF+c8acMz+1sjgfE6zLGcRO53hpgLVvUW6ez0XNH5poP+DvW2yVTL4eBv/CH89xVw4OJvWdLDjoGXfHYx29jczdr/N0E8FfaX5yjpGuu8Yy/BuiIpl6uWkdwjs5o0Le1D9Ep0pNIWLPsc+pt2hTv9OxP9U0H8z1nIql79iwrxFzVtaUPc6o7SzP+Ykp+OC7K0lRpxqSU4GKqG8sBpmeR6Od4gOJ03vM8x2Og/kOZ/siz7sJzNikmNwo0h3tTpNST++E0zTKrrr4Y8KdTfRNo6Qa5ST/p/Y8/DX3vOiSWf5rzdFnkus13nxIRkWfmB4/HIuunZvXnRaWWQ3UZddA3lZ9Ag+W6a/g2EJ5b39dJr5fjh9D895pcgL8zSunopA/IaLmnuccg8DepDVEDlx/82FNDx4XkuopTI99ZVio1tzVJ3mlLYjpkT5KCPFBREep7nbk9Mtwo4ozS9A/IDbEe35+7qnVHSgYiHdg0vsF7Vmzm4ThIynlZJy+myTgYWCJCs3myaDnb8KBVBgGUGrTEI9YloMB289NNA47HCdetP3ZpGOx4qm/B5mEDGypVODJq6FTfHDDFnfrUdEkbnojBPgxgNTtYc6mXMt+iHcRSr//0ez4mIiIffQJ0ngYM85M1RSmYknBzD8XOiF2w2Q7UTsafaB2ha0ERwQG3DDP+NqB5PiQmN+zU5zqCBcB03TNWO5fBKJ4VvJ37VsJB5HgtkHt2ta4SDQZd449kQaXU8sAKJnXzQKrvUugnaK0Kvnddh6Qafx7GX3qWp3mW++WOiIh87eGt2AGKdcUCWGm9JB3Bsu8VdJm93x8f9hRdX1BkAbKO6gAid+5xX4gBZw4wvQnySluC3bnZzIEoARlgoVnoEWhdncFyKYK+yHVbyuYesVs7NHXl5zAZOmsBOmaBsEuNP1Oee17480iahfs99ZgOvki9WxrO7Xj9GGDqa6LvQgXsT+ikTSQrJfuuiljD17y16ZKpAy4ZqJWyf9zzRXQQQ2Tv1kBsoCU94x7jU6cXhZRVmLFadtZlJfpoBeMPSjnPHTw2NSuVQShSN8n0R1FNKlgwZLQ2YmjYFGZF9F4JKLDp3cnJygEJmvGn2GO445Yb7CwDS6d3p+L56D0r0tGis0Gmbk5TnuoLpWffweZoH+D4GiP1HCChUy/ZGn8BqArr7QNP3t3Gkylh8PvqG6dK9ZVivZGNIibNCiabe4Q5Wec06YhZsaEdAL1DTsX4O3ZD5lJeq/TsCGBxzLWjY8oy/goWFMlItrr6HiaM8bcu6dwPOpUOBmIKZi5dL24DTD2Mv+q6hecM1E/ndN4HAq/an5inSb7x1lt8cxd1itF7njWcYgM6Rb24BLBzOres8Ydle+gDzBLXDZkJl9JGw/jxGuXXLYlZW4KWeHmcIFPc18jARCzzggOH61XObk3EPXbuyHncDkwy/mRysZLvNbkAf2eU5CDmwtZjOhqeR5T/ABvsg4qswfgbPi4i18T4w6YebJChnTTN+AN1VWIi3VJgBtkRr3wbGz20+QVn47nI+GsLsCHufAdimDaCA//s6vOA0TqKpxlYLAvKEeUXqej7qQMjYkjkDTJYkDyBsmW9EpaVoq8bKINMyeichssV6zEhTVEKRgzZ0EV3HRfhnNuyKHesKwQ7pzbjj03xGVnrZa06uibkdMiAP0g3D6b6luzWsOYnFAzZxs/THNcLDpjaQAxqh7TXFREUccpUgkhk6mf2nE5cqm9dX9DL+CsCr8izcqIU6eptMI0v64bM1oRsgdwwoznMfaDvd1iSifEXxvMs9IwFBdyzK9XcY3ak+pYsKLY+dM1CJ6SRUo+CjkNN5QYl6HVfjT/N+DvIS+QJanzZpIIOTMRUX12uBNPry1UDrEXZ0KoW+TzPsZkMk7WwHUD5SawdkGea4Gv9fDIVep2p66jhLxGh2dR10Jdg/Kk5jnqdDOiUQd8J/915E52yq+/5iCHPZnk+eeHPPSmjKvF98kGdUwdFuEvYiaLln/uql2SP9lBUBZ36jA8zYqRB4nBORVKDDV0zZDzV9wZSLgpmyE3Ltcw7UONvEnAdV5Gwo1yBqlvX7+Kd+qLhAS1FykUwxJDrVjL+FEiOSFXEnWVBKcM1go6kk+Vfc7mTFa4EROwtAIWJAO5EdGChiPpCa13NoYos00xJJ0tTM7h4JtEGNMdzJlMIwznOec01qKbRiZtULCRoqZt7sMyQUq9fba94OYzG9UGYaye6bhXDlGX8zQnshRl/VXMPjvEXnmddiuB4HGToIGDauGdI5oFujjY5UhDrVF9OR6T6gqkOFSprUffMO/fR9kt1zzDHepXDVAOmcOrmktedDUAW+gxpkgEtTZAb3YvP2JQhBqwde3lOXePtgcI/ZEsRBG2wqgYbNOMvAlBcYEJ3sJ5nne2BBC/L5h54wPh4gBLkDmudBcDOIYXtNxHPaazPvP072EBk4DXYzBToWHSwjnsSOXfVoIzyFSRj34dPL1LLBfg7o0QFVzjWqPGo2Rl8Ue7TMP7Kc0fSFkblusBFSEddjc2dszMCiwm/ZpljTjp4zR9IUuhd0mhkMwrHnRMEHq3xxzlpk/z95SvUWOzKRRtAO6ck8Oev8VewxxgwZckNbrZWXcuQwFkGiVk7k85Oau7hW92pq2/eWRcCBcpUX7rGX8OxRtb6lsYT6tJMJNuwXi9sYMPPbl0iWLvNGQuKs0GRQwbEIAb7MrintMAQ1I7Q5SPingSD3PlaTQXsSYZpeVxk7hPVqqvS2aC5V8X4m2Rla0pGwNTLwAps6kN22sj040xJP0tTN6mYD4cYjEJZc3GOEpAgU31XVYAelareLllnL+sUn3U6RXSEdqwV449mSpZOPfecelJ9Rdkwem4UMD2cFfjzB/FK5hoP/OU+FpuymrpA88SQ8ncHAAouGaLSRmfVoMzT3CPWG2az2QrGHxrEe8f6ydD3rkNSYKKwmREpMyaIVF09d1kXG7L9NLt1muO1Z0s4KI8Fnjt/zqYc+LvU+DPlAvydUcJzWoEhMJixbcaiUwfAsYPRct216aZTffUUP7d86umOCxmuo4okXDed6otfs6yrL+kYt4y8G7lnjZSJ0U7MqFzHPMhz2sLBH5KnsFpLSzJifnT9zPg2Dvyl5zSAQAfYqS86AZKiC6mLcM5GWReITbfVHRRF1G8ga/xN8xxTJvDGSTZLE5WynlJcJYQRFBl/JINL1w4LZ4POvcQ6UtvImJ7NsQziPZ/K93snkAJpsWsm2WxhKQ1PRxqfNjyxVJWxGn+1wR4Ka3NrfT74gwORVUECf017BVrrp2JKlqwWlMkdGFiHxK4gU8trp54EYgrmGlQHdLirb8uOAACsZYlsUF+qbwH8kWBtcqwPfNSxDHbTzT02vS6TzIc0+RUC/DXSH9HARNnp1As0e/a00s/hg3DnTPU9iq/GXw5I0BZoaUeQDcqibs0alJGMv/i7uZR6UXbnEfjb7jkQ5MprBasmiLAdkAd0EuMPW0f/evksbJ5rkClu5bnth+1J+XpJ141lOpb7IbCnFGAtHagvbBiqlEHBrM1iE5dUX1MuwN8ZpTSa4/t0c4+EsONO1pjxlwyJnA1zslTYHQlMhrdc/Qb5mLzgZMeFMi+HAVOt4NI9Q+0pnZbFNvdof49ltfBSds18foif8ffw9BR02QNgusrsAi9TJ8HUeZLvTutl/IWTKNJGsZzV4/9jymowXEkmUQS+OKNZs1LS3KAsY4y/Mq0q1ahBDLDc6OWNv5Gob2BpbnMe2PqCOQM+lcDgAmHrxAMKJWDKOtZlN+RQ0wgCmk+WslpE+klmyDH1ko3U200D0Bp/rXWJzI6mbjWlleoLMrnTdZtSPSXS0Yl7OJvWrp5T7ehAy3WQQdVkaUL6qUjLIp36pL/Le4akEObF86sSO8gBRD1fXt06zxnjb4UaHpTpj5x+Ktc61TRA0t7Hst+Pk5QBRC5T5XBG4G+kXm/mCyl7nzjC9loy4LHrlhjJsxwOXEBniXZEDjqy2UHHpnI6tbxfzzbPGlOpvqhvWdX44xim55QYhHMA9M2O5/BeruwANQoK6GT3Rt8zbOpSh46AjvM0pW7Il1RfUy7A3xkl1VHIbwOdljU7ajic0GjOGH+DaUvQ1BUt+FTH7X9ntK6Q3WyBYPzFDVUxBmFDfjTFZwD4u6Z7Bke8B+Zt1umDChXvfIZMXjBDWEmGxCFGEeHgwNVYXcbE+EvviOynP0cpUn11Ixxsbs2IUQAW+Ns14y92iEXrljUasqAyZ8EBdVjkOS9YTBO5L7S7+kJRkeyfdGfdeBKOqK/+XlbTCB2br/UI9rKOTgHWQoGwEwNYLONPs6DYPWkt2BWh9uhwV1+yqLdPCmYI4dwuq9Yxs8h0rNmGpkiXqeU8408xknVqOVuL0yUtxl9/7itlH85zSvX1NvdI+qk/dFlXxabmdfNaPGd8MCmMd6T6DjY8kMjez4NwbPMiX6pvMUfcijG79ZzA3xR1BC+jqb51c494YGi8zriYJnIvrhjJJLtVBZMmxfjDgjU5UzLBFGTmQAmePZfSPiPjD39O0+/eXtxBX972q9JtB0vzMGzqqra0KL/hwvgz5QL8nVNa9SMcij0W5YaBkDTHB9ZHoTHZ3E3n9PoftDDHqdljGCAxCJ7plAlHqq/u6kvXwGpE5HHjb+DeXtM9O68gDmL7OxCWEpghg6p6mie64UGL1QvLmhwdEb0ZI4yaHIBiU1Wq1CS2uUfsoHgr72RIGEF+xl/unCbjDxhcFKCfyDRlbbCLJDAEMZpLxh+t38paUE5Wy7G5h8/RWYtzR+sKRQfRWY9pRMquvizjLwUQEyuYzRwI9+oLX/1SEbmhrr7DzLX83CciOLCKZvzNiVkM78VljT8S+MsCGzrVty8ny1oojwsVgVfA30EBWDC4X9idDCN5TVdqmmY+03eU8aeAnFCKQAS7H3naqE71ZQMbvvTHsa6++XPGAjF42YDrkOKeMyMLFhRtPZcAVnh1NZPx1dsta/yxae2JYUqUUdD2U8ZuJdd6Wc+SvW5nkLLG30LZEdszWugnFDBNNnN53QC9fpXrJ9Zel2w/k6TXIaajvjbTseYu4Wvci3IB/s4oLRbUBz/2FDReF1ANt5J1dH55ebn83mf+b9CYfO7jw1ZGToc77SEyUHB397DAd1q/7/EVTDlekwEVzp9p7pHV+GObezQ3fY7V4pKqhtZzX5DrsQf8UUBzcdk+c353f6yUzDWyAdDwc5Y7C5QBVsxNM9fitS3TZJC5UwdFmSdVP1Uw4G+U8Rd/4+acEd2Q4zlEA4prOlAHdJjIa86aC+sNBoF0qq4+B0eKj5u5FuvjsKlNYb3kIDeUojPsaOTBgQhkgSyBsN4Ok0NHFB2sf/2rXiIiIo8+iAYLWiBSf+R4qm++1inndJWiVh3LXCvYFbRTH/R6fp2hsh+DzlATPEC606rvZN1p3cEBHDA9grWKucay6Js1/sjA6XTIuuNC6zj7js728DFqmK6ZxxkDyO0JAuY6gk9rP59MAwHr7FmcJr5WcrnWyRRpDdZG9j2cUl8Cns71UgBYUFffYk/xMv/DHp663Pt906fv9FOUTyEl8BfvPWa2ZmNi2Q66IUvBgAcYtyXrTkgiUgKai98NBQDzuecpWRXPKZbnDcoF+DujtFJ9//K/eDs0PqNy0+loox07UxTvppt7XBd7DDr3hiL5O1dfCc2R1dBSRu8E/hbNRGKdhbMqwXIzP5lc/3p79fx+99x7fhjEzpB8Mw7yqumDwOjckJhpMCRnCbCSF6BXhj+xmZdADM/4y40YyFFSemCeb+UOIjQ+gNze7TVn3UVDDgGRCuYae8/r64Y7mEvxjE8kYFo6OpPT4BcPgFXVRmSBvy0QVoDcN9HlXornLBWBR54zpSPmAx+pLxsAhQZCg119Ee043p3WBnuhpk1q7mmaU3dacK3WQV+O8ZfXY9L6CRg6eN3e/v6PNU4JuWd5qu9Ep/rmgGn67dhaP0xprd9an0kfEsGoOPfMgSFZwyi1n2NgiHZu52Qvwo51qJ9aAjHYeN3BmpV0il526zllgPFXpD+OMv7Y5h5ZKSgSYK/SjIk9RSTp1iprgWC3xgAiDZiGF5651pIPP/lM/0uGLMsq//0//QX5wV/q2+tv/8ATUT+VzT2gbsjRV9jeINNtq/rOTG3pwNJcw15Ksg1LVjCT6luk1M+K8XcjeMRzUC7A3zmloQRRBljciqb5mDYRBDLA/BuaiMiXfOTvi4jISz7+juK4N8n4O60g+8IoyyBzrFVDFri5xxqAv1ni44te88bvQzfEoeYecj1gLT6/f97/733/jfk+AobsgVzQprQkB9HDDErGn66nRAYHPOk9xwNsc/MAVlknb47PCsceq7vTIroxRXenKS/EDnrWIuJf63NhgC2Eo1TVoSK7jZbGXzQCiVoryWBX1w3RUY3aPHSqr6d+asUy8LJ5ynTb6w+2pLSqcL3x3543qUgpq3Sqr2y1w0gHc2RPGWf8lemPOKNmLYC/lFqOAn950DeyUsh0tDL1EmGRo+nrvblLQRjJeY0/nvFX1u9intMSrH30rnLGr/qOfdJv+dx0wyll+4lgNvOSNfeY1b5G6jevfloVu5WVaEcUuvU5wfgbCVgfx4ZGT/QxqnqW3D2LjWw0A4vW60UAELZBczsk1H6FGtmUvmlkj6G6NQe5k173+6bOEtvy9378V+W/fcvPy+/9f/5Q97v/6d/6iTTfnLPQkfrsdXMPEnyL9cCLH0vYnbGnBl3rN6yX7YUI+ub79STTlNbOsI3wPJUL8HdGSbXq8tuAA38pqjKRrJR1sPNkkNe//3uyDe0mHrTKADvZcYHvnKg+zrHgLlsHQRn8h0PcEOEUwMGaSGiagDn1dTX3AORH3vnhobodTRYtmBLm+Sx+R5LB7jE+w3qbVR3Qgywg6Fh242Pnzg3XlHKB/PA8bZQ9h/icVUAOF0Gc5kPm7EDPfxG9ZCUxuUuGRP+6TWWTitBtFHx2M1aKJJMRArlL8CwLRhHpbDFi7WX8TYrxRzo6BbuC7dIa04titJwAPL2y2tcNqsu4isRzd5QDiOutSC2nGVzY2/l3hrshlyBSPHB3qN5zJ53q66y5JoLfMxHFqJnylFUoODQcvBzYD1WQcZpTV9+ZrUdZgiEQeKaZ3HN+rwDPvip9JGW2RQABAABJREFUQQcH8qBvYMdAbJ6lAP7oVN8GGAI+Q4nx50j1jfe8ZLeibKDzs3ZSl1BizGCWS8JxcvCNvW7TNMuB3Q9VwFm2kccPwOdUzS2S1hvEbi0Dp2xaeml3RsafX++hGVmlvONDH4e/+9iTt+PfJfiGlcfJdSPboCwZe0G3hnuHBBDzLJc5drlH5w7fywOImCGg2dB5jb8bybh4DsoF+DujtLo28RHEKWelEHWo/Olo6ljZcW/gQbumenFXBBjil+RsrCoqcgC6pS3LGlOoJtUZ7uoKrD/R2jjvYJvTCDujlZ59E4V0f9e3/atrOe5ojT9ISgCLFA3k6ALPTA0td6pvg5WCRF7DpS0BLJrxV7IMCCNGJKSZqMAGVeNvjPFXpvoyrLua8Uc6C4XRDRXu32P8MezYkm1InruIZvyhLIFirYful2SNmrKRzc1EnIvrRrBbNeNvnnU3vhW752X3RxaQaIJIHOvOI6WDSF23JdcRa9CtDpBaROi6Z2UTnnheEGA6tic1wQMy1VdUijSdglixWvqSMf7mOZ+TcTCjY00CEg0m93KFgyFxfPzd3Hqru/qi5x7sCM+elrNbE4D17GfjhN/99V/4KnpsCiYdr9knyUfJAzSC5XTTprQfztMK+odhLw8H41LLU/mIcM/xVN+qhjvJrC2zHs7Z6IF7WlRgoqo7i9+z0nbDsz22780BfMMzdKrzY4MiUbeGd4hAvVnjL4CXz34dcw65AH/nlKqA6lHg+jgxgnjInWuCXXHyBhk3CPytMp38/HsyCuRoluZV2JdllafvYBHraWOfHeaDivqi52R/b/4XfwYaPdbV1waaR+/eqBMzJgDwN3h+a5Gi45V5PkRjYpYVbCxSsHlYyepQaWcDGZwbzXNsUgFPLtvk2dwQm0c7iIe8uQfGzrCZ3KgkwLRsFAF59dnc0eB3NtiggJw1Z5FnheCp2oqT+j84Vn3vmOp7nPsW+ruDQxLWW8D/SMc4LjOKrTi4p5SODuGkZTX+pgT8zbKCWEgCW/U50AA9/L6ee9SoD+Pztc6ygjVgOgOF0EWUY+1M42sHVYDrNugMtRjwCBC7lAAWW4O0ZGkyQZErfc8O8vHDI/rT/uRrvl68XX2rND5HHSvW9muy72GgOUztSfUtwVoWiDmfjReu74seuC97/5m7128HpPTHIjjAgm/THBlY6PiSAc/sKce58z0ppvpCwfIia4Gcu1kbcYTxdxNuZsZILpo2MdlF6WE9vrBMSSn3JIglkI/xluYp7hlFYlrTelnTh+D895ZcgL8zilauT69pY8FTfYPxN9HAX0WnPpUMppNCUyj22E23Xtf1vzyiWZp3g6KSVf7uj/5qd+zVmhh/cphJ57K98U0f/AVo/JABdk11Gc8pbBF4lzRYwajM2nhU9bsgPDI+Z55OfgrkLlMHmFp1pSEBIn8hLX0qjGamSYVIKECvUumA+zmNptTHyGvp3BLd1SKAxTnWZX3BZEXiEecwJnc2EOAvdxZS1Lg/tBzPMuAjYBrnDswYztmYCkYNBPyPKsWK5RmuO8ZI1t1G9XqBggNVpJ9LKWvpUEg9jerWUJA8sM4mYq0X7DEhGX9pvI8FVTJq4nGhpT7IlGysK4whWjD+QmoYqDNrVjDjIKY5JhF57wOfpj8EJs91K5uCGNn3VYMNshyAKhODB0VCYMPH+EtN5QaAvwrA6s/97g/jqZLXIZPY9tcVZEAN2rxFHdAUVeJ0xDrNWYo2ZUdUqb4oiGQHfRF2a7jk3pT6EjBlWHMitq10M/QSdW0POfiGnPvVptfnUj+BEvHCqsQMYK9LDnKXAan+ARpMbqq29FHmKZ0HpFvvQbkAf+eUrHB/Ui2s0TxNc+6cEk6WF/i7K7dEROQnPv0/zN53ZQKwMphK1xLkaMM1/pTh+vJHHxSRwK7A2BnBADvMt+iITssEgUGBEYZFo57lTcm1MEPZSL1nitLZIEU7iLNK90AAyWm9OzR3BYZEv5qPlmcOB2TANZw00qmfi6AKUk9zlKWZIvXbnExNpNKAIgGJqXTwqLqMxZ7CMv5a94xOn5zzToBMceqSkQzXRiyA5uik3YThWQCmZKpv7CQ4TTIduOBAqZ9WMtLfTEOCzv1UAFZwdJi0dh0cSAwsvLZhzmhONdfQ8cn2y/Y2on6qV1r2KVQLShf3nyZVfgIF2HNmLQOG5DX+DhmTHes0n+t1BmA/nmkC2PVxkL04fGeRaQP+8P3s+DVbR4w2k2HmTroVX+s/9Mvt+sxv+Zn38efCSlRv/O8eLZUSrlsZvMTB2mD7TXI4KOCPyByoSjiQej0FwvB7vsTMgRxEgksNFYGwlVzrj8qT2DwnFn1fgv2SQPK+zg5gdAD+Uo0/ci8u07PZEg4iqbb0MOMPsbfzzKRZMf7OmxH27JUL8HdGKdM9WNEPqnZ0oHS0wRp/b3vBF4iIyBMPvTb/4Eabe9xsmq+IYEV0dkQDfy+8/34ROQIxyFGvlrwDY6jXwnZmq98mDVeHjNY92znyiY+Hy3tf9hXd7+xGnEggxwPS67TRab6lD9yfepjxV4Ihwfjrz10aDHnzIgL4kxIMQQzPnPGXN/fAgyretZ4i9Yf4znZi/bGFc6rTu6G5K6N5E6pwfzDAyPITVSodmV6kz33m5q6KmZO1EUvQMrEMCMDTKWWqL8eCSt85NgnjggOL5Pd8JbtIt386cE1OzaYmHKW8Q+whq5/KzV3eM7TZgnbSOABr9Lq1a/whtVuPc4dOp9PM6acyn41Jf9R78VRcN4rxlx0DHCva9gs6IgASCAMrT39kO52WXX2TfuLqxXlSfVv14mA2dUO+88d+ZWg8Ii3GHyTD5ZTKvRi3n0Q0+DZn9w1rsJH7WCzDNK2X47grZr0V2UF8qm8roIOt9f/svr9dv4nXmHGLXiVzfEaOgl32Yq2yZRTCPUvcP3jyslGpt7Z02VwNsmEkX6vbAY7n8xyoI3oOuQB/ZxSdzubq2KmicDq1yVVAlZ5721RkkrsKGPj4C1/hOh4197WBSH1ZBqPleTc+DSiANf5CFO+QIv20s1G9zxkSLglGkKM72rNVrub7u9/Z23jWqzv4ZNMs71g/Gf/+Jjrqq3XEAjSEmQZr/JV1XpJp42DNkUDOXBpBlIOonPp5ygAsjJk7Fukvm3tQIFLB+GNr/JWODpP+GO7rEtOMnTX+CiAGrwWVzn0+KJCbYfxFwxMfK1KDbyzLYESm4rolpikH/M1znhIG3fPqloXUzVHGHzD1iZp7VKl0WKKxOtAU2a3o7y5T6ZgyCMdRgd2R6xiKpemUljPHMENiwJmsjdiq38XsKcdhBWBK6PVUSzOwqVHnNmdwMZ2/q47pdI2/oqsvGRxIe5IjCNioy4gzkc4pfqZjqKUZAN5fmF5DjS9rrk3snhT+mHPg74pYb2WHVxSrTfUsi9RyoqtvnJMEsMqgCluf0BJvcz3GdNa6P5RJ4crjbK9FejbbLDSlZxPptlE/bceKzzh6zXPdSDUvWnLgb54SSeJS4s+WC/B3RklRFW9KWFJwIUVHBOw8GQ2wsTS+EHH+xeWV2/F87CBq6lBP4Awg0rgjpwwJtSu84sM/3B25LEWdGDoVrrUuyIi1Q1INiNPes9Go8XXL3nqZkHqREWiexGMCa4ZpHvUlwBDvM10ZEtvbEGuujDhrHckAEnkKoiclLLtuBDNkFDCNXXGj3Yo85wHM8AB3aYWlcUTaaMGao+vslcZf3BfBc9+ep3U6FKnhDGC6HYtm/G3jSrD2Rrr6qj3h+Jdsk3dHZmCIFMEBoqxFdOwm1klrgEhI2uhoqm+zpiR33Y7NFkJtQy4IV3U6hdeL1q3pWjHsMa/91GTnAed+tebBJDbVtwxMMAXo8+6Pxa9g2PdFV188/TH8EZo2MU59DiJNjGN8PMLx/47Uy7IBEC0FkMOv9fNJKqeU/24oNTx079vu2TPSDxRn4yv2PXfPY13GaZYDmbVQ+qZsPfGyg3W851fA+ALIcTepKAAslPFnHvMmXE2juUe0mYHfXunQyArmdGtVoobQrQmsDaQUjvEnpe1H2I0J+OOA5ntRLsDfGSVF4ZwGmK7xp44BNRQ4WefJ47x3tpp/N9nV9+SNSaCpbUXC0qmlAP7+7S/10xaOjL+jzFlXX5Zl4BM8emNNbt+zAxrpbx53bPi1y941u3oGGK6AO3K5r5ohqmr8iaAFxXMQiZVmqi9iNEfjNhgQOi0LWe95pJ7qTquuzVzUT8WuW8FqIWUujCCmwHOZCickENOqQ8Uw9lJXX/Ketdg8NOuOB/5Kw5VnV+TrNd4zwEn7xfd/DJqjOXcBYDGpUXmq74EODpROaFgvqF5vrkuqDIJXwhy5c0s3qZBUq44F/sr1AjeKiOyxXMdgVRDGgnDN5h5EmvFS6KcZtS2qRja4fqoai2gmNxRMKnUExySqm11tzD8IDAnXLQep4VTfkvFHrLelsCN4CfpJsnPAm2Cdz8gr07MZKRl/bIZS2YmZb3IRhhe2nyNzQEiQu25kg4NvJbt1IvTydoDsnON1H+nq6x6JS8b4qxriITbzJlXQlwNrg60dO38TmQPpHMgAYFFvlwvC1Yy/BJg+2x3E88gF+DujaGpuvjzRxZpYd2xaVYz6DjL+gsGbqLU3EMVTqb43nu57qo6dU87gQu7Dsq5ZdzXKKZcdIxGl748YYI16J7em618vr59+RV443T75cZG1t2dkvfUX3wtMkgxPdg/TNSHnwvhDIq9TZGeMMZLrdA/C0QmOIckeq1J9CfaY7sQ6l7oVy6Xb/hgETKuINWKAba+FY4yeSemcxpEUiBQYf1Os5UWx7hwNWY5f29brnGquiUgG5KJzp/qKXMS67GKIrPX/9w++A5qjLZp9r5165J7p9KIcrMVKhuRzTMIa/C3GHzDyulJ9CaD4OGxOzDUYiCnm9tbQKlJWIftk0PZrNvcgWMERPIulCFC7qgQkcEZzztIsbEcmqFLoJ5bxl1jBnvTHXC/jjdkKHUE0ilhWdc9dzT0C2zB/ziD2/Jkl1VHPsx4wIlJ+z1g7qmb8cT6WtoG0DXMF2H4prT2849RPpQ3D1J+PAJavfupUXPeR/aJkfMLjKB2b253Hd7jrns3N1ndu3DPMfsprkM4s8DdQ5qWuR0n6GvegXIC/c4qKTHjUSu7U6xQdnF0xWuOvZKXcSPtsBZhew2H3vzPaJUg7iMoQ+G3zj3aHXqnI67GbH5nu0QT+WFaLR8bW24j8mfv+xxufM8jexvMvfx4B/nJHiZGjwZ7At0xHEAwsf1e6sFa3fzqZSCIO9lgcmBsSWOH+vAh8XuMPd9KuvIy/qFvzdA/EqZ+y1HBJAVQ6HS284o51yXSc1N8Y8Bfm5KO+Ium3T/OtHOSG7lkOWqaOeCSAVbI0ke7Z4AztqRssKAjkTuc3TQfejogzbb+XTd1sXF/kug8HGVupvhCIpNljUwRUUMZf3a3dl+o7H3IdA12TZUyvj6T6VgFnuqvv9upirmngr7xufGCD1k+VzUwEdMr0xxlfqyJS1/iLLCiytrSH8deo2YYzJc8oicLEDy18LJrxV2ZMkMEBXSt4yvZD5DndXp2NtkqgOLGp++VtdO374yG4lNW10BE3SkoZER1LKlPLB7I98Ocs3LOitA8S0CnBNzbVN/iHxV7MZAdphmi458+F4MI55AL8nVFKBceK7uqbpfpCTlbRJYyde02go4gy5G6iffYZm3usjbpsdCqd5MDfG+ef78+dRV6n5OiRzoJ5YEDgznvmHNd1z/rn9IAAtfRcUyMgUvs7t4DzatWYQSRLDT8Uxh8VxRsrByBld1qC/VXWDNk+7M+tyiAc/8CNoKA/Qw2svIwCMvcYU/IwFQY/2c1vG3x8USAcJmHuUF+QMB6L7+giyxhoWTL+OGcjOrEFyI0wHKq6jCTbMGdgJabqeDoqMneeJsOAISULSq91V32ckOo7HEzCgZhfXT8Bmqueu2Qx4cGB7FkcqPGX0oy59TYX6808r9bUUa/7pN3VF9CtV7le57uOt9IfgcFlXUaS8TeVDiZdQyu/Zyk40LcDljKowqb6xnPPSzigLPLUJGyguUfBVrwJ3TgqujMuK1VDFtb2LUs4RAAL0406dTO7b1BqeVGGigWRqlIEgRjSH1vXvieCj5L7xdlxBtab12thzHa9F5Z2hGcvjvqJ1K0JaMZZwSW7la0t3SxRAwVFwtxanjs65hxyAf7OKSeroVWk8SGR1/DqbpCRG81XwaAAjJirYdbc5pjLRKQUnUZGGX/JgJqzXeGB+/oG1dWy5s4KTaceTI06AfB38uYe0CldzxrBfI32NcfqdiQdMc/ctTsW5T6On6dJpjl1Ol2umBp/TuCvSn/EnY1wdVOzAHUOhJNWgUiAYz5FdkUaGkBAjinpWOtZzbUACoSPiBSdkHJBGn9zCTRH+w0HQ5bo1HOMv7VwjCfC+Dt+77j3VOxWqlZdwfiDO+IVRvMNppqk56wELfuS1SAsMgeQva4qyk2mPzaPC3VpHQte1oy/8KD1h+bsMVXjj0z1rRgx4HppARKIfgr611uDtHWBIP1U1fgjAdOklbcXPLCwFCC3tr+YGn8lQxRnU+fPCtUAKAbCwtQ+p77uOo4y/nL9xknh59C1Ee3veTutMlKy7oJgFkyb8edhcDGlfZZVnfuc17xFsrKqruODa51KUy4b2czkntLQ6892xl9ZPmL7Y/sQOkLxb9KGiVOXAD3D+AuB+rAfcmDtVNwzKLAR2alan+Mg+b0oF+DvnKIMCc/y1E7aPEmspwR1Thp8HlK79uOcz2zNPSagYcE/+LfvGZu82FBPJdDRGgYmei4ZIKGU0i0A1DnW+FNrhqT+t5XgmAGGyFVp8N+gnDNVZA+0eO0zv0iMn+SLX/tSam69XibVDEZEoPTHEPUdrvEXI4hhbsTotdM9juPx6GdyjHGGRJW2oIoFYzX+BgBTA/gTxohpMNfYmmvldcMk6LbtJWP8AYBryQpmo8ZL2JMOWQok1pAlB5oZEEhLYvNsEXsC5PZKbTSHw+Jpn2EgmxIWv1s4iCiQ03JKnrmLBybc3WmL9MfkpOLXLbKCnc09KoYpnNZ+fJ0PRcCQAJHOUeNvLTNNWKe+YmkyTO78nhUnBkxtB5Pw4ECDFQyB3AUDnm7usY137Ck6c2BypfrawQEIbD2zlMHLIFh6dp4xoQkeVMC6BJpZxt88Z92YoeBAmXpJMqhSc4+ivjPB4CptP7jsRgH8xQDHQBDuJptWiogBmBKMv9L2I8G32PmbAOingkWeQHk0MFHqCIbdWjJr06xQoP4elAvwd0axFqwIk1KZNoZJFSvGFnvOauElGDFHJXF33Wq1AIy/Dz/ZBwf3pw4R65uHdFqKyFfElLv6y6LXxkQbf80NgNwYPPJdG9h78lTfZ3lEZ2/j+s1P/CPkAMfXaZYDyfhbCuMvYzhAtccGGX8Dqb5lmkxWZw9hIhXPVoqWA47OUhe/T13pcMfaBTmr41epvgh4VjBiEnONBPejp+e5ZzXjD2My2Y4ODoZse898n8xTaiwCMeALZ8PP5glObTinm6h5m8/NpNnkLIMppXgLypQs5iCB5taedPsZIP2x0TAKlwZIDoEhm44Iz9fMFqAvmGtkOlpqnFQwkRCQezAI1wQ3CdZdTFmNtRFZ5hofHAjXZimcahHUsS+d09DQhdWtJSuYYN9HvU6mhrdSy5F7tqZ77kv1zedOByZ161mk0BHZu52REdwPYzT4hgPNEXQkmGur6HIAx4BOzFogmqtFIVN9o8z5c4o199j8u6o7LacjpgpEuoG9uDwX6tt5EO74Dg6AlXpoYuvthmy0orEbct1isHwq9TrqMxa+BmF/lbU0j38z2UX3nlyAvzNKVSx4kz9067uh8Vnh/kkXMcUX+2iNv5IYcSMI+7Owxh8qaTM+iNz3ovj+Y7f6dYqOylUz/oIRhjL+jt97y9Ub5R9fvVF9gEbx/Er0des7RUTkK+afdB/DK9dlOCJp8ntsI8xJLBwdQpY11YubpyPwxxh/45tmqSOIzbhgrumUNuTcEyM51KrD2RlW7dWo35i0LBfjTwN/ZXMP/LrF3+sssuxh1JQG2KyDUcR1S1nGeMRZRN/zeasvyNTHKR0859wOsHZUqjQ+wknLzk+Vjzh+xjhKTjuisS6RvSalrNZzY45SkRJGsBSWotkCy3RcG/cM79ip9Lp1XGBur/00YgdUYC2d6hukAO8cwaRsTyWAmLLhARscmLffnPQTzoKKLEGy+VDZnZZKhcvsCE8wq2CPPYcYf8mG8TMd414gWrcy+qlc6xhLUzf3ENF12PFU35IBj671FuOPsp9iPUu2Y3oZhHuOgEAZ7lfoKCpzINjM4V8+2y/VRgQGV+VxwnrBJOIJMT2ZYJiWQVt1Hq46xfeAXIC/c4oy/rQR9sXz26Dhuv6EZvxhEcTTOPUeQ2J86mTAnRL8Q9gZ4zWblHLVdTcEqPFXpPpSdRAkrZd3ri+TP3Lnj9fn1Bs/cOP+0K3vERGRB6c77mM8NyVds2+/+1XZJ9CGHK85r6r1Wp0L4w9LfywcHVIykFtE+dXIZpxv5lkNU8ZhcBSnrupQqfPAavwNMP7UbytBJAZ8K5lEfNS3SBvFrL/tmwn4S+sNCZgUDFEiFU5E6e/5vmNdxm3uK8jZKI1mZ4p0rMuIMxxGAxOtJhV0cw+ZMjCEYmm6xR7/wvv7z85aNDzQchdKybfXG7KflmnpfI2/4p6RZTtagAR2z3LWHSut9YoVgc/LR8yDjL+J0OtlwFizuD761G1g/IkYf7MDtCxSpCMYQtYgLYFqZL0smR0xwvgr92LUbrXlBVdP8OdCimbNacFicLkdkaf6Anu5FLYfcd3WVWSumoQFGwZ/VtI9O6QDAzIV+yETVCkDTmkv9unGlLLqB4FuAjTMS0yUjD/c71wr/cT5h2WdPcT+WhpgLW4fbMDhXK515DkJc+v3CkbSRTK5AH/nFMVq8Rj/Wf0u0Yodd6y9z0VqGhCiAzzb0C3XlOr7yR98a/c7rc0HPZOmIQGMXdc1RcaniXJUjgewDf4nbmMsxvOmXNiCgEDXxviDmCGbc7pO8pbljdlnWOHaEcZfOr+50BFYLShxz30cHxydvNYKFrzMGTVCFqfWHe3CO9vo7tiyxt9xFBF5HQFMjRp/CUTimWt+xl8OHEK/u2BBTTNpuJZzkIGNULNtmo9p8XFuppFNwQaCm6IU0faTMf4QZkhRS5NJjcqbVOSsYKzpQAE0k7qidX2hrsA7qb7IWVSlDIi6QksF/B1rHMO1DatmC1wdqsj4O+Q6BgroDKb6Np8JgkUej0ACWGsLMCVYmnEfUvr5l96HgEglGOJl/BU2MxAUCcsldfUl9Xo4QBmoR4A/zUL31Pgr9iRh9tIdeeUzbx8aD0lRlzHK0x/rD62YSBr4Q4IL5V7MBHS0HcGz7qqsh/iYcYy/qnkRyDAVUX5KWHMwhlQyJYNuffb5L1qyAEJV449h/IVDcMHLELSquo4TtlvaD7fgL3rTwtwl0AwBxcfX3K8lGKb3oFyAv3NKBOi8kddcOTOpA/EUvMZfLHrLK6hh9XtNqb6HpR/1HacOl5GwoyC/5GpR35tmSeuGYxksBVPyfY89BQ0fSfG5VyVtSpZzSjynEw9faicwPKdXoekAku4R19Uo489h8BeOsU4xwvRb4WyQhbGzscIZzWWaMiVZqm8eLYdA7qKe0hwda271lPVxoAL0RcOCWa1ZqkPsXDD+QAcxOhvzLT7Vt6yTFwuKkyyDglkLpXTtHpYA3yrGHwLWauAv2BEelgH81UxazyOyXkdTVqfC0eEc6xL4Ox7jQKb61p1OURCpPPejMKl052juEbrJxzqg23W7RaYQVg02CNZc49P+5BHjDqCjr4ZWuOdLSIOE7nnZFIVk87TKASCBsEXvSfyamSoQyQeYnkMqFlR4/8n39QcXBAU21bdKWXWwoEQMIAey/cJaHVvr5dyYbi3ZreR6KUHuWEbhWZ72udPcAwvUF8FHMjgQFVzR1RdiNLdqQsLrpRgXzU5HwFh8Zc/uJbkAf2eU9JyORV4jMyQcF4rouKbUR9hOwqHYT5Rm7DFcd+em6gn4pOzspiYHpl4ifV/XY0JbprdSENGrONLc4/9z92tERORnl1e7j+GV+w+nBYgZmcouhvozB5DDSAb8FZ0EfRFnTlrOKWKAleBbBpQD5x4ZMXNuNENdfZf6niWj+ZoZf3pNxGwFf9Q33LsDzfgrUxAJR0UC8KdZnsj8+b1hi3oHxt865TVvfQx4bm5ddiMbPxpxJhh/UqTJYCmI+js58Mcwa9H39+dH3lff2GP+M+utLAcASAk6BsYf3dyjqvHHOUplAJEB/vCdP5dmANBTX1CnjlJ2YXnPMPtJpJXijOzFQb/krBZvKh3j1LfqE+JATFjr4XoTaaNZcMBRcqRiaXpKV5xHqmZXm0DapXjOskAi0VytBEy5zrh1mRfomobxhQ3C1gOvUn0dWS7ushuVb+pfS96RHtM56zrOMCXTIBFJ9x2vy1jgCYSvEIHiGNDxMf7qvRjREYaPdcaGLs8FobT4t33bt8kb3vAGeeSRR+SRRx6RL/mSL5F/9I+AzpQXsSUuSl+tuhr42xQ80f3RHS2vUn2PchPFzKs0QEL2/HaGZeCVOpUOl7xW1SRrMJpJVspS/FJ2Y/DIh+VhERH518tnuo9hCrAhst1wTyllnRct0HUfAN8ykKowgiDGX8lKIaUEQ5iIddXFUJJBxHQtL41mxvDU9yzpGiJt1OUktRl/GKulYK6R9y41DfAYYLljrRl/DFMyOqczsV4kOebTfJApY/wRDmb4vWRK21Sc+3oywxMHXH21ebSOKJgpVAOg8Jyy682eA0mZtWtxbp8B122Oz2nRAAgJDpQ6Ijo66F5cOvVhrWNBkVaXVUQ37gKmgMxTaw78OYu1oMiATpyjZGkOMh2hYHn8a85e2XIApb3uacjCdpGeij0p7ulkjT8P8Fc1qWAALGEAn9NL6p5d1DYETin87qUMBgl2z0v/biLA2sy+qxh/jP3kCSZpoLlMGwVmbugIN7s1PmfPbhAoPePqPcH38mQ/hTc4/ZTK4/CAaQTfwnZG60Yb+IPsAAMPoAL196BQWvxVr3qV/Ok//aflR37kR+Tf/Jt/I1/91V8tX//1Xy8//dM/fV3n9/yWsnMSKWXx/IUwgkYjaYl4Vm4qN/CgDaT47BW2/eUPAHVeRhl/DRYUIjmQk8BinGWQNhZ97fg6VrwkoPnm5brmxPCrAoCipdgQmZHa0CnS+JB1PK1j5z7SdCB9pwaRIBZUxazFDZHFuGeJBUWAlo5nPCukXjhpSFHusoj7nDnWOANsqtI9+JSL42kHg59wdFLex/Z/lFGzfe9wZF9RzLWyRg3dOCno9Rw8g1Kcd9Ykct2SHVCyNLtDCzZPOHfjs95x3PrNFmiv2WPWUiBSERxA5o71LAPD4bjm0FTfuqMwwUhe05qZ5znfGwj9dPrmHggTaat5WzbnEBGk22gNIuWB5/3J2/sZVUahLB9BM5E2vUQ0AIr1LGNAZxSIwUFHy47gJH9W0p6CrFXHdCcVe81AO2lhR2TAxEAzGmQ/1Mf3NPeI517VjQVJAmsIIOY2DNb8MQfAZiL4ePxavhfH3zDkm17/QkwBGZUSHu0Ifi+eDqyO2L43l3YEEoRrgLXwPSuCvo5Mk7w0T/3XRZJQO//Xfd3Xye/4Hb9DXv/618tnfMZnyLd+67fKQw89JG99a7spwu3bt+Xxxx/P/rvIJgOF+0XqiJCrA9Ag428qAYUbedCSk/atd34fNXJv0/vhX/5Qf+bBqFF0px2gwNWaR/GS8ccy/rwZ/v57Ow/PbQvV4fUMssf4A49wfHEBxXWknjEkEgvqeO5vuvOHRUTkl5eXQ/OX+imlGfOb+bFL63YcplPqnDtpyBoumWv6PKDnfyDVV9+Xsn4qFnQowAy97igmOJ/quxaA56yCE1gnwWKtkzX+DoHxF9LaCeBPiv1MhK1ptL0We/FIJ0ERtDi1DSJhyN/xO1cqvYhJz66uTzwMGExqrknGMW5/tid1jT98vS3l3KGrr7tJBX7Nl3VVzNwy1RfXT6ev8YczJaN+2QBTfV670mA0M2zo8Lv1r8ee80K3kqm+JUCfmLUE+74MTLiBZsapH2P8tdP40KDK+SQAWGVKPbZa8rW+qGuH7UmbFAAWBJ5dqQBi0SSM0RGe1EsRw/5i9sNKR5wm1XckW8vLk2EyLlLwUc1b/bEn2+8Ox3My/uYIFON7Uq2ffPcsnQy+F9uMv5D9+Oz2D88lbi/86upKvv3bv12efPJJ+ZIv+ZLm99785jfLo48+Gv/71E/9VO+Uzz+Ja9KX6huMzNJBhBzjE9XZC2zDdP5ENMk9dTLgfmJ9HTd0Z27oDjQ2D7bWylSkn0JpxiV9PypHMt1jmzG9jynX0zD+TmvGIed+zlSRdWn/7gk4rRHW3XJVG+xc4f4YcxURkf/NV3ypiIjcuv9BaP7muUNz54y/aUpnwwASk8NJC9ctnwVnNE8FaMmIPnrSrUxKWBx8fNV6hrluRb04CGAv2YbTxDFMC3bFxER9Rem3DUzwXLfI4Ar+DqvXI5tnADzT5wXt5bmTNjGR+qJumf4bawAUzyJ/HVS5bUBQzb0HYDHs2IplQDCwIsOBA/7KOnsrMffVsqY1c5iz34ql+vozJkR2auZCtcPyekwzmepbdmtfmYCOUbs1nVd3uDo/X6pvq8bfikxesb/YuQvGn4PNE45ESyOzCbI7zx7YLeyI7N3OyKoUAcf4qwIThL2/19yDYUPHPZRmmIbntACaEamCvmyqb8lcIwLOJxZqTgvAYhqTRBumZCSjgQlbR2DXvTh3svRFAorzGqRYOaR8L9V/jzfjfH4KDfz95E/+pDz00EPywAMPyDd90zfJd37nd8rnfM7nNL//pje9SR577LH437vf/e6hE34+ScmQYCVt+iGiRESEBoGYVjFzZGN45Ud+2DVnnHsgYo3VB2tL2Mx/ePlMedfySfT4JuOPLNgr05Q6u4HGUVk7Q30CjGXqF9WSGH/njN+eVrCo75ba5P3dJTPEM/Z4gO18AmuOqVV3HHv/fWFTBtk8EUQqASw8OJDSWyaKrZjOcXtGHIw//ZxwXcIsQwQTqxNztNeJ9KCUIq3XDQ5Czeq6i4AGf2G4zlP6G6s7mxuebNR4llDjL0/1Xa+QFMKrcBLbwTi2YSID8YyaPYHSu6XQEUTK6mIEJpjgQAxeFEudBUPQ9zNZwp7iS/WtOnYyjSIKdsYcgT90vZRrnQFrdS3OvPYYtta3c3e2Yr6vtRUR7LEyZfX4JtF9O7KAGMZfG/DEwLf4kB9fyOL5ZdA3MsAg9n3OQk91z7igSNXpFKnxV2SasFJ39WX2Yux71yXxeZ74Gn9VarkOrhBlN6rUcpKlORcsdKRcyVrdM47dmgKIOSkFCsKVHdOdIHcNeD67QaDqmqu/KQCxCPqie1IV9I0+A+6bBnu9ZKIDB9hmLNYbFHCufctIErjU+DPlVv8ruXzmZ36m/PiP/7g89thj8h3f8R3yB/7AH5Af+IEfaIJ/DzzwgDzwwAPDJ/r8lMQS8LCSsjov2zsiHMrtfSyCwTEfZhG5UlyNvmK/7wqopbcr/oj1HhsSUzJp7ttyPz1/cm4dbKCsEPtMdSo9fm9TkIXBj2wMy7rKLYSi1pAwx6kZf4gMnPa4DBZS1ykX7O+wDPbU8IBwsgoGFs4WLoIDVIey0vhLcBpV9yzgN0QNLSmc+qME3UqwMwbreJa1eRDdWnYhnMgaf9O6bmMLZ4VxVNR6Ce9gzkYYXjiIaCpdbO6Rp9JhIHd4yUEgNlpeOTqDNWGZ2oierr5lTcjj38x1t3UEKq3ri9lDO0AO85wWNY0w9n2ZjqaAv3Xt7u+pGQyf1r6sq9zazvFQpiBSAJhXGiMdKWF5V18iOFCASFT5CCdDtGKu0YBEkFw/YTX+Giwotv5pkdYOpZYbTcIYicBBVYMUYa6dRn5qea187vwOx8iS4ECMLBuq6HXH1H6tgkkcScBVCqoEub3p2RXDlCGlFCC3M6hCNZXrnNP1imV35p/tS35vUuMnNghX7IdUfed8vSDM/TQqzcml+taAaWJTX4A/S2gtfv/998vrXvc6eeMb3yhvfvOb5fM///Plz/25P3cd5/b8lwYFHpVQfyIYT1Qa3yDtOW1KYW531jgv0UkbY9SUggF/G4NrHWNpTmUEEZDlyk71hZt7DIBvV4MObJj79Iy/Myp2Kk3G+t2E8ee5bkZtnnj9mQYb0WDnGKZV0wECwEo/OzDXUpdWptZd2fCAYYboax7rxTHXzbXWNfBXOIhMnbyYKsGm0m2vkW2Is8fKwv3HUXi6beWcMs0WRKeq5OUnsHqWRUAmgkCo5Nc9pejg19w8KlG2o27ugRjN9Z6QaiPiOt8dQGy8fwC6Z5fMkOy4H/oFYO78OWVYd8EOKFkpIgLVbIt7cdXxHGFgrXG8lB3rCdvPbbM1cT9kPwzXLXfqtw/xyavnlGfNmcfdlXK9cIHXKjhANEwoWegTme3R6jqO2TBjzT3qkh8c46/5G5210RmpWVBH4UpfhIOpDAKqBqkDDDHtCFyvl/Wd45qHU33DWneAlkWmCd/VtxVUGfVhrltqvZyYuR624sa+Y9OzY/CSyNAp7IgUmEDPNGdpUnrdyFo4Bdj7fJZhtGZZFrl9+/YpzuXeE+Ug0mDMuso85Yw/prPuaM218ECmQqDpvHoy+iyGuT2pKrrobX1cPJJ25eJoKnZdabAjkm1ckzCdAPV4D/g2Wh8jMf5OCxD/2Ls+CnzrfMp/vLlHGaln5taR+mIzJ5zThAYRwF02Pnd0MAArP78pHQ00mhvGH8JuXWoHkamPMw0EdBYjRSdePyhtIQcU5kzP9MdH57SoL4g5aTVIHd6BAKxivdC1faJuPZ77FQG+KaQ5n5tkONTNPUYZf8heXhjN8Www9tjxmwbjD2LN2XOwBn/9Pg5yW7p1ev/PdofPa77WXQXFo3Oqm1Tw3WmTKY4Af1ZQJczNAH9e22+E8VfqJxUAZYKLlV4HJN6XxCKPHxG1W8u5cSbSNqys3Qo9Z+W5c3txKIPgAUMy/ekiKdhBFRbAOofUJY02gXC/3ObNfC2CQR/Bn2jDATqirAeu56eClzmjGbWlp+KVYhsu+VqfnSBS6Rc/21N9k0+eJJ07cIDiO3wpggD8OWreloGwOQTsUd2Y7wtUoD4y/43PLjX+TKG0+Jve9Cb5Z//sn8k73vEO+cmf/El505veJN///d8vv+/3cZ1VL7LJiep3TXFjwR0dK9LPiI6E/fnf+4XpgYc01GCkbsBwPVWqbxk1/rTp17ATCCnShSEBgY5Fqm9SjlwU7gtf/RL5U1+rU/MRMGRMgb7+k14IzsTJv/qlfifm6xLotwwWUk81tBxr3TDYU+F+3LE22RmAzK2oLwEopFpQyngkmJKuaHl0yvMjiqDXrUgDJETrbldXugJ8W8nmHmry7QU3wKKjYgCmWDHzHMwoGyD1x+frLTIcgLpn9XrjIsZVIOxEEWdkvZUpYel5wwF2u8Yf0tyjAHtJW6Z1h5lUX8sOWB98FJh7u+cFu5UJAIa5Zw38UV0zHayUNenWuWQiEfW7/GU3BoC/QcZffMYL8A6re3Z8TYzk9PtdXX0DG50tB1CUcEAAibLmbWDuwWyeQr8x6fx7qb5UirUnZXUd9hZMeWrFyvSk9VYy/hDJGaJZcIUKXhasYuSaG/eM2YuTbyrZWL7GXwCRiuPuzh1ecjuADzgX7PuRem83gD+XIKn+myr5UQUvsZOPHazL9QqVA9i+quz1KEyd4rheiIw4I9Cerht+mHtJqBp/73//++X3//7fL7/2a78mjz76qLzhDW+Q7/me75Gv+Zqvua7ze56L5WCCoh3EgbpC3uci1vibZ/naN7xSfvQfv0DkCRl+0p6+cyUP3rf/0EfGnwv420v1BaRhNH/54aeh+eMoV/2vAsiJ6R4o4+94bx64/5Z845e8RuSfhHPCWVBeCb7VqVN9kXM/a1ffHcYf49y6ggNlMxjhnPpYcDcW7PUZf1IyHAg2TzJiUodYhj02FUYQ4qRV9btEp0gz98zD6lUBnaQs8uMSc/OpviVgSvzuneLUSJOKmhmy6TfW2XB0Qy7PfSJAoOx7VXo2Y7Abp0WwNNN1J6LlZmHsAHIj517+wUnreYSCWQYzN8qLX90dnlLp8k6CeLqtSLzWB/2cEWxq4YG/ZU3WR8n4m4AU6bDevKm+bcYfEXBWJRyu1kkO04qBnpVTf8iOuy9tuxEKV5f6jW2wEV5jg41t3RGMv6q5B6yf8vqnHOOvneoLlLNsNveAAPadz26tz3THx3Nw2oDxp8317+5JtP3KYJBw+4KrXEmmV3n/sKzLyDLg58KOoPZiKTrNkyVmRroht+X6fQgzC49h3ZVjaB3hZ/yV+85U1m7tAHkJYA9vMGBvEXwUDjC9F4UC/v7SX/pL13Ue96aoeky8WlEjSoYDZXh6Jd8YZoJlsAfY/cuff5/81l//ys4B/Iy/PQORqfH30oceFHmSnj5F6kdSJkSOipEsuCsxouNJQRxj/KVOzL6U1euI+t6IGPUnKBkC0hPomJ5OIo2vZHDRxcyD8Rff2A5LsOYyrwIHoeqGB7gRk9jQ+RGPn+FpfK7mHtvYq3VKp0yBb7kRpJnF69rXmGVNo5TihLMM9D1LYC3ebbQE39C9qqwrxADFaT/LnTR+rfOpl6+c2qxlRO/G6+a4Z1adPC5NuTa60bn3hKnZZn7GzFHVlARkzZlrWWDGU4qA6CK9qjIv03zIz5so/H9qVxbr1l6khMnRJjjIFQSY1iyo7Z+IDbRTE5LJkqlKEaCMmnDPiiActycFhinHgqpq/BFzL1fJ3i53tGVdZe7sKiPNPWRdm9f3S97zV0Xk/9w/xoCkMgq8fitTfR+87yDy1PEzKJBeptsKo9drsDYFdABbPp5fGQDsD9Vf9AQQy7rYPMhd7OVUs6rTCtMUxkr1TXYncoRyZAh2s8BfyQrG9iQ9ZqIzTQodEctYEXZndjQm4HzviS/kd5HTyFIYnowoJTaXmzmVxucDJOqIDsGQ2FGGn/zOv98fvs3xWz77k+VPfM1n9OdTMprzHwzE+XBL7r/lf3zKtEmadTfNdOek0rmt3t8beTWoQEdq3T3+q2Nzn1HWHZYBIqkWlKMZzFJfc09X38h+IllQSUeEcw/6iQEUatYdFy3ngZwyHS2fm2C+uWr8Jb3sSbmo0z7TukHOPd6zkp3hZtQE8M1h/LEsg7BeXV19c0cnOtZ0Yewyvah/7v/1ff9z+0PiusXUcEetOjNaDjmn+RiW5Npi/GHOygZIDDba8gIS6QyO9kAUyMYosz0YEEhle5T7ChNU8e5JzfdxMCN1xlXBQATkruzOTb8h6WhVCYb0S6AO2BVQTOgno95u6kiMM/7WwjFGnfr4nLkCYYFtaAGmwHWr7jlDEmjLFy0/0R0/KiVLM8g7P/RxYGx+bT/3U16c/gGtt/BHznzDGrLoAwUbKDwzhH9YBCboenGl7cekhm9jDuxeHANhRSMbOFXYOCXvOAJ4SnXQ9V4cnhXcXo+A6YELDlR7MdV8qAhMTAXjryOtjsKYjjD2MzI76V6TC/B3VmkBMchQZfxFhsP2Si12L5cqd3Qoxb4z5Qs+9q7+8O33veC+g/wnv/X1/fmU7NVMggCNCNZ6AdPTpAHKNFGdAEU0iFS5C10ZZvw1mSGAPPGBobnPKZpR8y+Wz3Mfx7XcjJTV5NTjYEgqYM+lXCQdkYNv0GZeFb/nAInSkGDq46zxtTYkuNo8noCOAv4KUAADYvLrpiPOTJOLqXQQiXu2WvfMVdOI2FMkGbhz2bmSaVJR1lNCHesCJGcYNY/uUMeR6xad/5iWRQD0Bns+BgeISL3XimiDSDiA5S4fUQD0DINrKXRrVuOPqFUnRWMRJj37OIxnmEbAdND22zuv5siCSTRP+mrjIFK11glmiAlgQestnsV2CgT4pgP1VTM+3rEWpo6ntNcbds/athvVnTbBaPk59cafnJsqcgsBUqSuyxjkz3z3z3XHRttvCow/Ukc0m6IALM0NrL1a670YI4YUjD+ykeBc2n4xiInYEXmq70SWNKq/x537ueSzPvlhEWnZnfwzMEm4buj3jzIfisZuRNmN1bA7Ib1erBemk3PJNgxH1J9dJJcL8HdOUUbM//3uN/rGinbStjcoRo1PgmIPKatf+Pg/FRGRz/3VvwnM3F52SMcqKRwdRvbSoBEFGaOX7vo422tZlBuYPYA1V9HZ4Cjw0gAkkN/Ngcnm5NtxvM7G+NynlrsIC1I51relLCjNsQzYXxGMLD1uJQz+dBI5uI9GXsvOk1xn3B3QkliLZU0jjvFngY44882X1p7AjAi5MfescE51SQGs2/v2WnUbRQz28ijJEMS60xb6yV2jJjgZBOMvPCsVo4ZjU5eMP+S67XW+Q1JVKiYSxa4oHTx1zwgGVrl/scGBUqDrbjCaGalTmxyslOicTmlvo9Zbzv7Cmi2k40/znJ+vo54lK2NdfXMwZBJWrxfBcoo9lncLzX8+rtfrdDSW8ZfriAlq7lEAzRQTuw44M0HjvTrFFCu4umfA0FWO9R9PLPdNXCC7tNdvXyHXbXuN622qPoMOUDGScbB2MewnjPmWB7Ko8hFZenbONkR806kEcuiyGznI7bJ5zyBf8bpPEBGRW4f6nk1UxkQBnrGAqWe9Ffc7K3lCsILLukBY08v69zF1iu9FuQB/5xRlgP3tq69yjk2RtBSp51NVWKmdjaM8+tS7odHt80JG+5mSe87MBBgYq0rP9qTKtGqGuBQcWfw+puKVwB8VqffJtGM8dud+lu7X3/tz7+t+Z6+DInQl1oG1flUDUB7GXxCqW6jUTCSGZVA5eKI3cwBMKZ8zhvpfOPV6bo7N41nryYCaCyOIK35fMkNQECkHa7n0xzpFmmsUkd+zCH2SjL+gF7n9MAdD+A7WeSAsFjMf1JsMuzWmJxNO2mLoZaYQu+Kebf/H1/y6rk22FNP4yF2uJAAujgL2pV6fphSQg5p7VE49wd7P1kT+2zHm2ihTsgX8AdetqLM3Z02bmH1hID076pf6sHtSMpJTAXqO8Vc2PGDYXyULCg1MxDUdman4dUtr/Xi+GYuMCIR5mGsPPP1B4Ph98Yabox1RHAFbqgXQ/NJPV+P5/ZBLLbfAEGJPKm0gAmhe13S9q4wwxs+Zko44HgElOIThpe03kLV0Az5Iai6vbA8i00QN2oZu14+01+dStzIlHKL9pEFu5rrnjGTowu/Y6892sPdccgH+ziknSAk7Ds/rKCAO3hpfp2SwElJGy7nBe9sw/qD7OuO2j88YcKsb+Nteq5pt+IaYOruRXX3j3BNVdFYEBIr25mwwQ0YF6+p7Pll3WCnIltQC2KG515q55gkOxAY+hAGmo75T0RHPkzogwhVDr5hrVL24eq1SxYKroty4JLahoSaZ5h6TzwBLYO2kXzBmiVEvLn3Grze6eH6xJ8VuilCDjPBHzgbCdWu5JzFgbVsQBzHWeC1rj1EBQB/InX438FVj6ta9PRB10+xmDTjI7WE4lI0ijgAWAeSstlMP2QH6O2UQb7nbHW+ldzPSHsXZTyLHS04FB0odw+gIgwWVzotn/HFNB9J35rlgIiGpvkWKNN3woAhsUGVi1J4kUgQSPSB3PJP+ub/kibf1j3+tEvaU3F5n7ICon770P0kfMftCFRxA7K+8C/TxPMJnxFoP9iLRSHCVxGIvg5dY1kKu1xPIjQYAt+8VzP9zMAgYP8tqKpf2Nsb+2ub21mV0NPdol0rBggMpMJEHrDkbRs3JBITuQbkAf2eVEWZIke4hSkkAjs7DT71HREQ+ZfqgvH19BT1/2dyDkT3wBzPY/ddtL+2LYhlMMx6BUtKqGcLUY0p1XggWk/6eK0V6cNMcdDZacvdZT+VuO6dQBovaUNkrV9UFElFpfARzrXAWMOBPGRIO4zFdN71WGQZYwVwT4tx3Op0yjUVWl15P96xsTIJdt9xg16sGMcBSt9DgWONNZWKKTgbWbiAcA8RUUWPUuc0j1gxzLV233Nmg09pjPcsTGZ7EWl9LAIsIJpnBAUK3xpkiYIoFH4cYf4PMtTKowgDNZUHxSZ3HCoBvU/GcMmBtZsNUwN+d7vjR5h694+5+pWCPTdOUdCsBoPlqkOa2X+ZgO5xbLwOrYvxRjJp8reKMvwLAYlJ941luulzrCkhHFGs9gmjINQcOf40Sf2mxl2PLpdgP73uBPLNuv52wvyr2PWTD1N+kutvGtR6mxhl/ek34Gk4Va52tZxlZmg429YmFYZyZZaSY2tKlr6HKKSASU+odmSYVk1sRgpj6zmkPDvsqoxuzI4bJ++PvQbkAf+eU6OeMMddCBDEyHIDF/gXv/J9FRORz53eIyCTffver2DMQkWRI/OxDv1FERH7yU/4DYOSOKiLAkMlz3XauDaQgi/Qgr7iYkoVynSbOOa2LLAdBDIlRxp+xqYGyd3Z/50eQjr9nVP5hUzJqG378DuIg2tFySJbCEBB1/Yk6VDHlIgDNoFNfs4KJzbholnA8ZmDdASyoMjhAgORWsWCuRo2f8WelXjLR8rIMQm6A7Y/PmgZUOoJPfwxHEkFBpBCpdzDXRBn8gVHDzB2dtNLw5FgGc3HuXIqOdVr4Pa/Ts4HjWyC3p5GNOhtwalmyWlDlURjgz7cXl90fPTW0wnqZp5Q5sQD1v9LcnlRfdX4FIDFfPdMdHtbUOZp7VClhUzoa1simAOjDK8UkqtcLljmQ78XB/sKae6jvxDqghGNdgkjO+qeedNuy5m2mKxylL6by/b25z+y4Bzb1XNjrHOOvDl4iv6tm3+P7YWT8aeZV/AwH2Es2NFYGoV7rSQggp7BhWJA71dIcD8LdzDqsA6dMbek8bJpwgZkBekXbETzjrwxMiKBp7cXZx7mRqctfzvkK96JcgL8zylgaXx1BTJvK9S/22MVwm/ND93+KiIjcvvVIf/DO70XU6wgYMtydtkhVYaU0XIMg0felMpo5KnfaWObCNeeieJ4GHdOws9ESwGA/o/Fo0feDXEHd1cJz5gFMQ7qHweaBUjZsRwdaL6p+V8XOcKYgxt8B1T2TbG6qS6t5fkSqSulkETJZYK3DANOpuuF57aVlaeOyZIZgz5BluIbTYqK+wbnlukjH9XYoGH+ebsgEyK2/VzeyGdM9jIMYWYpUinTNnufqE9ZGd/2vxsi1fY5YpL+tWxFJNbQKoJkAucMv1am+COMvnXVivomATr3+xdOMXWwlU8MGwcc37hkFAiXAlGqcFNVbeE4J5tpekwoKvCuCSSTbsGqcBOmnvH4qnf5YsMfWGDTGa/1awB9WuzX8EdjQuFPvf7pPK2WGDlT/1KjPvLjsCN5+so6/MsGoYq1TbGhjrXM11/xzixh2hDA2zGmFyYizvhmfd2BPqjJNqBqk2vYL6y18BrDQo17fXnSDEiLVN2WaMHuxRXDAg5/3olyAvzOKtTGgogGsWDNkoKA4m/ZR1lHg5vJ/KqINTIfhunNtqBp/ro6d6SqXEUQq1Td2vQwpE+D9NlhUqMRadesk71hfTo9PjL+bl7Pq/h1WCnIXRtLaTcYfUVeoes6ic4oYf7owdg6GUDVmMoA9RPFw47Es8IxIZMRk0XKCdbdTe6w7t7THYgZ7PIvt/0qzdBl/Kpgk5XVjjEcrVYVg1EgCBfLj9saXzi3DussDWVRxadHAX3B0TpNehASqSh2R9DvC5gnftJxTJkhWXre+rNJm/GEsKv9eLKL0WAxsMIy/Igg3p+YeUHCxbADEAFg7qb6IzhkNwrW7+gKDCzbPJEq3EkCzJ629uubq9//LX/hAd3j9nBEMLB1UqfQTXidPM0yzc0LFoZ9KxzpbYxBYWzDgmXM/EVjjKcsjUtswQTATpNZPXMmQYr0ygKlZ4w/Xb1PxnFGpusZap+qnFuSKOdZ7Q+9h7ldTz9kZxcyYIOyn8iuJKcmCtcU9xxbc9v+gnxTjD/I1wh8heLkF1Bg7YLKu27P7np9LLsDfOWWg5lps175O0X4ZYRmwI2Jqk4v51jY4qYiQI112j/qLNi04fnmmL3MGhrgauuRFltkNcYQpGZyNRSbIuTCOsI1/dqmcp+/4NwaM1dJ2sqhInCc4YBgSqQ4oASKVBhjynKhZp0NpuBIMLA1IEBHvueHUY8WC67mTbmWAGL9+cjP+KudU1Wbq3HPtjMwFU5Lp/G2mlhPsjql0rEHnNnalK1N9r3jHOtXQYoG/vHD/TdT4i+z7AtDAAHoriObQEQ7ZY/wx6ZNeAKvai6nnNWdXTJKAP6iZjJT6CXeycoBskuzeEfbTqfdihEVe16rTgBIOhlRNm6h0tHTPgvzLXwC6x5YlZohU30y3buNjkzbk3CugOehGTOpGNgxomc+dBQmoBkD5PeNYlueRqFFLX4Ni/Kn3GB+tWm/hHHCg2d20qdlMhmMbljWWIf8uAoeje3EJND+76V92OST8ntW/D7fXtW2YfHpivRR2RN7cw6/Xmf3MtGEuNf5MeXZ54feYjDDXFtVpK5DumGiScTbkt20QCVKuOwXjOWaIn7lmH7cvUzDqXUDMumNI9MenzbzcEFHGXwIFsuAIsjGUNWZIOQULyiuvXN/X/Oxv/5t3Dx27J2V9HFaGavwZbEOmoHgdccYNqMyp96Q/GoCnp8FGqlVHpIsYxYLDdYM6phsGPyqWwc4ZYLluzGto7Z/7YtUOYxg1pYMn+p7xgOlEGuwl428hHKVWt1AIiFG16lKqyvbZYPMhLJUuXPdD/koAEtqZT/esf35V7bDy/d25284ctqe1UzcRaTElPWCITlml6oAO1FPKxoWPkGdlp9P8kFBs6MRcQ/WTyBhgWoKOs1qzL37BLXjuCPYStccyMKQofcE0HyoDE3jHzuP3wm9eQ1kAAKQu6wtm64apAxr10vbMUE2XziMPTU8d/yj0m7fGH5U5UK113H7aS39kGPAlOxYLJulstMC6I3RrIDjErZiw3fQ5OppUiIi8e/kk45ygocY4fKCljV1knrBeDkSgXu9ZVY1lYq1btaWJZn6pLiMBNO+A3KO+4/NVLsDfWaWM1PNjF5nTZh7T+HgWE2sEpnpKObsCkb1HEavzUkR0CNlzpLiuvgfabF6ldk6ZuSsqONPyXM3hmXtZ6tQBRlI068TOxqDcvus3LBGDP8Em3t/t1xFm0dugKwDndF3zuRlnQwN/U2m4AuttKhyd4yjCsY5ATFG4HzKCcud0O+D2GT63LwWxBh0ZB7FyFkTV0Oql+kpt/FH3bG2D3EyDjTL9kWU0py732/WH9sMcBAp76gw5OukJKxkON+G41gyH7YUw2HMdEUAo3I5InQQZO2An1ZdgGXh1awQdPTrCqPGXUn2JGn8lcw3Sre1UX4YV7A5GNedA1ltoOqBYY5EpiQOHZQkHD1ibz8bbnUxgYr/TKQK+lQwstsZf+KPQT4SOSPWB1b2j0trDKTBg7Rkdd/Xb7nvy17KPPI1sRBR4SrCCK3YroSOsgA6Wnp3rJ6bO3pKl+pY6Bpk7/JFnmsAEh+K6RRAJ9JN+TV4KznNiscgVMTWfeQ7ye4YFJrR+KgBTMIh3/GYeRBPhbGZP0NeqWZv8nAvwZ8kF+DujlDVmGNGplzEQRESTquM5GX8Otb47ExJJa7EMENln/OHRcplmmv2WM/5cdKDjS3A2yEhYXeMmvI8MNQAJSgJQfVrg75ww4p+87290v7PugCGIVMwQRpbayUqplzgDq2SYIr9kldTcI0X/8Mhr0mFGtByYvzSaqZTVOEPtnFIpF57AxJVhxBAGWAkozJPeFzqpvto5LZhvWNOBMLgGkRD7a4jNI7rJRb7eMCetuGcM40+ScZ0YDqdJ9cXSRrc55nytM06WGS1nwFqHLCuxd5lTj+0pLdYdVW/XSlmFmG+NuZFC6iUzV80HXc0B9v3eLJhjnev1nPHHM0MYBzHWTzXsNsyxLtJtKcdY6dZY+J4AJJb83Bm24fFc81Q6Ctwv9ECmKyDHutwPp+zt3ZFnBP4++uTT8e+79z2cfQY9OWbWQvHZjlT+IWPDGEHfuB8ydkSwe6hUX/WdybMXB8ZfAe73R27fC9ctb1CGrqVTpgRTAXszUE/YEcXvmwl7XQPRMXBKlNZJeiToJ/UbiKZPNciNr/Vcr+PB8ntRLsDfieVH3vkR+WtvfSdWjHPAQUwb7qRSFogHtRDWeC7ZFacCYDDgz2bNITKqCLTBXp5pl1Gz6rpC/BVL6bZhM76Vn1NX0npj50/An5PxN+CkXafp52Pb4jLqnCbxM/6yCD0T/SyjvoTxt2Rrvax7xhi9BiBBgW+l8egwPLeR2+TAeH9gIki2XsJ1owqpp8grzJRUv22OHSsJ0DGmtRssTQhoboC1KPC3BvAtrDd87vL3BaMZYdTogI4U9QWhe7Z3VkQgbCocHQaQMBsAAc/Z2z/4ZGMmzGBvPSEQm3qQ8ddyELFUulxH6JR6pO5ZE+SGamBpxp8/gBi6fbPSeh4pFpS6btFJA56VudDrq+Bp7XuNtpDxiW1YgiHI1FZQhWClRB0W5uTY0FLuhyHVl+gibTH+kBIO8Vmuaq6RINKAfPb8LnrM40/diX8/8/Crss+4DB29H+K6uZnqi8xtpPMnFhTP0uRAR7XWXYGwIjgQ1ioMcofnNJ4EOb59RtcrVkCGsDuLIUE/zdPaHZ/XZSzxBAZ8S5kmV9v+wnT+njy1pc1Alp8EdS/IBfg7sfyub/tB+S/+3k/J9/880CWsxcACZFlrxR6YPZ7NMjOGkILiUhhBlLSPz3TN9DT3GK25VHUoU/Lj7/7o/tBVK7h2ncPe3IlOTW5oDYYpl+rrdRaenam+1y5F/Yn//u43qA9xkNuz1s0IouBOfcmCSuwKZKi6057AhNGpi2EixRkLEAkzmtuGBBOYcIVDzAYZ4W8EDCnAMzW+W+MvM9hzJ42xfO2OxIRjPZfrjYvUx1S6uNaBwWUdKoJNvaxrHdAh6gvunhaQNjqXDmLM+B18zoDn9L2PHWtgvfvDH9/mxNf8Km2Aj+nmZwE5GGC63bM5OSv6/f25cx2R1/gjAHpPGt92ba68z9n26t/LWyeGB0Ws68bUgpoy4BAEwMr1rH8IpiRETzoz98yo8efqmhmDcGSqb3itgnA448+03TyBMFfh/puXXPdPO5+1xLK/tleq4UEYi4NnVqDe09VXlwzR57Q/twogVixPT3AAD8JtBziOK4NwoF/84K3zQH+pRIyl1xnAdDuexhV613017hmhn8oayTrTBNkPK5uZCA5Y5UqYEhD3olyAv2uSX3r/E93vpBpafubaajL+eCWVKRtiQ/YBf72j7kvVdIAQrAvZjoTrPs/Vyd656kRVZD1GX6RQyqgUmzlb+6KqGaLOrCcpquK83wPpRdP7fso357NAylTftinZPMD2Xf66jdZ5KQ3PiagpuerxRYFnLtXEB0iUTn0yBPDfnTMliaDKgI24WgA5UdQ7HieCten+93RfzkopWS0MmKF0RLxuhLMR2CxkDdOYWn4omClMV7rc7gSZHWmVzmW9uNGI89Wd7ldimnF00sJ16x/eLgIfGKY4c+32XYfNsbR1oLcJDyPVfuhY6+E5ywAsAnwr2WOMUx8BT9aWGGRKtoRz0hJbLoEhDIgUrlsIoOLg22rZrEzAOSqJ7KUz97YXr5NUVV4cQM5EsHmO59gAmplmC8YvRdg81T2Lx8GDcOeQnPDveFZ2gyoMg2tjvBFgSAKR8nePwqSNBqCZYZFr9liuo7hOzg69LDUrmGpSIdjzjMq/+qUP4V+20rOZLJnCZp50E83Oc54HfUuAHmfmxuYe0wTbncczLnQEVa6kXuuL5zm7h+QC/F2T3GVQbletuuPx8xp/BJunkDz62z/3EcbfngLmzv28jD+2FoQ2Yqbi3LFjpU7OItoxRs/DcMxBsVIHGAnrxdMcZHrXW11zQse+tiMH8QOeIsqAm2eHf2dEfZn0xzW8HMe/68NPZee0P7dybqUw+D01sIQzmluMP6ZmSGH5H18g/VE6OrjspS1g9QXzPUWn+vZ0X85KCU6Gx1lIEp53zPjLWXNsjb8E9vKpvmVDlimmF6HAXwDfwhkTjJo9uXoG/258zBh261iqbxwTnY3tFBB7XXaaexDrzdtwKjYQmQvHGkkvUqVWwv/XkNrEsM+qLq3EWLeMAX+vkffYH1DO6fbvSaWQAr8r2p2S9Jt1XFOK/fAnX/q/Tp85GKKempCLTFKm+jLXLQLNGj1k2NTxASUA0/hqMWuJPakAkZh02XNI1mOheFaYoG3+bSJ4WeqIGBzoX7fFKLsRyry46jIy4JkOIMZGW/har9JGtxtxQDYVNUdZpxjVm9a69AJI/+IXPwh/t+waLsJdt3SgDXzTnXW7Qd/091yAtVRZIGUHUBk6pc0dAhtEybRcPxGB+ntQLsDfNckV0aHMVbhfsXlSV1/GOc3lSi8FBqH3pCDubPiIfkuFQP3XzTwuRGnexhtzu1Lp0uju3OHwVY0/NtW3MmKQufPirbQYqen42Pb5nbIQ77XIIGA6lUYMI1b9LqKbXwkiPX03nAu2Gc+FozQRhoTNzmBYe8HR4Tt2WoACY4BVNY0IiUBM1iAjGDHAeGO9rMZfe2NFtIOIX/OSBbUd4PjC7EmeuoyiGH8hnY3oFiqFY0x17MzS2kvG32CqL7HeIsBOpbnURjNXl7H/TnPmtZ2+BTl5AyxyEes5JZhIVdkNBZAANbTmMujLMP72AE/Ip7+mPZMBiuMjrpt7EICEoxZUCXI9cf8nygfWR/Lj7k6dO6dcp9O0XpJqD4AnA4AVYMZ21J60Op5D3bMXq+btNjPUMb30c3D99EkP3Q8c/7qkvXNSNf7UvWKYSIlcESblgWY7PduRPsl0iFXnN1d2BD/3rMoiUR1iy5T6AeDvZsTwzwaaewhx3bLAbFyvDMuzDjhTIHdBJPKU3ciRegdgeg/JBfg7uazygDwDAX/NLquALCrinMxVH731L37jG/MNohcdWNd6UwpncyMPWlDsI9etFmZDPTb34Oa3it5S4wt2xswYAtvI48CSbdiXZRTAuldr/Bk0dEYm5Zyyj5aZxkfU9ilLEWhHB2lkE5z31GwhOB19KdMWRFK67QIVFC8ZDjiQYxoqVKqvXwem6KUW3PizosYC7gtLBvwFFhSfcpFrFIKlGffDfG4W+EupKuGeI85pYbgyjD+pmzZR9QX3jk0wTCNLkykCHwNZ6r3IDOEZf0FQwNSvGUXCPRttUlGn2+KslIxZ60hrr3QrlfZpADEQCFSkCp9MfDqCKuFQdX90BHSm9Gzelvu3s8HvWWJgMXtKAGtVhg4THIgBocD4w9P49DlGbyFmi+CNHkZrt3rS+D7xRff1z++aRAclXBk6RvCSqzcX9HrJSO6PXSLoWAd9mYyJtB8SgbCM8RfWqccOyAF2EbTGcmn7cZkD55LJ8BV8/lLwD9W97/r0tW8at1UiIJMxTCXY6zzwRwXNjRp/XizkXpEL8Hdi+fP3/Xfytgf/oDz05LuBbxeLnZDwoGpDIi18jmXwgvsPBfDXcxAl1qpL7ArJXvdl51vAAQL9t9yMoZkHGRgRwJrnKp27V7dvVTUAZ1dzj7zWSqhlBdf4K9M9mKkHa/yllenYyDz1VZ4lssvOwI4gIj4dYTGwGMOz7owb1tvatQUy46+oQUpFfa10WyRaHmppRjDkAI9Njo4vzTgaQZ57ZnXPdji3mbEcUy66Ny1NWYJnBKPGZisyjnVwNgg2z6rqp84F4w+/ZaorXTgnxMlKu2eq8cexDJqnBT2n4Y8cRIJkO7y3oHjlCBK6+giY+g3zva6+GACW74dMDS0bDCF0RAkKUKUI2jXXINmmMPfizrk/dbtuNhOBV4p159Praa3nzxnGIjcY8PHcu8PVl8I6Ie7Zkn73JPl+iEw+Fc6tTuOjOqUWacoMw9R8zqDMpmIvZ9g4Z3Tcb6ng/Kte+oLsM+jJM6/tBoa4Gh4wQbg6UJ9G4c+Ki/2VBYx4gH4t7CftryAM07JWMNvowU71hYYOiuFjhcsHlQwp/VENmHZ+u/qBnuYe1lrn0pSD7RemDrqVyQ6y9pRLqq8lF+DvxPK1hx8SEZHPe+/f6X63ymsnZM1SB7bNJEYyeS2VGYFMEfiYcoHPtfdVpvC/C8Da2TiozXyaq+jTY0/tF2JflfJ2meylc7oZv1C6hj5A5Rgim3k73QOb2s/4+9ATt31zPisk/G7ZXrnfP6IjrOL3VDe/wtnQ6Y+9FaO/kboYOhgxWQQRZCLp40+5fuJYvUYEkWGGONZ6crLyIx7fdIC1og2wzj3XUd94z5l0D+t3E2yeyHAoUsNJluYc09k2gZhrIV02MGIC468v61IDzRSbZ+/YSCAssg1zRwdLy7JAbsaOsNYrJsfaiH6PSrOonEcQkbopCjN31gAIBdglOTQuxt/O72a6GXv24o/drmtOxhkhpuT2OlnXDdEROeOPYbfW+5mC8oDU8rrmWtBPwNRWoJ4AwMri+ZOT8Zc2wk2/EUE4s8Yfkeo7Tbxe92mW00sdTPEFEMNaxxim22vRbAGqQWqxoFyNIsLUxNx63ykY8K7Aq05ZpeyIfG68w+uZ1pwR7OYyB4rAxEHt6b36zsOB+jrYze2H214cAxqhFAERRNOamPA17kW5AH/XJNiCy1ObqONLMiSSbH87avxljCSKFswvoT1DiUm5WD31BUcjAKq5R/lL/sYPv2t3qAYKT8H4E4J+L2I4iMzUA8CdiLpnjrSs93z0KdeczwrZMZqZtX4qliZX42+T7Tk7HI5r9jCt3ZSLrJFNxUTygW/xo954o1YdByJZDIegWxHAdBysFcOIYRgS+cxbYKibnq31UxEtJ+7ZKMN0KpxbiHWn9rwqtRxKIbRZBhB4pkHHgiGBOxv9Y7e/dHypmqJQTpZ6y8FW9KT66pIhHplMG4gYn1Cf7YVZ62029QoFVQodQTAc9vYUSEbq7Rq25UKwgUrnVP9NBVUSKpK/vzt1PXe4Z2/4lEf648NoD0NUBepTCh5TwkHbnZKDAwQLKtqd0XYG9FtMMzY+g+5Z+ax41ssZZEd/DgcQoYYHBdDMgNyq+aM64vYZARQXDHaGgXUcULI8kWclv27ax0S6SJeZTem6YfvZZy2/BH3v1GJ2YqZY6MUYDcJ1dERm+5WMP6b0hbHeqK6+sbkaE9Cp7fVLqu++XIC/axKscdKAU69SB+J7A/RWpqtv9iA7wLfdhxG4bjHq60r1pYfkc4ffbvzubt0zpXzLGn9Ut9HtXs0HrrlHC5CA5r5KhqsH/AtzeJyNPed5tBDvdWcR2wyubW7G8PUEB4yUMGpDDPWUtjFf9NqXqo/wtZ6ivkwE0XKsMUcpC0yE3z7hNdvMpihFCmjnANucvH5aTCPGwcBS6wUtKL6YTG4i3dZK4wv3noj6xkgzcc2XTLfmqb6IwV8yiaKDDPlYFmB6k6m+hdHtSA0309ohB7H4d3zWgaklMSVdMlx+okxBxMHaKg1P/c2w7koWFORkRRApvmP8tXcAK7CByb7tRjinmX4Lw4m1MBV1zyiwNtyndA0+5xUP96csm8EwzT004y8dMJxY/9SLwATd8KB0zAnG316ZF4jxV6yZYPsimSqjgZMhsQCs8E9ofG3DJMF1a2raxAST2iA3BIAVayroKShQE0BHM8jP2xFZrTqi5m1Y4ymQBQxtHvImASR93YggXvED83IAjO1X2hE+ez36eowNE/1iIhBm2p140PdelAvwd03iKRbMSFCAWQ2HWDyfV1LaCHzi6U7KqmZXOM59/9rg183XIGOsq2+iYx+kPNfeaKt4PiNlLYOY6gve76qAavH+/txhvTmdrAGWgTu9+Nkg1XXjfktK9fXMna+X43GY4EAOFN933y31CQ6+JUcJd24rp1wkMg66oOMOcw2HJPK5k1OPNxZxlXCw0vgIA8xiiEbd3kv30IBpec8QvWysNw5oDnq9TAlDGH/pvsyl4Qo4C2Wzhuh0kHNH4OtEqSZMF8M5FoHHAdN4/Ow52+49MbfnV1JAj32A9twEozkySgiWgdk4KZ4Wk3qZl+1gwFq7qy/ynO7s5d3gpcH4o5rw1N8Za+4RAKyxe8Zc97rZFTI0BZOqmtwMMzcGJnA2z3GmYl+IIBLR+Mj4pcxan4q6jMxzdhbJ5uaD5dbvi+VKCIJDzOxhgOarq2y+49kwe1Lhm1INowy9TLHQ8+dU+yvIeisbu1HM3DNKqlmr9DIRHCgHMUzJgBks66RsRwIwNe5ruH8uluaMA81Wjb9EMjij/ngWywX4O6fExe4Zahl/uKNTyrKm47z3sY/vz52l8TlOfmeIq0sYI6dq7jFN1W/vnnoGhvhBy1izgtzQqiLL4bjI3KdK9fWonJ0T/ITpcdf53JSEZ4XkZERJzBBPariVEsY4Gy3jjwPfdOxanxc1t+jfwUQvi2eFYtSoueNlw43mj93/cuC7hRhMbl8xdMNJI1J963QR3OC3zh1x6kvANNUV6g7Ng1GR8cdHnGPjpJlw6vWzULGBBp0N4LdXQDOxL9hdpPF7Vo5J/wKc0+GyG3sAWH94WUeUAXLiczrVuhVy6gv9FpmmEAOrZHKze7IRXIBH1ucXfy61p2gnDWc014BpdRb9uS0GPNNsoQAUoMDrmuZLwQGm9EWR9pnVPWOC5UE/ETX+9rpIU0G88Aa+F5/Tcc8IFI4smbwsUBqZf9aWqvP3TNgBQa8bAR0O+MtJBlwNUg1gEUHfYq1n7FZoPy2Dn6cJwvkFnDcCWPpNf+YAxQqu/BSh7IhSPx2PxZAMtuEDWQu53RlGP7vB3nPJBfg7o6QN0cH+MqJ8J0v17abS1QwHRkbTM6XYEKmRg2mjKeI8V2ZQt9W85SBSkoNnwfhDu/qm65avN8a59bLvUkHx08ofv9VvorMn188lHGNKRhkoB2Cl+noKgut10y8WrFN9i/RH72YenbRevRJ9bnxaVnrO9DtEpD6yMw7ytuVVwHxqHhNgD44Sf89ENMugN974cRMxtxmQ4Z2VAMTMBHiWM/7KVF8Pm4cAz4y0du53twUDx/J7PjNAsQly487GQ1Nef9XTIMMrwzX+QlAlgrxMIC0Hio/nETIuiFThWOOPYPwt9dzlee2LBfaCYuh9zu60mCHtY5cS2a2OOqBWDdIn5UEREbl19wlgfDiJmonUZ0oGsFYLsRcX6bazynZhGH9xD/U0k7FsVia9uyyD4GTN3ZTkYHD+rL1k6q+XsCTyciX1Xy2pAxP4WjeDcI71Fu0nhoFlrPWkq3jQcsrWOs+m5my/hlz5Ggy+QJ6Wf3L//0X+q1t/ufvdtXhGRZS/RRFi6oBQL1PFtDsZlqaxHzIM0zYjmQHYDV/hwvgz5QL8XZNAzKiRGn+DKWGl6OP0Hrb9JhXX/6CNpNLtF+xFxvvB2nzTymf79Ns/BxwgdNYNhyDqboihXMP7UJpMXS+Okj12Rlfa6/lBqbsMMnLtq7VKL+KuX2rI4l/rVrcrbDPPI9ba2eim+prRcoeDaBjNvVPPNvtQT4hxNnbYPFA35Piceda7YUANROrVO/2AzuboXKmQcwLAELHAENwAi2s9pDbNuMF+dVWzPKPRTHSeTEAM/ruzgE+V1j7KakMcnTBlYTRDx7ecDRz4+6Zb/0BERL708NPIbPnU0H3ZPcDxxQ38ba/xsuG6MTU8MFgGnlTfGQdilr3fTTBqPOx7q4zMP5x+c/y0f4C2g9gNnIrh1CdqByC1g3glW/CUqOtYMbBE+sCfoRs5JvepGH95cw8oaLxzbbDC/fl1S9efCQA+u+S/ue//1f9SsBV0EC7s5UxdxqJLPQSGmKWg+CBcImCF/RDxFeo9ZYp2ALPecjvg+BHBlCxLfhAgdykP/9j/1B1rydcd/pW8bn6P/P5bb+l/OQDFFlhLeCpl1oJI/7rbZRDCeJwVnAecQ6CeuWd5uRJMPwWgWL1F1Ua89+QC/F2TcIX7HbfBbO4RNhV+sWsjsHfuFpsnFHL9wONAZGT4YRy4bqOpvsVmnB26B0hkbe49555HfRPjD7yeRppNOLPuUIMZwshIc4/ntOoOTpZR6BhLEUprncX+YhTPSKtCrmqqu5Gnwon0N/Ps8zBuxjdjKy09AWA44y+ynwKeQxiuq9Nojqaai5GcR7v1EZFIv2Ykpzcxx3o36gutVQMwjam+BMhTse76c1tdfRMoQKy3aDTjbOr8t/GMmv1j40593YmZSPU161ni5/7a6X3FOfVlOBpvBTa4AxxfitpjDMid21+Mc2vrViaF0AoqYFe0vRf/2Ls+3Jk6zfDHnvmP5Q1P/0V513RkNXM2r8+5rVjoIbBDdBvVs7gK0Md7pa9/z2Y22KnM/lCcn2544KvxF5oXEY61Zfs5GoswAZ3hwMmA5PZ6/qy8ctp/TkREsTQtjcIDWBPDCjb0kxBrvSy1wpT8sPQLZz+FPSlnOopwwYE0jgjoNL7y4Ht+qDvWEq5rveHTO1h3OqAVgrjr1f74FExKElUFct3iIMvuJNZ60BGU7Wzop1MFXp+ncgH+zijRSfN0xo3KVafo+Bd79miD0QGR5Gz84vuP1Pdf+iCQMrGrDHEnbawbsk8mCUZWrdK7jvXSNiQgKRzziXQuU+eksQ6xrq6+I+yMncv6RfPb+OMp8bqMsFjMXELSPfOD3NaGiDn1dtRXBCgWbAF/jnQPq2ZIzxDRc0+O9KKUlu4zmqN+8oDcOzX+KMafg3VnAX9Uyqt5fJyRE4HmIrABOYhZqm++3pBmV/EXV41F+pLXRszX26nArT2paiNShdQtsDcwJR17JdFwa3QvTgCYT7fGIvCxeD6+1u2u4/hzGoGqsns2k8Zn/WziObP24u/5mffuz63u2ZUc5HF5iGMSGWyghdiTSgCLAiSMwOdVZIYA4FkJhmSMv57NbKWjYWP1d1JX3zl1TaUYNUX6I8SCattuXCmCohMzBCicL+xr1ylmxhvBS2Y/LDIuKB1hlXAg9FNkaRZgLdbsylovfACxrGUuIjI5mntQzWQa7z/wa/+6O9aSFwqeIpxKxFhBEd5en6cJLvNisTS5hiz18T2Mv3WOJ398oexOr81878kF+DujtFIvEbHqdzGRjf3zwlLCRHyg5f7BcUfnPDX+akAiCMqoaY3vSWlIsIy/FFXhJdX4G2P8+dkZtjw47XegPreUHc7YJ7OMhJGTb3NahifjKG0GuyN1YDvA9sIwsPYYNb3nTOmnCiRHor61g8hcN81K4de7ARRTBtj2Yp17t6uv8YzG69afejLAEAZongowZI7ptv3JLcZfZAwgANPacHSAH75cab0erh2RJrN3WoRjXaYgMqClleIzUhgbY3+NBuHq4GcQZPZUL64IDjgBdsb+Kgv3RwCQ0Mvm7yacNB9gmo6/RN2KB0USM6S+bhgQXNhfrtqtYX2v6Rp6yijo3wDuSfk988wdwJB0/THG3/ZaMP44kPs49n3rS9RnOIiUlhuu17kGQyeWLKDjCHYbTCQOfAtTF8Eo5hk30oyZUitrEURj9FNuRwg8PvlYx5esSQVVaqUI6CC2352ngePj8qfu+6vwd9PpacYfcd2jpP0/jOoC9NaeQAXCLP+QD/QnPwfX65a9fios5PkqF+DvnLJHoe8ODfXetJJgFPvu0Tsfq+YeHvYXPaI6geNxPEzJE9VcWo25e9ci7/7ovwop1ZeogyDasXY099iLWENzG4AGLGPK++3rK4fGj8gUN1QvYGqkboJip27iEcTknIahGvjDdUTV3IOJ9JtdM1F2RXpGmLRRiylJdWBMk+PfDUcfLcptBkXA67bUdTxTSpnDMRblZFOOTngN+g0B/tSeFGv7hHMgQIG4TnCnPncQi3Tb0VRfhs1TsKCobnxi2BGOkiHM/rC4jq9kkPFXgndUPUtDt8ZadVD6YxHEczD+/LUN/UE4vR7jnkaxqevvrMZfLZmrFGkeDMnqUK24zZz24jzwuh1gf3AM1KsRns6VcZ1MCvjjGVyROUitt+OYP3Lnj6fPoKBKuGchpR5PWYWCNtcmRvCSGb3mevl4RPyep+ZDPHMtkRAMgN0ReGXSs81yJa5GETXjD1vrZXCAeM6e/IB9RocH+mOHxdLLxHopru00KRu28xwtVsMo6p4ZdgTF+DtKtDeJ9WZl6DAA+70oF+DvrFJvDPDIpQZSTrbYO0aQVr51cw9oAscnSZIy8KQ/7s1ARC9dYO12z4x6b5AsOdgb1g1b428u1hu0mZsMU1xGOzCOyDNyq/mZq2kGISXooGv9/fr5ncgBjjLS3MPbZbWoZ5kB7R0DbNkBuZladRn+Ahoia6af8nPnIojZGW2fEcy1ydFHzqhD5UlTzoxl0HgMPzufmwFMLb3MgJbhuuUpYcjvDvflap3UOCbqWwAKel/rjF+MGn+c0bxzVgxgWnWnJdgZppN2vU73cNmN4WDU9hpTfQnA1GDAu+yvYr1hae17ezEOgL3khfc7hqdrUzWs8rKBqOtWAn9Mp9N8bg2eYam+4Y/ABtabE8qmrtnQUHCgaK42K6ceYUGVZV4i8EfV+DvO/cvrK+RX10/YPsNTL1NER/C5zyh5CQeP/VWnbqZyJQxLs7RhCJam4R8yjL+4lxL6aTECiOmoDECf2K2xVh1w3cpU34nQT61vXL3wk7pjh8UITEyEjojnroIiMTjQZfy19TJl+6n9kGnsVoK1gYXPMEwzO+BS429XLsDfGWWkxp+FsDNsnlKyuk5dx9pgV5xIICr4AONvb8NFfslcbErZ+M4BrDb3lJRRuMOt7V8o489iUYFnZKXxEbJf6Ph6xQG/nE4Kxt+E5EwqGVnrtvGHAxKJJZBvxiJ9Q8JMayfAEIu5Fkb1wLf83CJ9rDjKztwW488DmLpYApZeL4+7ewRj6hB57YzfS/WlDPb63DHANAwP94xosLHkz5mIdowdDAftrPWcjQzk3uY8keGJOEpz8Zxy9UBrsJZqUtE97t43RvVyHfxk5j+UXVoZkHvP/mJ0a9ncg+g8aTvWfdnfU3q2nwb+JDsO1dxDnXusQwWweSqnnrE/jfsSavwh171i/GlbCK6fmh/x+B4D0CfQMa57ihUc3mH0et2dluvE3LpuSEBnsPP3gHiaJOYH2AmEEXo9AaY4GGLW1KZsoNxXCOAZ1WU1OyD+nJW6dVIlU6B7EpiWBciNrTfg9K5JJkM3poZ2BHimJIFveEO8KEQzPrNWcLxnRPOhokEZ19XXG0y69+QC/F2TIMutKkLKHN9k/N1Mqq82VDwpiHsbF2S47hW37sioIoi04qlmOs7L3c7cY2mfZcoFkwp3/J7hmKNzDzP+9py03uSuKau5zc+uG4e0jCBCJmUEsUt3D0RiCqkn7Ew7OljNkG1g/kpFEHnQMtNPc2m4IsZfPTfn1Ichfkbyko1lDLDwHVUXBwRyLECBYd2F75hFvYHhKbVp02tErTqTZUCBb0XEWdcV6jgbq7nWHanh5sH796zw5eM5YCBSYJGrNwcYf5Q+BRyCXRlO9d2kumfI3LWzEe4008WwcuoJdqunRMx2hHgW3pHHv6fsldJPVmCCqN8lAw5iBOdlVefO1A7bdEMGOvaCKobt5ymer1hQKbUcb0wyeTJ01vCiA38BdASuWxgfmdz4un3WOO6uGn9GankEa5Ej5MFPqsu9ke2Bpn3quVM9cR7cNwOnEOi4fdO4bhTjrwjiQazg5m2+/nVoB3QI3WqcY6rv3LNh2nMzNf6stc6Alr6mTWNBuHtRLsDfWSU8LJ4uqwYrxZletK7F49VN9dX1u3JNOc6uYhxrhxEz3NU3GJ71DvHGp//V7th4z9xoUxH1jTX+wGse7d78safqdpAN6ss5fM7KIFi7BzRf975QGPwrmeadnHo/iGTXAUU21HASobmHOk63UUTtlHP6aSda3nOsdVffong+tpbG0mTyVF/ufu91KGN0o8cAs2r8MU1RrHSPsPawdLQwZzD+tnWHAFiLBQIxzkaRIp3VFepFy/XxS3bGYBCua7CnBiQR3KZYmuGlvmfXnuo7HIRrB5P6NUjT5wHkZdKqLFYvw6YOmQOxQdcBZ7emtE/rtAg2kAHAdEerZ6FM9YUca0Ovh3ewbsjldWf2lFqvXxHjow3jqANq1iYj1ttksKBSGh9hMxfPysNXH+2OtexWhhVcAWAesPYscpqgzWrYMEjjpLjWY6MpQq9bgXrKjijBMyIwYcw9UUBMDeRwtYJzECmBQP2Zz4sTGcFupsFGMeZ4RND22yv5QYC9eURnm5voxJyAZqJxpVXS6FSB1+epXIC/axKsQ6w/1Xc1igWrD+njMeNDROZqrRUMOEH32Lvzl0VvCUGi8btzx/GzlL/jlnQYf1YBVUZKBzSmfayg4Vo4t/H9vljNZBhJBVgNeebju2NHMy5GCSFDMsr429ZbWZcRmzs4iLXhiaXUlyk6urtaB/gzgJhUa4WPOItoEKlz7rrGX1EP012rjmL81QAYKqZeZxzEEsDazuh40A6AZTH2GMNzL92D0OuJdRfm7stipfpSzka+3uaMKdFx6s1aUKdh3/c7xdcAFsVOWWon6xTnju0p7eP/+PLpwAEGWOi6AZCL1WKBZ7ijE9ZbxUohAjLeshu2kwaOtM6PSAmbrP0Q1etqZAx6MvfMAGtjZ2Koxl+LlSL9ZyV2WfWlfZaMv+OowOZBHOvcZv6Ex35SREQ+5c474LlX47p50to5Ns75HPeYVeWtyW1lLTh+e7SbiOClle1B1fgrwRRPcw/9HlOn2Fzr2ytB3EhpowwIZN/rGylRtMv48x0y2EP94OXV9n3D9mMCYRa7lUBTa98UWG87oOOlxp8tF+DvrFJEJpiRZrHgE6X6djsAjaWs7mkxpN5JulqnZY9h20K9KeEHGExNKjbjvAA9kV4knnSPsVTfMLW5Zm4/vjv0Ax+77ZsTkJtL9R18VlwdYi0gJ6Q58emP2abuKRY8nOqLbeb63FLRfMaxtpi5BMNhoMZfuDa2XmcArNpB7A6Pvzu9lRzrvlTpi+pvJrW8qnsG1fizCorjxt9UOTo44y8DDQqWAbTedgVj1h6nDAAWDnJbHWJTXSGHHUHoqT1Q87H1of4BRurGqrkTM4RP9c0d6/BKBAfmPP0RW+s7ezEDvhmbXy/waq0JpplM/IbTQSx1DLfWw1h9Pjzjr2y2EI60P3d93RgQyLpnKYsAT5kPwbuXf+iH4DHWc5bmRkCBOPn2woNI5xTvGVg+GpMWHztYz/l+iDVFsZ5xHGCvSQIquwiuZ+nI1thGHv9frzckJb+ujYgDWOeoQa5nP4ov8PplH/3/iYjIJ37sbdURuyVDFmtuxucw/OJg+/XOPduLeaDZXo9MMOnekwvwd0YZ6U5r1eYZ6erLKLx1J9VkXIhNyZP+uOPEQc5tdI4P9BaxLNaGSEjGNvQDf/V1AwywcO5OlsG8B3r20mSGWZpnjBoXTEfWsJgLZ4ObvDCAjv/YPsOdDSv9sRscMItL45t5xRLY3hXpOxs2GEJ0zRxM40vg20hAx7hnTNMmB8vADCYNslIYdkeZ2iQE6LhYqb4OlmbslK50ZL/G3/HzK9NoHtNd3UY2i2E0x8L9PgcxdZ685mj5znXFdERg5MzylqvfkH1GQFCppiSRgjhZupUAuefCUeLYhoGdYTFZcN26DgQAs7cIHZFSCPN3W8cupaqLTaW11/qNae5RBlXyBkDYnpQHPgkmklVGIbwSjD9XpDP6GoYN4mAbJjCD2FPOIqNz1+x7hnVX2n4MYGql+qZSKwyDK2ffZ581x7azFvwg9/FvJPsnjCrrOw95rDfgQ5h7CmV3HuW1H/je+HfQdcsVVq5Ez5LSs4H1YmSzxRIzYFO545xhrTP2uhGov9T425UL8HdNAjn4MaLjj1hbzBDEiPml5RUiIvJtd7/OOHbPiBljMe39WuQ5HWmKsjfBZ8/v6g7P0vhYnbKXno1IsSFOWQF6onOSh05tFVAlJNX4O2dE7eZlik14xhh/0zTzNrvhbIRAAefoaKZfMNp7U9dzp1Rf3PjL2BlgrZYc+Mv/8LJSPPVxXHUZgyOV4X4ORoyR4tPt7GamGROOscl0DMYfPj4yiGINUyBSbzinsS4QpHHzIFyW6gvWs7RA7mHDs7fW1bVZCwALUhc7NSVHAibcnuIbr5t7PCY5Q/BH3/kRaKxIul4r8Yynmkg+Nk+rmDl0zYe7jWYv5Ng0KulJYq2bQRUmYB32hZIpiYytHevENsSZRMFez3UE5tzmjnX+2b60U32ZGn8poEEYE8U9+22f/fKUQkilrDru2RmBv9HSPBaAFX8xc92qGssEGOIM4tX6CScZxMYiZvASkXwv1uMxP6cIGhOlCFpZ3eO16/uyRr3sszstwbPL9u6ZTz9J1E9YGQQRtd6CjmUyk6wyL8Pg/fNTLsDfNQnDavGl8RkRHZARIyLynvUTRETkZ5dXV8fpOXkprcon49BPbvxx0v5tv+vwz7uj9T2jcb/hbnw5+KYBvAVwrKNT4akpaRVQJeScwN9uV99rnjvVTfNJWfSWmjva63UEEUtHq/XTguoYw8iiIs47xl+3Vt12+Kt1SgwuAvib1jptlGl4oAtjs/c9rRdtxPD1caygCNrwINsLiDp70Xi0GA7AuceATlXMHJjZqinJ3LMi2q5Z0b1UldVict8Q429daqM5pI9Cjo5ZuJ9gIhXCBOP29ixkd52UDVQ+af/6HT3gTwFYE7/edgvQE3vxVLFbkcBEqSM086w7PDH+BspHZMdjGFyGjohOPcEKnkvAlGHNZawUT2AjsDRx+8tM+/TUPTPSRs3GIeX40o6g7In83P/sf/D5CjDF1/o6F7qVAopPLz/7a4/3Jt/+77QSTZYmbn8l2297gwpeGgB7GM909Y1BuMn4rDHSAkwZ9pjBfEvdkBH7qxwerhuRll69fRN+yx5L0/ccoHVA7VTfrcGGO6CD2vvp+NHeZPZis3QFHoS7F+UC/J1RWgwsSPa6NjFpVTJVNkA/bWE7Befy2TPwkE0tMf4ccw9Gy2e1KVWbQe98IvvLt4mU4NucMf72G4ts3xIRFQmL7wLnoxh/nk0wbLp2oeTePXnuKu9prQEJTgoHkRpq1D1zpFxM2WaOjU/Fgo20T8ZJm3gjaDV/N+FYm4Apz+YxdQQ4eQa+UUZMDe6nekyd62Y6OoxzaugXwnCtWQYBtAXumQG+MQyseA5Gqm/PsbbSZKjC2HvH7jk66rfNEcDa/k2BIbVzynQS9EjcE4xnBAur7Tjm3eHK2SjTRj3F70WUiiDWegzi4V19Q+B1iTWUOJl2ApAM0Byv+yj4xtQBLfYFpilKWUZhXYUDsKScW9lfPTDE2pOE0BE7zT2wrsABMHWAvQUL/ZEH75P7b22/3cPAikAMfs+uQ97yM+/bn3vU7jQbbJSftaUszcOwgq2ATgTYib3cSmvv7aeTAWBNguuI/awFQrcW3doh9XQGYkKQUrdt/9hefXtxYgXvP6dWaZ50z/nU8OOx4sGxsccDbIfhy5VkMuHr5V6UC/B3RklRX565ZheOxRk1iYFlHRs3/jwyTJseuG6jqQO6KHf1Ozo/azGNP0JK5ax+P8L4G0mRTjX+fOce1roLAHsu6+7htHgjEjcwN1erbpO5djZQxl+2pRNOmtkoAjX+rFQTopzCtNMNmTGCpmmmdZ2pWz3NPQwHEy/hkMbOMeUCmbsdjOKaexzC5Prk9mfe6UoHgZYlu1UbsOB1y0HuU6X69n53ndbuYUFZ7Nax2qgIWNveE+YJf86s8V3nVgOmhYOIsQzq8+Oc0yVMvr2BgyF7zYOwW+YPnFr6b3WB3Lx+On6zACQIpqS1pzA1/qoayToo1QsOGCyoidBPJtAcnXrHuVNi2RE46Kx2k+0NJj37+oy/fqm6QZt3J/2RC4SFtR7sfeCaLMY9IzIuqmeFaGSTfBFfwNkM+ob1xvg5MahyCqD5Jp2Qqf7TuRcv6HU3CAorw8w1yijEJmFdm1kF4aKdTtidBhuaec7uRbkAf9clDoYDd/j6QWM6ACU3dq5Ota9cg5Kolw/2S/auTf+6DQFYw40i/OnZkwVIuOauWSmYY91OA+zKYJqyFQXEx44p75uoz9GSlJLvkyoljJq8rSMYMMQuTo06Olb6I27wT0YEsQvEGEygyIaC6sVtf1hGDHDqmk3Nism6IyKvlm5c4y1DU1Z962XPYPc45ppp2gUtr9rXjWFwxc6JRI0/M/X8RIy/3nXXgEMCJJjnzDDYBxh/zN4yXje2zRjsBwcUYBr/wNeqHdBhQO5iToLhkBpG1elQL3/8J/pzD5TtsK7rww/eF88MOMA2Nx/QWddVAVjhXjEgd73emBp/JUtTNzzodtbdAdiRU097cXovMSUJm9kVQKxtvyXuhwTjL6b6Es/ZIMngFDKc6msw1zD7Kwe5Y28UaK3X5Zg4Brx/L94NyFBAjHpOiQBiee7MfnhWmCjWKdbXjWhyYR0y1uLcv26LkeqburXzTOzj3CBYa2QtMCB3rI2Y+TlMWaF7Ty7A31ll3KnPEHohnNMpBySyIV0lUYMZJ1OYkBFUMEMIGe3wqrvxVdtax+kxi8ATEjfNSjlikbBkSOTX7cXLR+G5/TX+tuN4jagBOSfwNxUgOXsm8xBYawHNOCBRpnuIEI6SYXhSKasWqwWMXqYapLUhwLB5TMafsykKLDFFp06RhnRXBLAsRk3fsc6+L0nHYkykOvJKNXQpnfqsa3nv3OvUcl/TgByIEenr1tVq4EOBbzvH7v5uDWDlKWFItNxieTKdJ1uCrPx1x0HEOuumcy/3lX7TAeVslKl0zq6+ns7fsVxHTPUF7tkOE+mz3vcP4bmtu4SyoLR83qtegg0WMZmYePkIw/ZjANMCdJymY0focBY9sVIIQ+kS9DnN71mYG0/1tVh3ULZHKJcwBzuE2JviWtdvbv9g6lmWXcepWr/PRantpxW0YURUPcsioEMxJZ1swzJ1M0sRB+0Is1YdA9AbupXJHEi6Fbd5z0oQi3PXjD9vABGtjWhmABK+XmL1eewINWvBpmYyTTy+wr0qF+DvjGI5SrCYnQR5g91i7S29uh1L3UGRkUee+lXXuCApTcbD+OtHKHfn3mX89QCJMeCvNP5mwjkV0QaYB5AI122UnWFct27tsTG5eahRyZq9+MXTyMYEkfiaa2aR5c4vSp3d6lQTjJFsRRCD04KxoPS3ZqYjnuWcMrURldHNP+vW8ZkUnfBHnd7dx0IMdqqjcH/WdIhgpVSpTVldIQdbkdhXy4g1pVuN6zadKOLcbbSlgb9YGDt+Shy/dtJcARPGWdgJhDEpPovUzT36a119oVhv2BNrOfXh0AAQU4DsM8OCGs0cKBiD+Wf78+sZP7I+LCLcuU/Fq0jSrX0mdwKwpgKgp+5ZDAio5h5IrbqoI9JLDJyDDFObkczoVof9ZDUAYsQsGcLrdbNeHDj3OcSs3UodwAKw+ABivdaBMzJSyz2pvpH1RTT32Ms0wVLq679iUzmgiU7dEI+x/c7pLdQBmZFGW/pYvW7IFljLZUyEMVYpAnC9iA5eBuAPz9awayNegD9LLsDfNcnnffC7ut+JaslVc22HEQMs9llKZ0WpWxCI8TYs+OJf/H8AR2/LSKrvqCGhWXPlke5b7+xPLQYzhJHCSdNG4AI09xip86JZBt+3fAE9fhoyoq5ReXdZmoNzF0wk1lk7RXp27tRvr4zhaUbxOtdlt8sq7yyEd0UAMMR4zmJ6FsGusKPlHGjJ3u91rz4OFemfyndg4y+7bjHiTAASU33dmTRlS7/11uuyl6ZM1RdMQEJg8/TSZKx6uxw7o3/slujGI8lBJNKDTKN5e+ua02T2AmFQV18xrns4NghyiySnlglMWOzYBCg5QHKiuYcJIm3ygRf8uu5wu4h88618ahU4/bH1ddsgJt3W0k8oa06v9RKsZRzEmsHOFJFP5QCUfu91mjcca6bGn5Wejdbb1ddtHqiLvRrBJEy35kBQ7NrO3LNzyCDAbu2HzLFKAOtUzT0wOyKQKwIDC2ffL4Nr3f4OZkfkrOCcyc3K4+sL8wNfu4T1YtkwviOigXrL7qS6tY+A3JleD2t9s2EQX2EHtLw097DlAvxdk7zw6vHud1Lti4P88//rb6GOv+5sxkxUxdqI+rWgBptU7B2b+K4n1Xe8uYcRzdrktz/59ztTWzUcCDFSVe6ujAG2EzXuTh3uzCz/3d1/nx4f5rZAzx6DC2onD8x9ThmL1/nAWrueEpNyUQPFsJNmRS9HHURwM1+NUgTCMEMGI4g2aAmKAb6drC5jz/gzdAjVKMK454wBVqboUOm2Zn0cBmgunNNJAaZoGp9+j+kQu390+ONoLFPFzGsm9in2dWa9WPMx6bZWAPKKSPWtQaS+TDuONcT4i7bfnL8S98wCPN/+ki/tjrcbJ2ESnoWPrA9JAuhDQMapI8DndBUFFhXlADC9XgOmkfFHpF4m5lo6VrfztxXQYVLDza6+Mza34VhTYjWyoQKIYe48ZRXZz/qNAQC581Tj2L35rXvGiLXWcSlTy7kaf3VQJGUt4IzkBMSo39AZP5mBCQL4MwDTxPjr64jDFOyIcMGwgPFxfDr+E/Jg/1xPKUagnuqsa0rQT1iw3CyPwwTqM3t/+7vX1Vdd82DyUQx40ydngOZ7Ty7A3xlFN/f41Je+sPPtXMymAYxi32u24ChUfDKBDLBgNPsNV6/M0QCrQcdPuPrA/twG/Z6T3PibpyluiEidl6HObsqxvi33db7cntty0nqG67MBuHPL0nbSEJl3gOauWA6ii3XHR/ECyG0x/piul57UJqs+4EQ4G5bhmtJk8AjkECN5qq8bE/20U32x67YOXjdrbiZibjkb/fITO2sdcjbyMZNi8+AdrJ3R8t1D9+ZO1yWl+jKRej8IZAm15k0wpPWOJe39tPvLMxZUAN2Ye1Y71j52Rs7moRh/FmOPCA5YV7n3mE6G3ZkCsGPrrcvqXdOdLnUEdN2M82Oae4TxkwVIgEBzHtAJLzjInevW7bVz7lp3zgNBX5vxh9vriRmKA+wnYVp9+Jddw8LU7qDtumPDAFJmNnEND7Z7brLHCIBeBcKqz5pzj4FI1vHRGn86rbSseYsFVdLfT64v6H7/pGIE6lfquhmHRIMqxp7iq8vIM5Lzc5uzV0RHpOHWerverIXnqlyAvzPKWMdOw/BEHTzReLhhgHWAGDOt6gZlhLnm6VRozS3zLD+4/Hpu8GBzjzISdow4b/f8ikhB9Mxvrjdc9oDm3nodXWV7G37v2ON253qS4/iMx3YkDGMFh+dMNZFBWVQ7dV6YFB+rSQWaEpaBjhLmRlgGNXjmSxv1BCYMdoUDPMuNoO0VqI+TzSeSggwM4y+7ZcHJw4NRZWrT8cidPclwNiiw1rjnqTA2aDQbhufwg0+kP0anfpSleUOyGM9pEAbIWWSSj64PWR/tDFUOYrheB56RbHc8JzrEeu5ZsdZX4zNkvAW+ve6xH+wMrQEsT7qt5zldV93satNLTO3W4nf/7je+Sq6ILJmy0dY8TQLvSVbgIv7u7tTpS+Z664xU57ZuvsYTt4la10YtctipFyMQRjRkOU1XTq8OPo3u9mT4HDtYl8AhbsOkwISem8/2CGN0zVt0T7LLbvj0UwS5e+VKdOmLQ6CP4TpCPyvfvXxR9/unFWsvHmP8RUZyN1C/F7xkyijU+qnPrFWfF52/Y1OiHbEabSU35QSBg+ehXIC/M0pK9fUAfzXDIaaAEo5OjFhqQ6xruLYj7ePCOGmO+QFm3P7cyQj6i1dfy04uIn7wbCrui2b8IU1Lxhh/iSXgue/TzppBoJgROQ88vYmRSsdI6ehwcxuGhCdtVGoDDJ06Z/w5wBB16sFB7AN/dSmCmEpHpFWZnU4pAMxzzwcNMCMoAp97jPqmt7g6VLWDGKWb7pFudbxXB/Ubup11wz1XgET6EJjbWuug0bzLlBx0XB11z5g0mb0OsSN69xF5sv+cG89pEKjGn3pO/9zd3ynff/X56dBUqm+4Xgz4ZjAkYPaXsRfHumeMfqqfM4zx1w7ife6HvqczdTvThOs2al03vERNWOux0RkF/B3HfO6nPCqf/rJjgxKqy33sAq0BiX7tMRGRxQomEWvdCoR10/g0K3gb/9jT/ZrQaZYAYOk3Q1CEzzRhUuqvDjecbqllOLNpJACork9V+gJZL7XtxzQWqQMT+jdgILcJ/DmDUWjWQpYZEOun4rZfAKmu1ikGBW5KEsY1FkD8C3f/vfh3vAfd59Qo8+LoUm/5Gv3maDp4mZcrQeZfrf3sVIHX56lcgL8zSjRirNtw5+ndsavhpKXFjoNA6/ZXHjXu0KmvrpHxBzynpwGwfKIZf8+st4rP9iVdN5+k1INEg061L/B7Pg/Vi3OClgXQbBx6b3LXnM8OWdX/eRlJG431u7J7xqSshiEWWIsaf05HJwKeh+xd/Vl78toImRxdM+00GYQZchz/KS/hyjccpzaes2BAAedupYbDRrMBeEbbuTuzKNuvNly762VdK5A7b17UW29hrTtZBlGv1+zWfqqKlWZ8mlQTxtGJpS8Ga/OMpP1mI3/hLbvfTftZPR9yBuH3LTLL4/KQ/ME7/7n86voJx/fgcgD6uuE6In3HeE4ZGyawx0IdL6QOlcVw2OT1H/4BeG7fXl47WdEOozY5g9UCMP5K229mOp0aQZUX3H//9hcBhmT2V/jtnbpnchX/SoKN3b60DTcCOl22oXKs56CP8Wd8NQI6cPkIUfemSFlFdOOTD34yfJ5NaZxjX0Xk6+U7rr4yfvaxWy/tTpvqgFrPWW8vTvthUk9EQMea25G1EJZJ1hQGDapYtaWpciVpPNrVNw/ohPqfDOOv+5VrlLZeR+75W5fPFhGRn1peqwZie5IZvHTZzFY5AMx+Op5u0BE4wzTNrd/EbeZ7US7A3xklMf74aLuZlkVs5uFhfvjBo+HzlDyQPgSjAxaIM16PDXFugwHGN/dgihGbc0dQ9TRGMze8qJUycQZcWWvFM7e3MclQc4/BNTUBdPHrkrIAPd3VN5y7o55luGcZi8kTefXU2bMAT6ZeyU66CNrpVINAQVdQTr3ZKKI7PH7pkRfcz69c67c56rxYDFG81koN3DFFls0uhpBTv01ppPrixqMRLScYElmgGXU2dpt7DOqubhdD7ehsYAjBqBkN6OzKh36hM3Wb8QfVPZP6uqdj95yFTS+vU9SPo10Mo7PhKAdA1RfcYSK9+PavwuOH7AD9noORbL3TD0ys6bpJriMYJncWFAnnTjDXRNXSZM5dxN7PRptdLWBH4XDOtBg6Iv0OhoWeN2Jh9NN715cg396dnx5V7IdvW14VP/upR78KOcBxtNl0oDNUfTMGP2OpFEZH+IK+9T0jGFh7qb7MerHYir39UD3Hc1HzFkszTvOtq+NZGZG9DB0qiKcOGf/CGMl2XUaCDW2AbwzZJj0r+kAg0GwE4S41/my5AH9nlaBcHY61VRibiOg8eOv43f/jV3yaiIh859WXq6kx5ZqlGV8H+8+ae10T8OcCQ0YdsW1Tmx2g425aFTJ3OyLE/K7ZNX+K+nqu4Gw5DJuclfHXpZEPHt5i1BASAQmPqjZTEBlDIkScLee2M7XZ1AQHHUsQKD94z/A0GMme6KWZOoAwa4sxjJisO+KeGc7Gio6PDKo0dmbSiyzAFNyTjo7O9p3AftJdfbusFiul3sNwMFgGqKOj7jeXnr178P2P9fEjPRMHuYdTkUck1BUyGQ6I7AWTOiPVfpSIkh4dMeakRdvPMbdm/jOSAFM+cLus9XM2MevNSkFEWcFqjsgIocCzeMZq7nDuPFg7q8BrF+y16mK7nHorqNKbeqy5x2QEVVLHToQBX9itjtphFskAFrfNbwQvi8/2xV/aZ11VfbOCFQzNHUFu9RYBhpSsuzy7CvNNTZCbWOsZ0Aymjeq092gzM809mmvyGn2QOIW1HzKB1+0wBmCKBsLy/YwP+uqml3DjI53qG7vc40CzvZ4JsPcelAvwd0aZSyOGkJjXbnYAwtPR7jsc01Vvy/3yM8trtgNhzJDreaR6Tlb6jivVd5Q9VhR45qYeTJE2onh4AVVlgJ0h1TcexvrtaEDnGuRFt997fQcXUelo/D1f1zUaf570bLPoLQWGbDJUg7QGsBg2j37G07rHDAn9Laau0F5jEkRSis6MzpimttgVDHNtJ9V3hDVH1dAy07t7Q9NKiYy1LNW3x2rZCYRBCiQA7HVqOVqjJl9v+D3bP3TPydr0y2o9Z4CjY92z9CF0jlqYYFyqzcMDUCJSsamzY3dVRJo7dhsnWMF77FaG8ZfY+xvYDT1noWMncJq7c1sH4HVrddz9AxhzYyCSFfSdGf1UXHPZRh4/IoC/OdWhCmsPTS23mi0wDFOrmUw3UJ+ltXtAKMPXcKT6phqkzHPW1hG4OHXwGl58+sleb+DU6p4m24/X61apFeTMq/RsouaaNQOTbpuum34HYytqP8jV5T4e52aILOWsR/GlZwf5+i94pfoXqCN2SqVwAR09NQj85ZaTiKRaf/XnO3Nnzxmz3u49uQB/Z5TEzvA41kYNLRRhlzx6GR4RtI5Cipbf/PJZtPHnUM5lgwxWYg2e6UBtJEcZNGIKQILbjGsDzDW3UwIYYrMz9o/9kmus7zycmg6nAXqAP/UPj/GYBqf3iCieXVC8Pro5t5nuQaSa7DBq+o51rZ+C8Yx0CbOeUxg80+LC1+vfHQ1XBqw17pknHY0zmi2gGbtuq9SNbHInt3fuNZva19W3Zvz1xi8Wu/VEqb59pmMNxDDNPSyWwY2x901W8FGw5h7t/bRbE1IFZE7F+IM7nqs5qrqMXqeekMl0lECJ103rVuJ3732lq5/09QnMECadv9ZBkQXlYPyFd+PJ7chq6KcUlyAACQfwl7Gg5gD+EM+4xfhjAojBzynqCyJnYLL3SWldny4cUdyX7NkEbplVPgKVzAcr9kOm8VF+lR0gdwRrccaf1fmbIgwYwag1ftQDsKyatwQIpJ5jveaeembMb8TECKoQ1+3hB48knk96OJXtSuVKejNb9rYn28MRCMsCE5Zv21uvg77GPSgX4O+Msg/EdBasZWhE43EstanrpA3We+scfP9jqSOvpzx+T/ZYmj2jPWxK3g6vZp2X4nVPRoC//ULF+NzhPP/oM98SP+vdkjc+829cc5ZzX4vcebLzheRgsqILPI+AtVYK4nB6kWNuxgCznCzUsV6W2hCguoRZjjHhpJVF4CnZM9iJaHnW1Retr2P8tkTgwoGY7FqDKT6LYvyl9CJ1nC7jzwKBiPUWzm+u13qPbWiC++BefPsuduzmx0ba5kSASGlNnGYvz8AomAVVC8W6M2ox9RhYi+o8merr4cCfCZ7BDId6L47NKqD0x7HA616qb3cdWIFTV2q5oZ+660XbfnmqLwKGWEGVeO6eTqei7S+MdWcGk6ggnFXKANzPRCRvloWJ2QzG1SgiX+tUqu9IvTWn+fcz73lsm/v47zuSmvkx5y7WNafuGQ9y2xlhHtZdAmnjPQBLrUgGcuPBy3Lu4zuBYbq/X+qAT2zCQ3X1zV+D3O0A+ycRw7+jWHdxiPWsoFkL1j1DdGs7u6g/Pj3jsawQQ2rZuW5nLWXyLJYL8HdGGelOa3Z/JKJwcYROp4rRS5Txlx60++SuiIh87fxWeO7G0Xc/1Yw/TyhttLlHqkM1Qt/3GjGDBv8Aw1SDIZ7oa8n4e/uaurVd95a6v2nu/xbEiescQER8YO8R5D7KUFFug/HHdBK00vfwVDolDNvQiCCijo6ddoADEpPJMuDTbX1dx2uDnWHd2YApmCYT1moGGuYF2felfc/6jrFUae2TTHK1BvCtF1QxnA0PA8tgtXRZBhaQAj5nTz/Dg7H5x4bBHkEkQHeNsL8GZd0BHZm1bqb69uZWIFD86WHdQSq/7ehAqb4FSB7u2QGZPAZVkPM05jaf03jw/anDetOTO5xTfcuiU9/TEWI093CkjeYNMsI9R2q3toNRvSwZi4HF1QG1wJDwB74feuwIy26Fa4eJZnLnbB7oTE7A+PPK9/7ce7O5v/3qt8TPMP1kMEzBuTXAVab6Uow/p39Y6qd5Ur/YVQqKCcIZh4y+aWewldZOMNeG7f0Bmcz9kPDpresGBqNWw75iAohmUCTUbgVLzKyS1Fvuo2LAoX3dOkPvUbkAf2cUO3UAFLOAPU5vnQ3nFDbAlvpB+z2H7xMRkU+dP9Cde//gnY9V1NdT92yU8ZeU4IE2RtadYubYAcactHnguk07HRgZsesxPYe1c9fozp8l5peu62nqMnq6yh2/uQcUY79bg9RUdzUL3Acj1msBMosURc3B1AEz8kql23pA8hrIoYrA79Q7sYy7fOq2c4owkayakjhDVJ1bAGAmbfDzwSiYSbSNPM5Zj+/pp2mHYXrdXe5N4I9hdpyx691qFYHfhGHd6fGfMn1IREQeXT66OzYwAhcF9Ya/MNZdbQNxqeVHifXOtH7vgr3ba7TXOEnX1ng2QQxpydabJ62K129H2+8oqU7c8R0MMK2D5Z76qfpe0Q2AzPpdzH5Yn3uP3arTH0dqBWd2KxVA3IYMMP5uy33wPPUhfDq4zFJ5Sh6UP3PnfxeOikx8fHHY6xlzLaQ/hjWPMLDMBhs4861iJOu9uLsnWaUvBtd6fM7QWr8qgBjAJIYpeQagOZyexaylguXFuyLIM2DtxURgYqdkCNrcI2Pf6+OgqcLO7KJ7US7A3xllhBlipqPF28nQ0JO6gCOI0bFOD+eD053+nIAgj+lIqu9oe+9Y488qYu5SroTsNmuADrAN90R9w3S+cw/OVGAK6GvQLYw9KGfYwtPcRhdEVHT640gnZg8TSaQRxQNnXi2gmKovaKxVNL0oGr1Ksue1A+TsRcuBcy8ZDpTsNNjAnNM2M6RfBL6+bq7gisPg1+m0IUVnVsXzu82LDMc6RaxxhoOYTn2fiSSSG73RuR0F1sCaRhbjD2PU7DmnGJihxXxeu3M7gT/DDgnyv//YX94fq4DixLpjnte964bo1nwvz1Iwu46OVd8Zl6Eaf9Z68zQAcjAls9IXEQwhUsstRg3REE8HdKp3UVaLBZ4BYnZrj0ERrAzCcbwngBgGGyU/oEaC+X4aUzCRqbe537W+TH5keT1ytsZBGufosDvjpYDAs9oOQDXMmt3TGgwBjrAN9WaE5c9pBvzBDFOfDaOucnonsMeABkBxyjAnxfhLfz8uL0zHuhEAacf2o+wI5VuBgdPFumeU7bdDEiBq9KWSt0rXgM3VcswS9zXuRbkAf2eUGGn21FwTy7HGQaDdtIWeYl8MBXVDkjf34GU01TexAep7dv/USRfZYTggYhfs3QRiedbOLTv30dngz39Syr2Sa9bNI8p//NTyqDF77VJwYKCeZeZs5Oe1P7flpIGyLVUzZZWK+h7UO5h+WoznJGf8dQANixHDsHniZfMAf5YRE64bbrBroBhmtRjGX4zAQr/bCEyAYK2+p7MCrtBUOuv4MRuRcdKMiHeXbWiAIcnwHBQ4Wq6mDsApGQDURzjFqfWlXboCPIPmt1+0PLE/swoORGeD6Oq71zG9y6yV/Ak7HgZnJE+WjqDEr9d1U5QgTB1Q+zsYoLCmbyr2mPoNrlpQOPBn1dtF96Q9Zi5X94wH6LOgykCqr35Oma6+5dwMi1yUn/On7vwheC4tXjX14quPiIjIS6ekS1YhAIUBgD1nroUu0oxet4K+ePCy7jo+qWe+t9brACJl+xn6DQUdV2Otx+vG2J0i8jeuvtp8/9rEVI3bb3AflPPpbXsdz/awygqhjL01nW5mh+FdgT2g470pF+DvjBIUuMmqgHPy9YOGR3SSYk+ONa7Ya+PvpkSn+ppgSC8ta1CBx/Fz3dX3geXju2NHu/GZqSrxFQf+XLXHiqgtK3v1mK5bOZ816hOfFY/xp57uydHDeqdRBLaZ18GB7OR2pWalMCmIKTCh30QjzuGlZqUch+8D9DGF0CqMTdVG9DO5LeYaIvEKu4rASzU3V7+rdqwn0lkQSddNswxWtLlH9rvD/kAAMVnNWyyVLh3eMJoHi0v39PpqrfVAdBDGaHYAAt0vYDaM9S3MuT2+WHtKt9GW0stxjc4BkGDWev2sMM095kOe/ng8AFoTybsXW6Bl/HB/asvBc6RuWin5CG43l0zJ7Bp41jq4p4gd0Ims4C4TKegvJxATm3voQH1wrPfHZiyoorMuImm96DfDdevXRpyL4GUCawkQaMTXcEYovvKpf1ofyvirJbu1NHv3bKnvWeo6DogBcnNdx3PbMZsZBXIGG7uJ8Zz12NQ2449Yb+osbsv96bg34OvuBZO4ciX6nU0/OZp7cKy5MHdtd6LNPVa1F+uADlwj0CxFcEbf71ksF+DvWSA++v1muGZKgkht2mP8gewKb4fXPbl/eXr384zx5wEker+tI9MIADbcDXlvbgD4C8XzR87duQGGe2YBYM/pGn9daTu3PdGpTa57FsRRJy/7jslw6Iw0mEip+yMBnjmaVOzWPxUBGDmWETPrj3YlMZIHIv3eyKuZZoyClgGsTRKCUlhB8TryitY9WzK9nJghyXBFQSS91uOHu2OPX90BQ9BUXw9DtKdOHWs9pI3O09q3ewf2pG6qLzjey/jb706LAc2rpFueCtl7AQlctyYdESbHgT8b5MZl2rnuvVO36ioyqZtpT7EAiT64r2cVYQFTC6xlyigEAItn/MVglLGfUUEVDZjGP7DfnXfGJZ53S69TIFKxlzNsaMuOYOXuU65hpq0KgxmS7ouj5m0WCIvjiSDcaMmQ+KikshtpvWFBFateHANg5fAE5psu+lmIbEUi1XfQPxyTtn5iAoie+tBWoy2quYcFNMeADpoxofZiRepBawTmaz1+uD/2HpUL8HcmWY16JcU3OuMtxT6wGYvezDvK9RpTfd/w2Pfufr5KMsxtRk3vt58m1dfH5hlN9bWMP/BYek0MAM1+xl9N/0+Hvl7lvHeF3BgsOvcAO2OVdO5c/altvOng4ZGw2AzGk6qyWHPHT7vjLRAp6SrQMVZ3Xl++BWbUWIYEw6bmuaZmSvxojT+UiWQ2H2KA4u3azNae1DP+NOOv1m/de2bdF6qgeJhbM+A3xl8PKDbrngUnbdCR6NY9s4A/HS3HQG7LFOzhX8Nae2c/nADwbY9F3nPMtf2UnA28HIAVAGQ6pqeshZRKF4/TYbeWtVvZnWGvhEOfKWmstxnXTyOAaQYBFY0ijh/1UqTbOoKp8TcZgET3t++lXlLpjxbo2NsPj597M3Si7WYBplR2UQ7EIKzeNT7js3g1zvwdf6hx7H15fH40+/cnPnQ/xfgzgRxQ8tIXeQMgBvgzWXdM6QtHcw9zTXhAJH1I1AbSwF2ZWg787rV43TsnVtC92JuerQa1Dt2b2pybSWu3As69QLu21+finomUQWHzCNn5HiVkNl2AP0suwN+Z5Ji2EBxrR/2uqCSM6ACUtlCDZ4ldgc19llRfTYE3KfSOTYmQuHlMB/mK138iN3g01XfPkICjIiKzA0Sya0HhMsWNJZy7dk6fvam+/UcJ3cx50Yw/j/Fodln1pG4aIHe/2cJVNTfTlW4y5wajl2a9Eh1BRJkhYxHraZ55DWlGL5l7dpTZcBDxSL265kR6UTo/j2Os9ZNOt93Gd43HGmCfCGaJ1ZAlzdhhIoVnPGPWevZ06+DgWs9Abp3Wzq91lP03alNHsNdpRljsM3zupJejs6GPg+6njpR6iTNrx1rfsw7oaKaE4RKe0w8++Fr58PpQcVbYc7YY+mmmQKA6qNKvk6eYx0X9Ln1uzfHh1X3dQmBD69bttVuKYE8/+QI6MJtn4Dk5DqwD/Wg3Y5G6xEz0OYDHJD3jfpk+/kHXuB994N/JjzNNMRhE+VgeNvVOrTrOnrVAIGK9xXNQz3yXPVbbEVSneWOto00qMv1VgUhMYOIMYtqdxHqzDgkGB6zmHpy9Ho5vBMK6e0rSTzG4QgQvzS71LsD03pEL8HcmOT5owbn1ADGG8RcfNMIA0w/qCkY/z9jcw2rXnn+h5+iMza+jl//Rb/511Nho/HlpZgOpA/q6TC6ndKCT4LpGlqYFFgO10J+zMg1E29dV1EaIVZ4qjlCfDxH1TYEJa0PF5nZHEKNjrAGJ8AdqeNrn3YtAmrV5CNbdbimCjlipvgy7YjZBAZAZYuwbM+NsWIYr7JxqR8eRUrYL1uK1x7Ki0qGGVpfx12bdDXf1BQMLWckPDZz21vpew6juzJZ+YfaHdiAMK/w/APyF9EdR4Lyj83f2LaLGX6kjtC3TZ3CNBRDDtV3m++WLb/8FbrCV6uvKAqifM0SvW00HgvTXeg626uMget10SsE6e5Z+msD9TJ+fOXfn3JelLuFAiQFyJzvCU36CYPwNZsmMyXHOX1pekc7H+Ks9uh207QPs6fMIwBD2k+lrUJ11i7llEpjxt1g2TNgPCeDPYAX300Y33bYac0PXLZzBOdab8buZephhtFW+Cy0Zkl3ycN3wvdi2O/eDIkvcU9Jwphlf8osNdusF+DPlAvydSVbRxp+nY6e1IeJOfZlqEs7pOBytMeNTjj+2vM41TiQpdpG0KRXf6BxhzBHTFPgH7iPv2yBgatVRCIKndIkrbXQyjD9Y1LnZANh1K+f28Ye3d4ClcDyDKXvFjm0/p+y5nbLI8ifIY8c/lrv7UwcDzIj6Uoy/7Hpx6R4ZC0qteTTVN2MAUSlhyUk7sM/ajmMN8rC27/KsO7N+F5FeZDo6IHCofXYLSEDrvFhNAxin3mLzoKCjyb7vXfPeTYVTpPU909HyXtporSOeuXsc8/jTdzpjB2Uv1RcYboJv6eCdqdPYlF6k9nN0P3Uy/pKOsAAsTD/F6bqztU5ikrtyixpiBVWYLq2pSUV+HseD9lgputZoyebp2632lcL3JKvMS7KZef2UanID68UALeOo7nqp9RNnu9c6gunqG7P2Q4qvo0nFtViIIFMyFz546QqqGDVvQ3DggJRBMAJZvlTfbe5J2bDwelM6AgUNxfZzUNDRqi2d9DoA/J1opa0/87/I8n1vzt974gO7Y6xSTrHZBdP5Oz/qzmdqZNwPlb0eX4FrEm9Zfc+6JUNUfeboIzD2ehTDV7ik+ppyAf7OJMuaopee1MsU0bGcDSblQuShB46KMdH3e5OPReEOndSpPVk0Bd5DYx9N9Q31TuaZrh8wmnIRGDmZAYeOVddtNgHT7gGOrx6wV11z87efUTn33buxcwvPogV43l73na5MR7hYFQaAxXT13QlMPPxzf2t/sHlPCXaFUYogMWrQdA8NhhBOvRHYgGvMqFntwERHTDYPAzpuosEftM6exUrZjog4G5bxl9AJlEVepvpudfbAOlbWuWP3rM2UROfOnI3o3GKBAe8XbEcHTxu10vh+6QNPiojIz7/vY/CpmQGdZR843NsPGcfaKsLP1KqLNf70vQdTpLMxcbn1n9P4PIV1kpUi2B87UjdWJK11D+Aa7IjZquMJ3LMv+fB3iojIZ7z/e6pZ+6m+KXPAqvGHAqaZzUwwapJeNwC0bmMSI+jraCxiM2o6QZWl1k+UVTNYG7FsUDYRfkoEVq/BVX3tR35w93Or3m6qq+kDa5Ng+mk7QP56/EJndiPoG38HAtDnYyZVr7j7nFrXjen8HadWz3b4u9fcwwg4c7XqwssYJWD6W98o8w/86fzN9/00NHnO0uSIAvWJbB/BxJA64IyJhUcE/dQrlZJ8pLjUtY8LB8J8gfp7US7A35lE1ysx2TxwzTZvRCc59b/h1S85DgOdtNFUkzfMv9z87N0PfhY0t4jYzDVPgWdCwvgPPrHPeLLFUI7U3BbLIEjH+MvWhAe8swwJeLD6ayreQTalMRnbwnsH7xx9wLldZSxt1E4vYhyd3DnVcuuj7Wf4ePh6rU+Uk2X9blC/GenVOl0ZLxZssXm41CZ2ZUfQcvCeea6bBcQw7GCb8YfRkvIuhhbrjmcZwJ11RV83w9kAmURW/a7hoAbq4DXWer+w9vaHtV4ISfOrsT/0P3XmbjPgoS7S8bfzklJ9FcsgOw/esQ5/IwBWkAiGHDRzDasp6QrCibYj+MBEAARuHW7Jt/7Oz5X/4ff+hgTCEcd59OlfiX/DNUhzWvD2oq8byvjzBsJCIK0uRbCA9nruGG8vhI7IdCO6L6i09mpyRAy7E/UVMgl+DlM3dh1MU96RT/joT+5+nkDHdL7JpsADE6tRR70/dBD4Gyi7IaLWeuzqe3z3OBwMJnlst+OX8jHqb6scSSYGyD0TwN+pGH+WPP7U7c7kO/rJeV5sqZTsW44Mndx2A2t5qqyFFFzB92L72jDP6b0nF+DvTDLK5rFrQRHRqAg6Hg3f/9OXf1oCZbpOVt3F8FRyZ7p/f+qldhD/x7tfp7+xP37QEQsOyS9+8OP02D1HBzvAXtS3N1Qz/jxpowPnrtaTxQxh78lPLJ/On0NDhldw59xLdgUDv2odMdLVN0uZoACJbW7jTD/21DOduQ1WSezmRxh/HuNxqQ0oV/H8bDwDgNVzwmIZf0TXTNMAQ2uP7XWezM6tNb4djOrWobIcHXUstHPlakX6yfTs1rGbYtQ0Yuox7QsGhpigo+DdkH118tTf1viP/Rp0ACvtkLFh7HPvrbewH1rPmXTXul0bEXNOl6xBWQCwNMOB12+M6GwPVlYFxPy+3/ga+Xff8IpoT7g7WIM6wto9dfYCmm47Zc+pdezGaW6vswXkwDazPiBRc20v/bELNNfnxugli23IMOAj4y92sMbBDF0qZVyXlue1D7Bb86X0RWC9xLR2v269UkXX8kwdEHwz9JOnmcwkU7Td+wx4I4BIMdfaa93DXIt6nfAzrgMu+vn3Po7Navr0Pt2awLceI9kKODMZOm08Aq9Zq8tupDqNcGq5WdLoIpZcgL8zybJq8I2/DakeU53qi7FSglOvDCeWGdJ4uEbANTRF5/jlLQ1MK/kuEDOm0m9Nis3DHmqg0cN2gOOLA1BYstqI/PwRwLqWVF98U/ujz3yz/J5n/gtq+lMbjJxsz8q2iV0RKjdjBZ+s8zceCQsdrC399KGPPd2Z2gLfmIiz8btBACylmqjjEcXzLQMsGVB4apMH+EsGlHrPUxtxoKuvnpwpsmw2RUEZNUut10VU+YkeGBINV31C+Fq3OjCizT1sRycURR/UPd209hpQyGv89RjwNVAMn5qaNTrExGH2C/fj98zaT3uZ6anLvB0c6GYOmGs9PGf7c1tlN3LgD2WYjgJ/xp4C237WM+46HYmABJjGd/xycBDVWu92CbMAU3zBzhYABt5zcz6qNI+1pwTHuuPUGzVvKTHqf8W5u2vVqsvIBABHbea2TJ1OzEHWxt+4eIgdNbkiazwFljuxSkFh9lcYElLqFfjmqPGH1rzNvmPsxb17thg+VqpBCgDNS3jOul+lpfvbDfuLCdRbwcsEmHamNnQjc90s3xQFa82yG+pqoWzqHHTE7fV7US7A35lkWdf0QDlSN/fy2iGjOXxH27pw9HLQkNg7dPcL6hsxUqw/7mzm3WLn6NyeNBnLaGbGG6l0QXqFsQ2mJCW7acbgWGl19cXNqf9l+TJ5Sh6kpt/bcLuuArxh7h8g/O6/cfXVnRnLYxubGihWkWQf+GbV0MJ0xKLGMrV9bOMPA8As55RJCbOilxz4tonrUTHAWqYIvMlcA/V6dBZsMKSnW617hqYp588Rz2oR67pF429/aCaTFQhz7Ifb1P3npPMxmP7YYlfg0fIxxp9H9joKU86GBfx1A4gGaJgdhnc2wnXv6ZfFsGF0zbxuOtueHQBICvo6ZKccgJ+VgjH+1h7wB+s3qxQBsieFPwzntvecBfDMyzaMS50HHcN1XSy9Conh1FMdYoOvEdJGtzWPIMWGfjuVTL1a44aCW4SxYUK6LH/uqVadfs7w4IAdaGPWeq6bJ0l3up8Rtmc/EbZfBoDFyfcHm+sFX6vxNxbr7RTkgZ7taDFrqU7O6kjln2j5CTvbAw/CeersLWru2MxkUqUJwICO1dDuvKSPZ69cgL8zybqkRWmlXuJdwqzIK+4gamptHIXWcLiWzXh/7jwlbGNk6A2ioyTYhhyZNOpQwcOt9CJC9sAQYPL4p6e5R1LeI2nCdiH2c9b4G1oPIvLE7f1aj1OMQB5/9xPyQnVevc1YsuAAvWqM53SlDNe2fuoCOdZ1ZUoRGAys8Dt6jnFg1LTYPH32WBhkgEjA7w4OzSSOe7Zr/OGO9WQU3/ek+ubOBgqGWIGJnlOvnDBHqq+YujX8zbA0a90K1+8yGH/jdif6nBlzC3Lu7b0cqUGa/vYDh1YgjOki7ekUn5qEtUDuHuOvBt9W0P7Kjh1BsymlNsHMXJ+koO9Aky99vNG0djAYlQGDsUMsvtZt5xQ7Ra3XZ0NHdPckI6U+BsKgy1bvh2gJh9QI0Gl37taLwxl/kT1OpNRHsFbMVn5jAi5Xsz4zkeqbszzDQdG92LJBcP8wB4HwK1j6h/M0wUE4e0/CQaQENFt2AKYjMoAdbLRVHv93v/FVwLniMoGkk7xsB3PdzFm34b3ARHs/ZBpt2YxklCGabnkGNHcDYWG96KnBgPE9Khfg75Rye78LnpZVEuPPBv464y3GX6xlwDBqlOEUUpvg6MB1LB8i6huNLm2IYYaESzKD/cAfKzg6XuBvF3zDAVNPBNLejNGh+6m+162bR7pIj8uq/k+OXO3oJy0G840JDtiGL8qCsll3qNhdMzuDjN82T7pmSG89GBHn+Adev8tXS9MwmsPzCiyiCGAZYG/3AEsNAuVObi9ibQQmUMA0U+v1de859dFIdNa8jUewuiF309n8YC3KGO59njWy0fodTX+0Gqr0Rl6loMf9cuzgOxE2wbpTuB/RFEkdWKBld/Jq7jkLDoDOhsmu6AUm0udzSAlXgVdYP21r7O79j3a+b4/36OPIzjCDIj5ZUbszuy7BQ9RrHWNwmV3uu/opfZ53a0eDKtY+zrPHrNTy/nqz9nH83ltdWmFAQdK1jWmjVN3YYEdch/TA/e0UTKYkbj9lQCd43VezSYWnXImvzEuaNNyz9Nv7GTo1yA0z99V39JWKOgIM6JgAO2EHlEDzSdZf59bbADtP5tGCsqnjynBkaxy/YgUm8GC5yBF/CMM10Nwl88R7Zvg516Q5nutyAf5OKUQ+ua7xNxsG2BXKMjCiIv46CvHsOnOHCGJ3mpNLr8YfmnLhkiYrBZPVKAJPjQ9rYq431L79pJyNkUi/K9W3Bv7y2iXXq5z3gNb77+JgvS3799KsxRlH9sDaXjmAjlj6iCnYu73OBw8jxwJDNifXXScPC2ysDUMgOtZwygVvNOfdaT0g+Z5jTUReZ+Pcu9ctvNaGpwjeDXmywLfu3MfPr4pNJaaK95x6A7RkOuvGWppGx05fmgzjbLQFTalvsVt7hdj30m17MtwBcUc3zgi7da/GHxgIa3Ww7q31yWCIojpar6cMAyFBpHDdPv7Qa6B5g8yWg6nOYk/M9RJrQTltq8jy6OiILEU6pI3q5xUFua2gSm9ubT/VNnMfKA42s8H+YgITrtqtxlonnl2rxEyqeds/ziEw4INO1GVyQJ/pWkgGnVN/0QO5nazBL0RMIAeUMDTLkCH0k5Vuy9yz9Cyn9GxYP1nlJ2IDoL5EIMfqYO2oL8gEu6+XhdD79VZwAAsg5tNYAD2vI1LgFJjSJIZg92xV4L5O9UUDG5Ze50oR3HtyAf5OKerheveLPm/3q3nHzhqI6eufmv2VHB1fGh9qSCw7BvuodNNkzCLwRARxRBFkrLkDZQTo8d7rZhcUxyR3AP2AhGdubSiYXX27rJQxuS3tTtGf9fa/PHRslAXl+YWrqDo4LrB4754hwF/NHkvDMYZEbkiEF8bRqQ2Rnkymo6NB587MZv0uNI1PO/UHYZ81cz0Rqb4JnuTTbe0iycqY6oyfTVYKCIZ0CtCj98xk/EHOZdiLraAK1hHPdDa6QHHnrLqfW6mXfCqdL5A1CvxJc27M2Wivma6OMbsh6/qOHdm+YKUpox2oRRJwNU+pa2af4TBWamXPjkAL0OtrPnuCUplgjL/Mrg3Pl35er64vWJ6XmNHrBARTrM9nvBxA2Hdmy7F2BAcYsWrerqivke2Hxj1DMwdWYG3Ssn+8r3j9J1bfWgTfi+Oe4gra1nsOVc/S8NF8JUOMQFgnCGfZT4wNYwNg5WetoXuBsP760cFPR0WAMTEau4mn8Wf2DxT4q6/5DNow2xHCqGpuvHbrFLHtSe+HqI7R9jrDML0H5QL8XZP0Gjho4M9SK3BtHmMzZmpo6bnRiE6XJfDkB7rzt4U3/pYV3xAxJ7A1t97wPI+OZXjiYl33tXhtzjzI+EtdfR3An5rbBP68TAFQ9oyNebkzdOy+X32c22al9IZaIDchw6kDYYi1XlADTBmeM97pNJ6xo65QdJyLoQtouE5GUAWNnC762AfeVbH0skSmJDA+BHSsSD/IVsyc+sxJA1PprHSRLkvAfk7gBhuG4clUhYpr3eXUWywo/DnrHHz/0wBANZhr/bTROKh+CwSB8kH4Nbc6V6pPu+MTyM2PT2CtPqC+bg7GH1jjL2u0ZaTS9YHDeBIuGQNQDBBpW2+jjD/cOU2DJlElHLrNh0Igy2BTUwFnbXOnVbg73mLAC37ddssodAP1Y8DfauhW9J5ln0fWFx5MCuMfvP8WcKac9J6D+7af+8L764ZPVFaVq6vvcaxm/GUkDTCgY7HvIcbfmuu3rBQBnOqr92KcbWjVd0b34sUMOCdd0RUjzVhE5MXLR5DRHela/NvXaruTa4qijwiCb5avMDP3bFsvWRkpcL2pYJLdkRjFQqwslwvwZ8kF+Dup4ItsXfPC/aXgBcWNGlpEPQANAuFdDPcBrPXq+mqq5R3xQt0HxpDwg0zrnafSedx6gB4/kla1ncFxtKN4vmS1x/j5h1LCujX+rk85r+t19INLMoE1tHzF72tHhzxCPXd8Zpl0Wwcjx9ARE2U0H+eejXpKXSdNaqN5YmqGRMfacLJQA0o44CkdoHYQU+QVuGfBcDVSfeHIqRkt71+3dG0Mo7sLZthoxgIbf1fVcCbdw+qop06uM3dY6zX7nmmQYX8Bu265HaBTffn98FXTMXD3Ow4/1Jl7MGBjpUhvgnT13Wf8daa2mi0wTCSp73nUdQTjLxWeZxyd+p4zkjp/8wFAs2O6hICOV7DnVNdPFcWUDO+iNrNLLWcsTcOG6ZaYqfekdB6I/VPbfjAQM9gZ10r1TX+DKaeS1psOJKLPmXXNr1usoMpa/dE/gK+r7xYUybZSvRfzLCj1IXweEZxmUn2Nz3011/igb5h7MfQ6Yj+le+603/aks4Yn4y+mTvFLAjhp6Sd4T9Gy6Vgn4w9lBesgnD7zpN/QoG8NOl5q/NlyAf6uSXqbbA/4u4JrOKj3orOBOPVWVAV0rAdTVkekFXmNn8NKwjH33SM77M56MO9Zd7xhNHMHqFl3qDEXDIllnUwgB5j8+OIqCF6nGeedmK+P8TeaItLdLzvHDnNbjL+5Q+HqrfWeTEXUVv+NdRLMxxRntz9opxYUNGc8vDXeMbf6d19H1I4OnCajgb+Z7+pr6ghHjT/922m9bhZ4JgB6q74gyDasnxMUtAwv9dxMtDxjOIbAEtzIRk99IsMTBDxXww44DkeDeGnM1x3eKiIir5w+vD/U0Nvceq/XWzoOzgxZjWLDaLOGZufvbtZDbT+h+k0DWIEJk3fNRPWTE8gZ2MvNe0441vYJbefRtXnrGstHJjeYKhxF64gAQhEBHaXf8LmtoEpI9cXXul2/C3WsjT0BkLRe1DFBBpZmYcYAFsGs1frp6Z2SLS7pPePFPZskPaNM8NJlP8WgrUHsEAbI0fqJYHAF/3BOoP4C2hF2pgmja9prvV9vd687LScnx5p7B7QadhK+4ictx4DdQx/9uXRIAXWrUT5iRu1t0etlpHRYnl6dxvfmDn+owTNjM997cgH+Tigfu323/6VNVll363f1yRUWyyA4OviDqscnpwtzrNvGg/9hQ9OLlkZnkW6KzgBL4eN3UhdCVwRytNaKRd8vjt2cOhoSWY1gXAaae4R7UhbuT+d2fXKMIu3NcM2R5J28rGfWfcZF3sjGRVOox4aoO5Ve5GCYmilhIRWOqY+jfze4mZvRS80e45lvcFrVUjs6nFgO4hZ1JwywrKMwCBxapSeYToIxPciIvKKOdakbE0uz59xa3fxwwzVdW6OmkaeDYkxrQ5mOtiANgI5nYDtZ3dIXA/Xi9upRQuN3dCNylL2gSr+2ogVy69qIaOC1TstiGDFmqu8Qm6cv+8CfH5Dwgtx0OppIvO66aRN+z6xAWK98hC6VUgNo/XO3nHper2drFK7fVe/F1J3azS4Cy26IxJqGGSMZJTjIJD+/vgo7X1BmsHZr/LesCvgD7Kd43eraod2nLAYm1PlqUAUsRWClPyLPaZntwTD+LBY6Q0qxQO4EOmLrzdvV1+5gfTMyWX8Rwcs02rBbUfsrs2EIkNtiU6MBa8XSNFN9CR0hxV9Dpb2ex3IB/k4od+7ii8xKW9DS903DFwxqLeUg1sZA38kaMzxHZLEYDpmgkVdevuvfvif+fSz8Sx5rNNXXTPHBjrXGGlqzi/GXFLuH6bhXywnAkAZkueZU3965B0MnGC5/+Ms/LX727VdfvTs2Lyjurynpqc2zrqmjsAVgwfW/1HnPhAEWDU+DPdbbzBfLiBG1/lCwxXDS+oCCcuqnA61t9rpmIg+KxeSOAup1qxvfcTioW62IdW+9xdSm/LwTWItNbTJioLtQnzvs6BiNSbwsg+rYIPOsqeV69ywy1wZqiIrIew+v4MfvpCAyBcWtb+L1CS2guAAsdo9vAa54+uM8JwArrHU4ZXU4gOi55wZgSnTstE8IBLAy/VU/p/1OzG27tQuw67qMZuMklJHsC0zs6idHoJ67VzWIhNdcS+BaBDEO+jeAAetpEpFJ/sQz34SedFc+4favQN/LSwnhe3FiQTmCKmuy19MBdQkHh4/mqXuW1fgLQEyvlNNe5gB+3Wzd2tERRjBoYgCsa6UhdGSvVjBxXh965Vcax+b3lFRiBpGw3gwyQ3et2v5h0m8OvT7ccOr5LZercybJI/H1o3XVjdS3lSOT2jQZBlQfoe8x10bcnZ7xFxS7vXTxxiS83FWOyms+4YX0+NFU3xgtMzo99Us5tVLpQDHSjPGh9WasT3fqNQ0YkLyJzumle+TCMf+Nn/ZS+Yt3/10REfm4PLg/tnB06F+xmzrQA7C04co397DuuceIsfSbt/lQGNV1rA3HGO0SZtXvYsTqTst0pYtgiMUMQfV6I0UHremWXTcUMG1G2sFIvxEIi4AEAZhaNSW7e8YOI6bL+OucV782or3WA7saXeuehlN6Pdyd7tuOxhynzSJHWFDhO5YtgDL+MgdxUo0iuswUKxCG6Qh9T0z7y7HeGNllcvfEBJpxFlSQ960vrsb39yQ7WI4GdMx7Bq57Da7lnb+3VF80TdnUrQSIZK03R0CHEbPZAsr4U78tBv6IWnVlYOOn19diJw3I1dxpGFLclsn2uppisu5QsVhM2VqFI2HqPZ4YkoA/veYdgQmqxIwFcmMp9bpDbJw66qf+5FZdx1NJ/4i17cac+4emlxozYTazGHYntV6CjtD7GRr0bQSy0Jrclr3O6NZ7US7A3ymFiKT06nfhXX21swEW3BWlSBw5+Rab51TSddJ6oOM11vjT4quTN5jqayjXJCgg4d3QRlgG4Xen9fKUpOYofefUL70afz2Hl0o/MqRk/H3Ra1+qPu1Fy21Hh5faeESaDkT2mCs33EirmsPZOB0dlBkS11v5PlazLRUz129ihsTSYKXgUj9n4RpgKWFhTBq/gOwMywDLUn0786dgknFGvWe809W3x3BIpSuMuRnDVY0PuqGvn4z1Frv6dqfeFVctJ/Xv/lof0Ovq3Dwg1D4ggYPclnR/jZkepDQTzB5z6CfNgjKCeDiA5bQjom713HPjus141/EfXj5TRET+27v/W3VCKOBp28xsinSuIlBGsgroZABYOov9A8TR1dwQiLQLvmFBODeYYQWs4VRf9flsAX+9uXObedRSfHq9L/6NBsHX7G8e5PY8Z1agPmvEiJY0slh3VCCs9g97zForeMmASPUYfXA0KJIk1SkE5s4yNvpfP6WYzDWiVp3ZFwBkoVt2BlPCwd5TwGelUZpnjR+DpS+yE/KQDO4duQB/Z5IMxbaAPzBFJy/qHR60vuwpdtQAu44afz2x6pVkn3evm5/xp/EPDxYyLfVmTI03GH/olR5l/CXD06EyDPbXu9aXq5O7buDvOqUDhhgRRPzX5o6Ow3yMY5OAKTrrGsfbqU0oQK/H4gaYVSyYr/FXpvqGUwMNCZ22EIGcngGV/p5NpmRHrBSdqGzw6zabBj8WFGl1OpUrMCCk7xlouPaivv2AkDHekdqkO52ihbHNTqco4697ath18wJ/8fgWANUbqYG/E9e8hcoBWOlw6eC7YxezFpQGGHp6Pa+BdfwHmv6onUuVvrf9Drju2XCNPz97X6/1oGtmAAx5aj0G/O7q+rZwrTrbZkZTwnYBrN56yabmO80n3WroCKLmbW77obp1v9RKT2zmGjZ3luq77SV5eSGQRX4iK+5K6wpY9+ogGhNMMnRE/IzX656mKHaNP2K9WTXgUVKKYUdwNf70m6iOCGvdV9twzV5vGPkzfluyf3C/9W3ve6Ia71nrXAkHIxstNEfr+ORtGwZlU1v7GW/73UtyAf5OKvgiW0V3KKtvQ49lsJqKPUReccWunXo01beXOjD2qGGR1/bcPYP9FIpg2oxdbmNI6WzOx26PaQmzoMaMP19KmG14/sr6idvnfjC2JxrAsuW6N3f/dc9ZwQM1uIwOsQggEcG3A59Kt2/8MRFE/SYGAiVDwwZD+jX+asYfXKNGM0NmXkdYBjfcUVhsliZs/BmBiTwVsceCshxEzHA1axpJ0jc9HZGaNfBrXUTXlNS/F2OI7rKgRoNgYGp5qZfjKDgQ5tHr6brENUbtD1Zg4igIu7U4Sib9624Df7HOHpheZJe+wPbiOGkxCk4zdspe7bE+a89aL/jeZN0X3O60g5doHVCLUTOhOqLS6+GMQYDdBGtxEMmu3RrmBu11L4VpN3Wz97vTn3Ns7oEz18rrdlprrfec5p/rwADCbk3rzQgm9c7MrBur1l3XhrFsIBwMSeut3su79U+t+qloAO84wzao3ovRbDR93Zja0uGeTyLy2a94GDhXQtDnzwjaMuv+48/o0kmYjhAjRZoBisMoq8t9b7zZoEzwXS5le1jX7fp8y+eyXIC/a5Kegu859T3DMwIxZqMHXLFr6tqCKonBiPMvLq8UEZH/7M5/JH/gmf+cGttn/O3Xiztrl5+Gk4ZKUmIWWLsvi1VzjZGhrr723KFQ8nUGZUabe3Qfhc74veL7TKMIj8lrrfWw9JBuobMygnhpO1nIDd8vQI/pp7IBEJ4SFk5CGeyR8Yc5pyLB2CUXt7le8LRRy9mItRFBRoy+45q12C+eX44Wdf9Rg71xVDT90XA2EElnOVdvMl1a41DwOeufF+/oHP+N1UQyGaaoDKb6ymLZMNvpQMGBNuOv92tMx1p050pPinTQbziINOLcess/zMazgopZg5QI6MTjmNcNBLmr8w5gba9WcBs8Y/R6Xv4AA0PSPVMzU4yasBfrA4SP+Awdziqy1psnRTqk+iqfw8FCP5XMvWfcABQYH8sEmuGzq0HuSVLt1n4gzAr6MvthHXhFmbUWA34lGOVBr0/WcwY3dssDOiIg6Ki+83u/+NXQ+eKyf/2TvV4HLxk70gqWd9eLEciao14H5jT8Q7Q5miyd5h6gjshBx+yjixRyAf5OKEwth9xQMECBO0/1DlDNyRQzL1PppikZvb40PlyekWOdjfeuL5V3ri+jxgYl0gKwuoVnhzRBGntk/LFOvZ9dISJmnZd4aNhw9YKOfmejFalf0xdc5wTNLePO94iEuReH0b2u+6xg4Aj12AAIESCSlbLavaZmKt3xb6xWnbWZg85GdBbKVF/MELGihCjjTx/bleprMGomos7LiHNrOVkZu6UHmBrrDb1uS2NPWePnaDDKSqXDQaT5oA1XkA1ksA0DqwVtatI7dvPjXiMbT606ULRB7gko7T2HkLMR12v7s/bcdXDguFy2N66xoHj42ctq3zM4PdsNhuzd845u3Gk6wLE0a2YICmY0mSGO4AB6CfNu7dZejj7nSkeg+kW0vV6zx1DGn9/urBnwK6rXFRgbmVcaBIJrtgXQ6ZTCBF7zEUhauwVgYTPrvTYHsGAwxQAdubpn23eMskIwMUTJjDJrjxNsf9Q6AvdN9XUj7LA1vExyy8h0uV4xgOLBOnt4w04rcIqvF7uzLnbP2hmEYFDF1Osnyrh4nsoF+DulEABGFumyDLDlDjSXxfjrp/GtcpjyCOK6KhcE3YwHmWsug72T6osa7B7RKnSeHHhV1E/ex6422OFI6HBXX7/xmACsfOwSWSnX19V3XXoOSef3dDet/eEjrJSlUwe0KwabZ50wHbEoHWHOjaaWm82HGEPCqAUFgyXlegvOA2o0a4MRrKdk1DSixGKGEDW0wjAL+OuDSHXUl+nml2rzGOm2YKpJ+a3EguroCEM/rQRgOhWvx1HB8HQAMYTBPiQNpiRu8I+k+qZjR5CU0VM7mQMzQG8No/7IV71OHnnwVvEZD4ZMovfHHuPPOHe6DlXxPsweGwvijTRtMp00Iq3d+g6cztZg/EU7Ak1BNPYkFCjW57v9Y/scdKyz2q0CzS0iZt0ztMZfvyZ3T6y9GGO35t2Qg45Q9itqr990pwVD/uOv+nWNeqK2RPPJUT81rJe86/gE6wgLoEftABGlI7LsIrD0hRFATGfQX+shyHf/LU8ZqtqOiLUlmdqGZxFjTyKCl/Eo1lfhkiHqTdTeVt8xu46j9nbDXu/txYG562osco/KBfg7lzQ6lMWP+yGheixaSF0Xl56NQsXX6Czks/CAQiu1KQpaM8Qjms0zVMzc99il5h7W3IOAKTj3qYyY47nkn1+HHFNWz5nenTvmj77gPoGfm15woCPJyOIZWPqWzJ57HnSMAQJRjL9srYOpdI30xVgvrlsOoI6cojWNMkfHc892nFNEYq06I00Z1+u5LDG9qONsmPcMBEOis9Biae4OV/uhmpkonm82k5nQuetAGBOp3z82yoLy1UaMMrCfHcfzw+3gZf15S8Ke9NpPfFh+w2teQs4dXnLdiIK98b7OtY7oPWdL3A/z340Xzx8DQ5IT6WeRj671V730BeqI2FpdG8GB+Hk3OFDbzGin06VhM6cGQNjcdorz/lD9JVeX+1Hbb68+YTetXWctbADMpPaU7nU7/raXPvQgerq70rBAd+cO1+3/8JteI1/6uk/ExoqymV11sTvBy26w3LK/UNtvjc+y9nPiKDit3WfDhPG53QmuN2tPcdTJ8z4rH/jYbfmxd33E/Kx3xBjrMuvkEXaEBd7BtTjT4NlRkzs3wMDgQMwOKt6P9jofsE6/e3foPSsX4O9c0qnxBz/oWf0IsA6VOrZW7KiDN1osOKXoeDZEo2uT/rzHSqFnbBzHcaDR6MOIwd5ryNI/QM3gwoe2gD8wWj4gizJiPNIdCYIhq0zyJ77mM7KOdtdd489yEFEdsQzqJ4vVO1HdafNXEf0zMMOzZrdyAJbpIHZkqQI67H2zor4bYAoBWJvM9btwelAr8goy3yaxrltn7o5T7zL44YizXcycLtxvGL1oSnxLPE10RNK591N96xRpVHQA0bevdACs7nO6vRqBsEM366GuKzSlM8JBbqPDK1pIvf4W5ugk8M0bQDQCG5t89KlnOlPX620m0qpeeP/xnH/bZ39yOuQEAmDNcgCYkxfP2GDAd8EQqQEsPTduJ9R6nUn1tRu79YJR2+ugvZ7pGJBkEEHudYq+xhFg30aDqZsP3HeQv/iNbyTO+vQyTZO8/JEjAEk1qbDsdRDcX6r77Q8OpEDY/tBl1XYEr99WCyj2lKEaSBvNnrP4G4B7NuiLfNG3/hP5nX/hB11jkx4wggOED6NHr2BwYd2ZG9EaKVhuZCC6U32P0sOZLb0O2533qNzqf+Ui1yFLx6nHu4SpqArYMn1ZFgmq0HJ0+p26wuc+wzM4WatM8ivrJ1Fj+1FfcEMckFUmVxRvNFIvOwZ7P2J9NFyXUePP1V3WTndNRvP1KedV9hlmozOjaaN/4Es/XT73t76emnNtFIHHJawXdRgQfGsVM4/HAQs86/USDX8E+FsXkUkKRjJW46+Vlp4YNXytupSy2gFSAsi9Tj7taOkIIlI/FyUcsvGo0VwyJQcAU7Q4dYu5tkyzyIo4G5ajgxuu6VmxgEOedcdEy5Hz6s5d/Mi4l6MNXTysFHVuyWgnjtNLQVwX2bMxrILi8NRGivQ06fITmA1k1apDO1i39FN/7jjh/vcaYrJbN3nq9t39qY21nlLp+mv9vnkSuZIiALa9dq/b9lq8H2watFHEaQF6EIgxwFpP/a7Z6DreZ/ztB8u7YpVwEGw/1CVmgoqZRORKZjnIFVC7Nd2zALqdSvBGf8YzTtVl5EvzLA1GX9QRvYCOWYognEd/P5sNtuIK2k8WsWNC9yM13lVL0yhpFB4ZRD+lGvLXwInq3vq27UfVZTSYuXCzqgys5fWTZsCjQRUx1ov+d3/NtPX6Bfiz5cL4O6ngEfDRwv1mDQe0+L2uzWNsSn1sbB+hRx3EdZ3krnC1eYK0FHM/tcnPuht14lIdBWekPm7mVoHn7uzhKGNzu9iGeU2jz3/Vo/kXunVe/DKe6jt2blba6P1ydK5+4/yznalPA/ytRm2efi3N9LknvXtPP2GpvturCwBr1Q4DAay91CYQiDll9+wJ7K6m09EysDYORA2wEqDfjo+mWJtgSM/Bs+ueJcfaY/yhY9WatNhA4HrJ0x8P+XGbMhqo2jeaF7TumWO9wmnEzfE90BGzI6aJ6d8cJz++FEDMGj/uzb3JXIMhfee0pSNA4E9a+g2TUwTxvHUZ9VmkP7EA4NrsAg0+51YKYnQue3r9+Fo1ZIkp9WCasQk69sXscg/XvK1BbkZMVjAcTEoAedrT1bnAQbiwRrxB81q4jItwNkSNPxOIASWC3I0gHGjTuhhYIupe1eAbA9aqEynf6YvJ+OPZ91STikYjwlNIfxkY+slR4y87Imr7WcFLohmMyQoGS/MEUkrJSE6BMNRet67bGcs8PYvlwvg7oTCqIluPVtcnNC3LYqV0NzTdaSudNVpMs+1YY2J1OkVl6dUE6UbC/EBOCGbEzfdwP3eAASfrOGqAnREYf+4NLcztGLqkTeVn/qv/lTx46yCf/ie/S26E8bdKalJhSedajqYhW/fsD9/6RyIi8ob5l3fHBqDlGB13zB2K3mZvoqwU1aTCwTBNNdtU5JVqttB2dNBSBk2j2ZPyOmO6dTFSCDmp50ZTwrIC9FlAh2Nn1KcOGmDG3DhYG75V3rPtFWx4MM6oMdgZvRoze6Cjw7nU8p6Pfhwa7+1gXTrWjOT3ZLvWVMOIFpATJkCBP08wymbdJRCpN3fQrZZzit3zaq1P4HM2uCel/XCgxp/WT5qVva6dtWSsN/S6NZrCoSn5Vs01tMaf1TRAz42nXqrzIZxTs3ESyP4arcltsYLRoEiqZznJfVmqbzh3dC++eY6KWZKIyloY0U/7Qbi+WjfWK1GD1GQrguDbagbCQJBafSfPmSB1q54btN2O48fst//01nfIb5t/xDXWBOiHmWtBN/amrm2/GBRh0rOt9QIHN72BsBQALMdeuvracgH+ziQ54493rM3IK0hDt9g8OtrdrTvU2JTSBJjBbn2rX9MoGBK+Gn9+BSry+pc/kv376oFHGt/cn9vL+IsKztPco+FYo5KMGB6CCmDIIpM8eOsQ01WS0Xx9XX17Na7cxjAoydkYT0ej08vjQAuI2ZecPVaP+YEHfot8+u7cFruVYfxZgQ3QkGgUM0dT6YbqlTQKFcNi1oI6FO+0hiq9bnXmddb4Q53bPce6zzANUd/S0dlSL8F9IQdisGdOFzPPnds5fr4naT+sQW5kre/Jh5+4vf+Fhn5jOxL7GtGkY7t+ZRzUWNlgStlxjZFn0ABy8HTbdmCCYUHZc4NgsYuxp/S6p+v4Utud2b7UAf7sT0DnVgUQs7dHAjqgflqMZ1wfC53bxdiTcq1vo8jggr+p3M5+2GOexUD9lC2LBNb2Gm3l6+2kjjx8z8p3/GAIfm6tzt/HY3UJEHE/S/Y609jN3A8j468ztfmcMay7GrxLHYUxO8AL1vb8y578sVt/1zVOJF2tzHZzAFh2MIpPa2cA0+jbWo0E4S7Q5bucDWPp9YvYckn1PaUQkdhe/a6+bjUiG3Aan67fVaPk/Y3hNIw/T1ff1TA8zc+bB/AbDsFO1lM/vr4QP8Ag7Tg5Wkaqb2/qU3UU9jBD1Gash6d6JfvjH19fsP+Fvbm7m0bvAGi0qvmF4/9d6R5j98yaO6U99IIDivGnDNd/dPVFIiLy1NSpt2PVXKOaexggN5p62WQxkYaEI824MoDY225Gy8OhsFpz2SDROsJhNEt6TvuNIsLx+dqIa8P4ixcQrblmBcKA2mGBBWXW+IMZDpZjfH2BqKMYv1u0Y90DLUf28sFzD05/c2r0OeeDUX2mJLjWM93K2U/1noAGwlr6DZBMR4ww/rSDp1geoI1jOad9HWEDpum69dZ6mE6PR4MDdgogWnvMBiT4GqQW4w9nQVVHg2S3Xhw497HGn7Enofb4GR35fL0xNsxe0BcE96v1Fr+wP3cMTOg3sXt2nLUdEJq6ae31Wo01b6H7XQOmce2ie3EWOCUArF7d2QG579DRNRYzlwjOxG+O+PTZdZuKd9oSGs9lXaCj7YcGJlo2zP7cpl5n7vk9KBfg71zSqQWFds3UIJCAD5qu1aQZXHDx+6bhiklSRX5nQ1+3X/eyF6lPUefUL/q8qaMZdYUYsQqoplPBAFPvr7dTTUDpGH+91PLvvvpiERH5s3d+Nz11LzI6usF3u0gPMCVH75kYDCw2XfY4JN3zpCN6jo4BWjpqhsymk+ZjOKzF5725c1YLBmAtV61adZxkUV80zTgDa2sDDGb8Vaw78J4bc8PIZ6N+VzT40ZQwTyAsY0HVqb5wwyi9VsF7Npi12QWwcBDJz0jO5mP06RpeRlN9/cGoxinh3ZY16BWfMwygb6a1o2DtgP3kHm+AQPqZ6TLsjYC1oM9Zg02dmEhoQEfr1uDcgmUQynsWfgeYbpsDEuDckpjDsxUIQ4Fmt7tnBDbi3J39cLVLzMCd4ou1PmqvaX2MNj7K7H3CholNDAcA+lZAp79x1HXPwj3rsdDXVa03o/ljv8af9aw4gr7ZeJAVbLHvFYCFdpGuuymPy4vu30+w3LU7nRYlmpJvrrewXpjarRm7FdMRKQPRt9atGqSXGn/7cgH+rkn6zT3sCGL6HHU20luoIZHXgqqBGJyl0Fg+nY1ubkZu+2JFdB56ICnUvo4a8bROw9hzdQRW4zNnI/5xM8afj/Fn181ggZhnHJUJRhl/vdXSj2D6ndMSPGPrDVqF+9G0k5w9ZtQ9Q9NltQEW0h+B32E1W4A388bnaBdEC+TmatTo6wR9XYllNIPGX5bqa6T49ACJRop0OrwHMEWd05ZTz6X6FhsiNHcWCBPDuQXTPnNng79nlvyew/d1hu8DWP1ouQFagpKnlm+v1AF6ewoI/DlS6Vrptmm99QKInZTX3clbacYsQD8A3Il93dD1aqZ0SW5bWpKcev0mqSMKpzyBSKiDaNi8TlYKDFoadoAnlc469z541jp3TBKjxmIbdsYu9tw4iLS9XAMQ44u6oD6SSLrnI2VeGtetm+obhN+L8xp/er2R+skEuYlr7qgpaep19Zz1T/36GH/dvdiyn6j1Fsbov7F7bjXnYEpBmGDtFHTj/tgWkzvpCCx4aYGWF7GF0khvfvOb5Yu+6Ivk4Ycflpe97GXyDd/wDfK2t73tus7tOS6YIaEftO/amE3Y4WvnFK5ptNTG37quiuGApss2Hq6ug7h9zRgP14LKWHeE4XnGCEB0xkajllkNiHDQ3nXbB5q7cw4wQ6Q5N7YphYiT67oN3+8RoFiGUunCLfWfgQU6sgwHKc59Uv/fm9lIWXUZzZrRzDqItiHhKQK/gobrWjg69Jo10rImME3GAmK2f4Vv9Ca3BuP7ghUQCvfPwxBVc8PgW6Yb0dIX6nPL0emCIVaaDMa+78mD0x1o7iaABTtpHib3acootBl/fLotO3dzrYN1jm0wpONYN2rVCfqcrSP3LJ3bCBMpE6WjfambKKDQKrwPOojGPZ/ZPaX6BNStBpCT2Dx9maz9EJ57tIZym1GDgEjHbzWes+6edD57/fGnjrr37pUOgmJ7sf6O1hFPPnO8Fx9+8pndsa0gHBpQtO1OEDxL38zT+GGw1rC/5lCnGLlutf2VACWsZIj1jM/AartO4A+35Hm7sz1j2M/QLD67hIOHdQeXA2gGnMFnzSI4wDbvvSmU5fADP/AD8s3f/M3y1re+Vd7ylrfInTt35Lf/9t8uTz755HWd33NM8EVmdVn9e1dfpr7gcDY2p2XuGI5acWuGwwJuKr1U397waWoZUcDoCIbYSxfvEnYGGTHYJTElTQZWf/Lt1Rv1HQD+ms4p5mSFc/fcuX5zjzHpOojh1RP1jSC3LxUuGWA1+4tJfzQZpj1GjAXEMMbf9mrWIB0FM+CUMH3d0JpGg119TbYh5iBmTG5HtNxqUiGCNzwITM7JKEWA1idssw1792xzFiyWQdfRabCgJux3W4BpOM5uR/Fibo+0a0EF3coVz/fNre4bdZwOcNe5b2b6IzpzL90WBsmt9EceBBJhmlSU8zGibT9/IC3X6+njHhPJBGvBTJWlyR4r/+hJFlWBRrTWS0gJhGtLe4JwktZ6rtcxcL/FlERlr/ERuh+WzRISW7GnnyyA3S95qu/+uX/Hj7xbREQ+fkefIw4omA1ZtmF/61+/uzPaTi2POgLUMWYpAsD2M2t6R+wNzLhwBn13G9n0fAUDRAprZ55WOE3Z29xjRKy9mMk02dOt/XuejlKPla7NHL9p7EmelHoRicHvfqZJmFoDzacJvD5fhcqd++7v/u7s33/lr/wVednLXiY/8iM/Il/5lV9pjrl9+7bcvp060z3++OOO03xuCGOHpWLmNojjMjzJ7mjH4XpOLKrSipajEhSUR7kmMMQ4HwEcqRE9MKxERmsj1hvisqwis8gPvf1D8u9/XnusxZTkxIjogJKYa3bNNXRT8Zx7PyVi/5j9W+6IhIHSbniwybt/WOTVv3Fn7rBe1Jvghpg7MrWO+HWf+CLZFdOIyc9rTyLIbdY06kira+Y0i6z9iLV5bch6cQkIEUrnWCkXaB0qDXLPswItBTSCWiwoNOU1rjcjaoym6DTZhvszW0BzqjeDr3WL4dAHTMN4O/1R1tUNbnUl6NamfkFBcg94Nsr46+2HPd0aPj/w23qHKdlb61YpgsQGwuqeNZtU9JrojDRkyVJ9+bqzYtggeXMPx3qO+qU39dg92+sU39frY2vVKpWSmNydoer4djo5GiwfC/qOZA6UZ4jWT7UYXKcTbK3qb3lq/JkNMnpztu5ZCEahXX0NFlS/g7UCU8yat6iPZYH7jDHk902tVF8ROQbq99Tedab6ot8w9xT8uukzR0sZWKXDdH1HlPGXZ6Ohtl/rGQdB7p16lpfmHrYMwdqPPfaYiIi89KUvbX7nzW9+szz66KPxv0/91E8dmfL5I8aGmCkb1Dl10alrB7FyVPZkkLmWuvpan/WkE73sdp48X+pAuG6uSLsab22If/Wt7+wMDdfNN3dgkU7TLN/+H/4mauzaKfCM1g7zpCn3IvHd60GwhSwZKkDfY/w9/VjnAJZTD0YA9e9S5/6yR47dfF/ywvvouVNNo76kCGKdOgDXTWtdc7Crb+4Ycw7i4jU8jHOfJOj13lD7nqUz6LHubJZB+PcCNjzI/UPwnjejvsF47KXxBeNPzw3eMx0Is6LlPR1ipGcLs5+OyGo3kwl6De6y6qqTp2f1AIcd0BE+dw8AZs8d3kU7f0+GfsKbVNhz9wITyREaA2tnjy1gNanQa2egq6+/KQq21s0UQhCsbdWEjPegX8gq/352Hn39sAda9q/bWNA32cxGYKOX1t4p4dB7zspGNqcEZHqA637AGdHpwY6wMiZ6Q3trHd2LDTAEWKsh8JrVvAVtR6sZTFovnaGi92tH2qjBlMw6zXb9v1ZZonHB7VY+26M9KQmemfrpeITdacLnjuZD0aevzgjVEVYwCtet96K4gb9lWeSP//E/Ll/2ZV8mn/u5n9v83pve9CZ57LHH4n/vfneP4vwcFsLAH262YDR6CM8cwwzRBhhcXPo6u/rCTCR7brwIvEMGI6dm7QtCUlSlDln1ndvRSFYCJF790hdyQ1sd8aIxB7IrXOcOUtS9AgP0nhTp8OJlGYTNWBsSWHAgcz61jolgmENHRCOm7+CFuo6ztZnDNbCKt0mj2Urd7AKmHf3Ul1qvo4y/vMZffd19MWM9Dr1uer2Fz7zOKeZgpk91xBkEuRWomHcxDNcNNVzV3IdD9bk996hh2gKwAli7P3qoQ6z1HBJ729Szgbqpvsfxs0O3hutedm9cwTWzByJ111vD0UFrSprsVlCy0hcGYPr6+Vf3D2DYMFRXX6nHo3vj1LI747aAPadml/ve5C3gLx4LS39cPYEsaaT6soyaQdvPLp6PBVXqtU465idi/OX3z6N7QfBMlN3qCqps+2Hxu1M5Jj4ri9FP4ZuzkREGN57MQKTjfjhDxAsjgIiK5WPpPb2bKlzv5TclVrYHajPnB8oikMeXro6ox1I1/iKpxZdanp1rHAWuddMGcgbe7xFxr+5v/uZvlp/6qZ+Sb//2b9/93gMPPCCPPPJI9t+9ID3F0doQ0xd4Jysqia5Pbtc0SsPQB22sVp2vq+9msLfGdhl/I4pgTIlMRlSFG19v5ug17NXQ6s6tACx2Qw6OTnnPIg2955yK/9x7jsj4ttB7Tv2pvl2AHaXfG1G87nOwWHVt1N+gg6d1xBwBrM7IjIHFR5zTWi+d+vBvkKVpsFL6zYHytc4390hnUc3dG6qxWjPSD6bJNMAQF8sAbpCx75z2wDe7Pg6W4pzVvDVq/MFdpI2aRtnn1yC9RjaToDXXPPrpNKBlkw0NrjdPIK3FDku1x3pzhz8c+ikG4YrnDGSYWtftv7zzjZ0x+dwiuZMW5JOnj0BzZ0694I61ve9gDt7S0BEhYI12FLbqf+EAVvmczdnnO0fYzsHQT5AVYulWEDyzQEdiX4pOvWbAg7q1VdYn7I9doLjQraOO/H91Vz8noH5xAgqW/QVLcz9E92KjHAAYvFzW1FBP33O4JrcFOs7gWpX0iy02dZfdahAcdGCiD1rmjL+/e/XlIiLyV+7+9t5pdwW3BbWOCO8g121Pt4LrRax7JoI+K2aNP9TubDW7QufObDewqdw9Ki7k5lu+5VvkH/yDfyDf933fJ6961atOfU73hLSK3ibBKMnZphJTfdGUrhL4w5RED5B4+i7GsvJ09Y008lZzj+6Dfgqoxxl9HK2NOMIek07aaG/uAQdxuWrV5gmvqAHGSz9lq3eAzudocw9HOtrSYhkE6aY2hT80iBQH747NjDsj0t9n1hrMNcGivvrYWc0QsLutBcQcj7tJt2OnBdaChusws9YAkWbQQVRg7Twb597VjS0wJDi3INhrptL5wFqUhW7WiQGdDV0vKX9OQYaD1Oeuayzun/vgfjSaEnay5h4O6dZTAoFmF6OmpSM2QALs/O1Z6+medc6tOb520n5q+TQREfml5RWdqXU5gJH07loviwD7QhhjBDbQ4EC7AVBv/PZqrBek7tneIeHyOM6at1McbqX6okEVn9gBa+yeLa3a0mQpAplmX2p6IeE5EfGBiCiL6Xj87XWg+VD1Pronmb4CuBc3MsLw8hE1aLkf1svFLGMF2jAWwUE/M/3mQ4FpeRzzvvUlIiJyd7cwICgOsNZTIigbAdvrhv2V1W7FfHorcNq/Z8EOKN6PQbjd4Wo917p1HrWvnqdC7fzrusq3fMu3yHd+53fK937v98qnfdqn9Qfdq9J9XtvKERKDnREfvq4Rs0U11vwkF3AztwxPLb/8gSd2h+8zuPBNKR2QiEwMGUH5WPZQq7kZ4zLk6GyXzfvrY/TSMffTz9w5jq1+NxqNOoqnGUyvLllf0viPrw/sfm6JVfQWlgJEqo0AEOTODIkNfGMAcothiqY4Z5HXqXjHlrxJhYM91tIvU3Dqwd+epUhjtVZarBRULHA/ODxcqq9lwPHOqR7VrWcZhmfBKHDdN4w/tM7eXh2qnvGndUTGXgKZSOFzi1nbGz+snRp7Md4xfRvty6vSRwgHIoYHG8b5rGzze1J9J8vREVy/hd/uAWJWsQHPyFxz6PUEx6GsOTFTfbtisVt1qi/cYEONZwPOjbUOM+DNdDYsKFLZIGiqrxE4RctuiKj7mmEhfjCEE2NfQEHHRiAMTVnVpQh+/SsfGfgNhqBZVXoIwfiLOsLTxLBhw6S62GBzDysw0fOxdODV1BF84BUOXqrjW81k4DrFDfCs20xm2y/LjI0Trrqm2IAnc93Mox5fUJs3i5uq6wbaX1MDONydudvYDVvrPr1+bwqlkb75m79Z/tpf+2vy1//6X5eHH35Y3vve98p73/teeeqpp67r/J5TMs2pSXLfhskpxdXnYKR+spz6noPWq7vhiibVH+8cQEScBVR79W3gFMTTCPMLxlN963uO/pqkXNN1+2dXO22Ay7lNFhQmt+/ePf4x205WT7FP0VHipb9p4PfirctnG8fnWVCodA12mL5vOKddMMQODqjJd8dHw1Wv1c2InDu1CDLdp8ezjk5VHwdLF0mpvvrNEC3vsRX39XpfDOBwQpt7aOCvdtLglFUniGQ3ssFAy55exxkO+nejgKceYqUXgdHyVn2cnfnHAlGizq1lNF9f2Y5hNnWPB9K5NrGX7zTTT1sTMAVZLRabGmYDNVJ947mAxcz1uaMOai/VtycpaKsDzuo43dRN49zB69ZiwEdGMuogGs4pWh6ntpnD3I5guSN9Vdd3xjudWqm+uJiZJmiKdAPAgplryn6aPUD1gCRLSev18Blxz9R5f/nhp0VE5Evnn9ofs7TuGRd49QQAW6VW8LVugY44gGWWNAL3YjOdX10CtAFQqu9bnNOAwAEufcJgenZzPEzmqe0Abcf1UvLjN9VaTwEdfk/YTiB8YX/8TmDiUuPPFmon+LZv+zZ57LHH5Ku+6qvkFa94Rfzvb/7Nv3ld5/eckvXBlxBfNhxjvfBB8CzbGGZsU0g119LYL3rtS0XQB3UAzBBJDAxXqm+nQxlcuP8cYjgLjOyl2/abe9TX7SPysOMcHABWI+obzrhnR1gGGDH5/se94YPrZSQ9u91JED5APTcaeW3V0gTBtwQyaeZaZoHtTK1TL2tDpHfuZo2+7PggK0Wla8KGa1ULirx3htEcIq/dFGmdsuphZ4TjNJwN1EnL7hmYnt3SETALyjIe4dTLRoo0mtpkpY1qJ3V3/Oh+ZIPc6D2LAUR1vmhASDNA18hMwPXc2g0m7Zx7AXLTV7GbIg0yHMy6jj0AK9yz4v3IMuGfM5iJpK/bYWA/1UtdnwcKBk/1P7qBiU435N5Pt0tfYIGJHrPWYzPD9XZFdVm1umZ2b7nxBeLW20zJ/LOWxABig83TK7vRBAVOIEOpvsBeagYQN/k9t75/f57G8VNtRNDPMYNwmK9QjmfX+mqASO56llG1YqBlPney43rXrcXGPomAvmmWORB1Y//wpsWJXjdjT8pB39651zoCBt96ezG81q1g1AX4s+RW/ytJxjvQXSSI5dTnf3cPICL5g5ZSwvYl1d1I8ts++2Xyaw/cJ51a4Nnc7XpxaFSGlx4LCu845Z/bbYQMAjkWiAQfazDdIxp4rjRjm+HAMrB8zT0GdVZWx2qSj64vkhdPT5qfW2KzoLi5R7v65iX+QOOvuVbBqK8BSGSGxLqI1Z1aRJoRZzTVt586gOmIzNGZsetWp7qx688ALVG9rp36rCh3Hr1uT23XPUPTsmLnSbHuWWfq1jM+YXNb3ZBnEKzNrpuhW1EHMXc2UJAbOvTOpA2jeZqONxwGJNL5/qWr3yFfefhJ+ZnlNfI5e0PVc9okBu+IndqkTw0D/jy1vyxG8vH98g9b0prw1FxrMP/DPQNZc3oWdK1q/TQ39C80d1Z7FQf+JuOv9GfvYbD1erhucGDCtJlRQKGcuzNlPICx3sDyEdl3zLpnIOPPW985mr2GXnem+sa92JEifSrprZZod671NcfuWQ3Qw+fWtP24e549cXApAvW5xR7zMP4IIGZ3rXdBpPq6ZPtDl02dZ2ywNsD+uTmuGxj0bR4SbIqSrmtt84ogjD/DNwVB8tZaT3txx8cy7PV1zj+7SC6n16YXgaQFhgTps1osJw1TjhaANU2TvPYTX3T8G6270dj9enZ4OkuHwW4pCf1wo2yes8iYEbNXL64fVanXG3MlhhqLNFN0wmtvrYfvDTAUukcHDiUiX/fMf52/h6aNOpysFoClvtCZO/xRAxL9ZgsN8IxNGzWAGJF9QyJPWRX1N2l4Out3xZpwLsPz+LmnHqWIui9Gymm/No+6phazxJtywUZeZ2Pubn3AThmE7j2PE6qDgvthiykZgWJ0P1SAQtZJcCeaZvyu77/6/N35suGLfd3YTsxWvbgujKK3Xdd6HwkgtpxTcObmdQuBDczRmqy13mOZN9jUa/H5zhHC5OqdzUHslVFYbB0Bi2U7ZmfG21dw/duGjkhdfbGSIXYqXGfq7WfVvw5bLxZQjOpGPXPeWRfcDy2Qm7hN5nWD0/Baej3sKWBauzNLpjqeOt/uftg4wlGACxhO3TGLBcQc38XuebI7HXZEdk/UvrD92e3EbN1zMHB6/M6yDbFApF4Gz35goleDVAzG4E3JZN1z+DnrSC+QtQM6iuB2hFnzFgzUe/di67qhQd97VS7A37nEiNpan/fGW059d+pmfUHwQbWi3YTMO3RqmInUMATQFJ23L5/cPc/mOai/r5hrMBh9SBFE7aRhZkVktWS2H26S2EYzJu2ITnCUekCMnynZN1I4eff68uzfvXNPG6JjskHGX6oDaqRedtNGOxHn7tyGIaHX7S7wp1IvDUMCB7nLk8KAHDGNGJDhUBzbEdrY/q9BpPS7dw2wFjAHM2rsz9O7fNQYvW5BP9UpYRjD1NJPaHp2qykKWlPSYvPknQQ5vf/2db8za2/u7Qyyz1tiNbmAC5qr51Rdwd4oNX4/gLjP+FNr0dWkoudYowwHY607wZAVZMWYDIfOjHqWIL4uqdZzJnK1oQJdx9pg3aGs3gS+eQNhxj0DO39HtmEzmAQGVbLlAj5nkoJRWQUBkgHvhaDsNL4QQNwf27L9UpMKLkXaY0G/Z32piNQlDHr7wsumj4qIyKdMH9CDRIRjYHmyPVp1itnmQ6vxnFFZCwPBzzz1cgtMQMBfe27U9ssCE1mApCe5r3EtKb+ducUsb0OIuSehYG2rNE9nSkO34k2b9m2YPis4fN2xVu9RuQB/1yUdZb/GWnX2LegtV9vwxJRjk0ZO1u9qFwve/+3pkTz+9b1XX6BPbndsuzB2PMD++O34f/7uN+x/z5Dyuq6ryB0qW77eED3za/bYK6YPi4jIVxz2iwWHDXExHDxEYhqfiyVgr5e0ufYM9vB9x9SuqK4ej4MGlqTn1MH4i0wkn6OT1ps+IdSQ6IFnqHOr6wvqWivt+5J1WfU0W2g8Z2y03DIee4brcAfF6NSr81HdH3cxpG3sVZV3iYKWdbRcRD2nXeNve51zUOD4GabXKzAETfU1Tg6tK9R0dGiwtxEtB9mt71xeJl/89P8gT8v9+/Pp8Y0gHOpY75UiYADTWOOPWfYNZq76AjA23w/ZuVspymhtxPzcsR/fC6pkNbZMqdcbnOq7HftqnYaCUeVaR2u22awWkoXeAGv7JRzSWSThWFBtm3l/6qjXs+uGd/VN9b/qQFiXZWmstys15Fc/CjZnNJmSGLu1PMO0F/cm7emIvvzi8ikiIvJ3r74iuwa95f+n7vurIiLy6jkBfwwTbKzMS2OtTwFg77Bbox1Rg0gwcCciOasYDMIZe87ENKkwnhXU7rR0RHb9e7o11qTMy6OcpLlH5/PSLz6+hzPX7NrWmO1mphkz3drjcIvxh+mI6v1gO3ZMP7PxJGiv36tyAf5OKUTk2Vrsa/6F3gGOrzqVDlWunfoRaIey9oYGRqO2f31MXhg/ednVe3dH9jrjosWln5IHoO+dVBo1tFCx6ii8cLotIiJ/7Nbf3Z+6mcYHykCqb++e9FII03pxRE5PyPiz5+8ZQX7jLzXhaXmnKMtApwcFZwNl/I0B7M3UgZ35NViRp9Jtr925w0vpIKKG6/a50eih97vL68au2cRcS/csMP5m2Wf8tbpeJrAXi/pWTVGC0d0xmu0i8Cgo01pv3J4kBmOvW+elmf5IslK0wZ7VWMQArPfLi+X98hLOyWixW8lzz59NdM0q4M8VzDKCl/rTvXPXteocjL+1sd4WECQPM85Gs4V+Mxl7P1vzj/ti3DOmVp2nUVeLnYEzuILwe2kKINp6Ha1jZYEhKOhYC8hqCevNmhtgtKQyCkaZFzC1XK+Xh+Xj8e+7d+7sz23ZfnE7RIMDNli79PaUghX877zmxbvfN4/RXFceUAB8xtW8s6PGXyutfa3+aB5gG26A3L171kj1xVPLw/etbA1gWFzrWr+hQbjtxcu+H22oNyIR8FRCAKah9nhuwoT1yuvljCnZrfE3wgpuXXMwsGHYMBPM5L435QL8nUtialOL8Yc9aNYt7KmstdUZF64n0AMF9iWg8J46WCYFPtN0WMS5Cabszh1mGATuvNetC7juSLjnrvQgrdj9Dl55v9m0Ks896/7K0doxaAqiy/hLRzlOVcfN9+c2AAmyNk+tIzj2WLPu2Y4BljH+MoZDAFN6c19Vc2ejurWgNoPdwaZuMiVhMUaCjL8229B/z0TwbqNhlJXG102Nik5966ioY63WG7peNmkxJfv3vHaM88LYSMcsr9j3DE5TNs49jPj06df2hypnIK45Rp926nftB4SUjpgOfBWNTvpjv0SEcc9hhkOLzQOCjgZTMjyj3auv6gt6tj7TwZP0W+B6TJZjjoJnpf0Ul/r++NkKTIBd7tvNYEDA0wj6Mml8JnuMZCTr63b/lMC+LvgWa66p98h6cXU9S06vh/m+8Te9uvP93pEGxVVzzeNrtIIDIXiJ2TDZegHBkOw5smq/os2HjGecAUzztZ4fuz23odezvQ0Lfl5Lc4+OmN1pt5/RZa69/+fin/k3wbXXYUr2M5vCGJ4VPDWCA2zzR2svvjT3sOUC/J1JbONPPXSg8TdljL9wFCzq26zxB7MrGh/3sJZowPHSTpPBJp9agMZNSMfRAQ6wjfcApuEIY2nGrq6+jUj9smLrbZbOPd+R5WrfQBpfBxj45gJrQ/ftxv2+CzIlJ4ezsbTqgKLlAIyaSJphsms86jQ+q96Jl1UCpkZZ6dkzaLiG6+ZjQImpI3RH4b1zb6ZV0QGdRuQVTJH2pBelcy+CA2E86GzYoGPvnrUCYfEL0NzZ/p2tdQzAckmTyY3dMyuY9MnyEREReWDaZwLpbsi/8ODn7XzTFjtdNgnKlBzpmF4HB0BnJa71/N3y3Oy5beZ/CoT1gGLr3DGAXdudvtKIDfAtrDewnqU+dVg/NZ5DONXXmBwtB9CyO2FWsRGEExB01N+xHWt07iR/Sb4h/QMMTGT3nAwglvopXDcURKLZZkqa19cDCoB7ynHe7dXDSA72eqvuGRocMOrsMSUc7PRu/p6jz5mWPOjL1bPMnlOw7IaIGKWkcHC+J71fvlcGoTv69uPqOPqgYGCi+P5xag38gYw/K0umxzANry0SFNpoK/vljvIf95BcgL/rEji9SEdU6ujKzgTbcL3YsQhgs0EGqpyjfvKCSOEwng1xH7jrR179IFI8hBr7R+98CzFwLNU31tnzgG+mcYefh2aY0ilCi13PEq/x53eOw3p4fH2hvG99sWN871ngwRB47g7g+bb3fmx/bgMMgRkOHUABZY/puWe0ZkiWxmekF/WkmV6EpvEZzylqgDVTLzd5+rH98RZ4pgz23VNvPGd0N+RWbUSwfpfNStmfOoEdjfUGOxs6EMaCjqVzGtK1wXveZLdihquva3lgV7TY1CDbUI1/9fx+dPL41z9+5HeDY4zxrf1wb70ONvdo2RFLdJTQ4IC67qRubbGg8LT2tL5b2roeqn83f92sDtYi6reg600fM+ontF5cudZBZohZdgPUL417MkUbBgWweCBGn6XHsbbszsfWh9LHIHCYA1gY4NltEgYyiaRxrRCw96DsqKyrL9GgI84HNlTR33Gl1Iu9Hy7gdUt2hGXDdEZmz7D2SbFSKZbtxwB/VqpvWm+952x7MZ9xZL2M+4d+qX+3p7mHGYwCbZgsQ0czJcnn9PgnCtZemd9Ca0vPlr0+F59dJJML8HdN0lMcwfBsprt2Izp1TSM4etmpBdV7UHt19nq4VuzS2qqsvSv7c6OGRCttdLcGhHHsty6fszvf/lmwoyzDFZTOeuszQyzjD5y6CcTEL+yOHwKKFbv19z3zJ+nx9pngEiPDLpZm/pzW993hnIIGeyoIXh4UjCAaDV2007I3XqfZ5cXQUUMigCGN4ACYxudhj3UDC9/5TbvDJ2N8Ams7WEiD8YcHdGwgBgXoLQdxitcNM9irt0FQINaRsWoaOYG/5JyijL88RSekDu+DAqv6y6/Xmw0POqdugdxomCU8R+9ePkmuplvb8Yjf0GkStr8naQfeU0ahBTpi+nGf3QrO7QZD6vFwjT+1Xnzxxxb4djzY0rVbrd8+V+/YUzcC1uFjuEOsZTP3pGawi6hSPZ2HxnrO0PTHdV2V/jQADTjYrVPDsbIb+vzMLvfd9Ra+7wO5az+n+H7Pjvnnf1a+5PAz9rH3R5rys+87BlufvnMXHjPS1bc6S3Q/NGoFx724t170ejDrOmLPWV7Pkme3Zl1lUYapmeo7GZ+3xh9BqOto7tETy7/zMCW18PV667lF+jZz1E+z4WvAQRXfWhdDPyU75Prv23NRLsDfmaTnRKGRCbNWSm9kr6tcd2o/mJFm0Q4lIRbDQZ1wPzKxzxh8+wefZM6GErP7ECUjIFK9XvQ1+Cc/22N5GMYfLLbBjtZ5ianhA0DxKhOxCdpiniX4nM4eL6uX1t6Vto7o1zSygWJ0Q92vL7gPsOfNPXR9FsxRmizjT3BnYzb0G9qVrp0Kt8nbvmt3vOmcxuYey+6+kdL5fYBCP6jSM/7q346n+m7rrWKucXWsxABr+2l8dqovWnMtOTo6Wq47nbav22gJmvZaxsBaiwW1rKiOT+zWERCptd72nlPNYPcEo9qs4ABgoSCSBcRga7UF1vbSjONs8VmZVCAT00+LTL49qRcccNmtxbGbUzfuGVx+wrCB4n64f82XbokZLLBhBbL6YG36xZNx7vCepJ/x7HOwhpa1l4N7Svmt1AwGS2tP89mfN+Wf/pfqm2P2n4jI97/tgyKCpvoG288xUSN4ST9n+nzAvTjrGGz4CyhYm3flBcH97EB1cKCfNmoA9Nnehu2H6beOAW+UGAFEATt/f/jjt9W/rOeUTKmXQteA5AwLtOzvh+FlbD+0MnTGn/jnp1yAvxMKZUcN1oIyI84zqqRswxOO+RtO1gfXRzpzqnmmQrk6WAJe51SU4dv4ws7QaL05xTaaUYnFqWdH/QLD2dD6+Pa7f7wzdzh3fu5Wh1jYkJDePduZOzIdW2P3j4mmjrckXjdX58l9hkNPzAgi2iWsBVaAqXBmapNaO7tOvfrM7MDYNQQazmkEclDGn8WUxGpouSUCMXrmYPx1sm0bTZtQpmQ0wCpnY4t+dzu7GSA3yqgZBGvTb3Psh409Aa0p2QKaw/F2nY1x5M+cO9bQggGs9GyiejYculVPqX8Af/BTfzYb++GdTo2fVmADLgdgAjmYfmqnlgPrRcS0v8KxeoBExvjbn6V1APttAORuHhJu2tS4bmQReP3LZ1g/hbnrox6F35PCXnzotL1cRWTevjMbjJquuW/qJywId/xmbUcIDFq2AFNOrzdTbIn9tjoHl+7FgaA42wDA3mZyg0CzJxCWfWwFNsDSFebc/bH2esOes2mpnzORVE+8f91sZu9NiN34KPy1f89+9j2q7E9uPG7DwaBIphtV1gKcWl4DrigLvcW+9wR00JJG96pcgL+TCm/0tur69Y5k1Vphi7c2U31hhoOdOtCToS6tnXQPPG20lV60N3ZUiRgRHUIsBYdPbTuIQV79vrd05t5Ax4E04+bVAwEFV3OPZiOb7dQGQ0L9LmFhQ/SAtfv3DH1OLYZo30EM160YC7OgjJohGvzcKSiesW0aEchdabJS6r8smXcNCWzuUbDWArDmaYXAkHYBejA9qAkiYcBh1pAFBZq7e5LDsY6AQGdkq3A/rG8skFuDlu1zt/YUZuWsxl58fB8DYqz58d+9z57vS1s/iexftyw4oOb/6eU1IiLyXfLl+1M3HMRwVJQFZTqnIKDZZOai98wA/ro2Smc/7It9zxKDC3XSdFpWeMWCKt6GB/G+ZO1pQSZRJx3NkyWD7mdZ6Qsz/REEmtV8/94XvCodxhEIYztYV3sKGEirGMnlhR4A/jz2/MsffcE2FhdXlkznuvVtmJB6qexOuMafOnbGMEWfszqzialVZ3Xfxn1Tez0kvY6de0lKGXQTtrn3PzdtAbDETNuP4eyv0t5Gu5abNjPcdbwRvIT3lLBefPVT70W5AH/XJGiNP2932v3NuDNyac2NbSqWEcM8XiNATqrZZlO58VTfxvHpMyJkkDEYlOs8YEi0GKZ9oNkPOq6NuelUX3pmUQBT67xHkT8URHLcs6rDWDX57nArjW8G2V/tjT4YRNjced0zsFiwdnzNqC8IeA6yDMyOwiSbh9VxdtQ3/b3HzkgdhVt6vSODgKnFqAn3v1dXqOUgonuSWfN2u39Mp9P8oBvTsZOOZunGOTOad8Da7OryuqjFNoSvm7HW4fPImJKTfRrAeNeeosEQde7/8Oo3iYjIVY/x11qPZNporiNQ5prNcED3wz37q3cl1wa4j0qruUda62hzD49TbwdOUac+gbV13TO4NmKDDe0NqqgJdua2gZjIqIHBkHTdXvtJurlHR78F+8vIWuiQFePPcjeyifcsnEtxnSngr/9OT/7gl326iPQTONZ1VeuNnsYEa/PPQbA2u+4Y2JoFZbPgAlf6Qq/12cPAyvQbnhavvx8k+ou9ruPdDKFrFEOvo8zaJhOb1q2N5xRkBWv2/QrazGHuVsAabiziSTO+R+UC/J1JLDCEMfxjLYKsqxyKcjeAN9To7aTbopGNaLBRSrZnuGJKhmEolmO9DIeW0YxP7weRLJYBtd6sdu345NsfXpbAdhjXdR9kOKhzs+fnwTd46sGOVCZDFDXAOgysPkvAYvwphvAO4y86C0UYcwIdnXYtqGD8YdHLvEYNFvldG+m2sBjrJWOL7v52GyCPzyx83cpnPBh/IAvKAExRMKPNXMMABU9h7H6zq32xQIFJwHMfNkztYBJsNMf1xtsh+XVDoSc9dw3WFhN05z4OHzBjW2ntKIiUBSDzz1rSWm9DtepAhkMIDnj3wwhUO+6ZiMjrll8+Ds9UK3j/YiCsmBIs4ZDumZ47/6wt+/thv/O3ERw4aL2+x25Vn1mpvqANkoNI6jiojtC/fUZBbjvwGjumsyVDiu+jHdNF6nvnYQO94P7j777VS89eFRjiCtTvAzHoPcuzFkAbpmMze9Z6+JupjTjlb+bHbs6972PBIHfYB7b37791g0CghymZxQZqsBe9bnXWQ3jlyyhM4NxrI2Cd1jpWbimvf4piIfemXIC/c4lRMyR/6NBImH7QMKd+udp3dPoqrgdA7c9/KJQr83D2O3ZiIFJzU7sJPeGs6xgZf44af5az0Uozt0SZq/TcwfEdbu7hcVZUN2PPJtB+PsOboIPocU4Du7W5XvomnEjuWAUd0U0d2O5ZnerLAQpWumxvfFqr5UHJ6Kc3JcxwrHE2Dw+AaImMZAX26RTpPUbN2mSIcpHXJhMJZLdaNSX7hus+WNvVT1bpCzi1KVzz6qjbF9B02TTfPKWGC709KZ1HABFwScd2Gs1Bt074XpC+eCLQsjj3x9cXbIdvH1+XAxgrP2Gzx6TH8gzfdKSNhqHNumdg13Ex9vJ+1/Gx9OxmPcvtt+/Wi1PX5dbTH1YHBfVTIzjA6vW89hhoS3Ua4sGMGjNVd3+8Xg9Wp9Pe7zbZ1Nncu8PjF8yat/A9swEFuMyLN1iezTkO/KENWbI6na5zb9kRpA3jCMKtreBAGO8oRQDXGRYFNDtA7mZQZft3r56lFCDUZ73iERER+YyXvah32sNiN9EBM3SMkl/bAaDx7WwP0N639kPY59lf6327s071ncGmKPeqXIC/axPUAPNFTs127WBEJ7BxavALjSb1FD8mKZpAbIyLbXimubFzb83ZjWY5v3scMJhmE++5Y3AnPbsP/A0AWA3gDnVO58kej01dA+wnFQ8zBD10c0NM39id2wTfsLGJ2VEcE6XQN9ipscgywHCo77c/1SQ/ngOsncIZYI7O4ghq6PGZb5oxJfeO11jroPHX7YYMBqPy8SjouJ+mjNahshxrvOZtAQKxNWoyR0c5G3tg7YnAMy8YEpncjYDQ7swZK3gAfJtmedfySdlZHY+/oyOyumf+fcHrbCQwxFrrvfXWYEGB9ZgsFjmq2zQb2rfyWro1HH/nOVXX9P6nP5TeZ+vGevdDKxAWmUidcgCd+qcwAytz6vWx9gJh6TNPwymbva+DSeh1MwCFrmocA7BqMMSvL+uRDuAPrFm7SjpjT/fsFsGBZQVbZTfgZgst3Qj6ttrmRdn32WxGyqunO62IyAKC5B958mkREXns6aOOfsF9wb8eB577+ikAWOq9ADS77QTyuWnZER3A1CxpBGYHNTN06Ge+1k8X4M+WC/B3LummfaLGn3oPNf6a4BlpPA5R2LVDSR0gG1sfHmVnNI6+83G7KDcmVmFrz3hfuu1+bcP+3EbBXXTqJqBQ/tGae+S6J8afJZ/+K3/fccwksNHsuGftWpz5sXtz5xsixsBqNveAN+NWXcfw8Y6j04g4w2lZHVawJ7UJbc4y3NU3TRj/1I7Dupsi3XpOsDpU1tzbG9nxm8PidHXEurveWg02QIPdBHJQ46+hG9G6jlb9rkkz/kCj3aWbe0XgwXuWgcsk8Ke/72uWNMkH5MXpGMXxG5OLyLHr4Ihj3WY47I+PozIQCWS1NFlQWCDMArl7IaL4vcFU36lh+2GdddV1yb7H2Z3ltyIjHmRK2p0ne0NbupW9Z3pqrISDZnnnuB8IQhlrPWP4dtmt9eQ4e8y+ZymVslPCoShF4AdARMq73KtPaAnaBfrI+LN1DCLdIBzcfEjdM7DMSzh0ixiC7sV6L4CZ/2KfO14HtHPdOjriu3/qPdtRwvocB5xRsZ6zFHD2zU8H6j0BHbGDAzAe0SJnwDX+ts8zu7P47CKZXIC/E8q0869SRkEky/ib0Rp/hsFuHrshiXnWGL+30SkFMtLV11tjJs69nmHpN1MQMUmpdJ4OsZ3rBoqLXdGt4YDV73KtF7XRW8/aYb2zO1xvOvbKAjcll/E3tl4sRyf83WM4tEAi1JAw6wJJMqiWXUfHNkLwdJHGnYp1hcDggJEm8/9n79+DbtuuuzBwrv2de+77oav31ct6WE/Lkvy2CfEb2+AHbQfHpkmDqU6HakJRoQ0FHWKq010hdEE30CFpqE4DoemkaZImCUkBITgY2hhjx8J22RJ2LNmSJUu2HvdeSfeee8+3V/+x13yP32/85lzfp9PS2aPq3v2dvdZ87LnmGnOM33h5RSr6cLTRZ4efWQjOuoGwT3n/oMT96Zlr61amIsj6ofbMUJiynL+rAkxVDwcb5E77xU0I3o8dZ3XqeEz4HNsxQI4Qn5ntCa7ulz6fZfu+M4o8ZlmW6hkpHqZlLk17e4uGCaggemCIYQgbVLL6ZxYvj+83uarvXrkTAqbxsubxtxSAj3qmrB1vzb2V1xEdjHWTASzYtwgMNABWCI0nGPVuLddtPPwRed+nXtzKutZeF3krgKQjKLS4tqj2mc0r8p1hZ6avBEB6Xkz5712GCQg0a/KXlWfP/912nmK9UEQcr5ADgiZ3VvOb8KaOlxGPcKtQt4aR5LW2H0BaHauYZVSZ8ZSsHpv8zHrDRAgFAOrI6zZYK3qwAzwh50hWU1/0MvOs5vT5Tmfg7w6RnXOtJFExRzlDhLH7w3hsO8D7BUt9CHPCpwWYfurGY911RG5V32s1EPTr/vcv3yW33gMiucU9nN+9x1sRh6yKAjtQ0qSxt67bQhFXR97ctwNxKkQ6CmDoPeOts7dhoeh45eg2igBTn+PPFwSqyUEFkRU8AM97sDDJtNAcAayJHDVutXaHDhZvrqohE4+/EPMyIhBIZW4o3MMJyTfAN/2ZXZZD5a/F8EdTuZU9HLgHvFyVrg1rF7wzdof6up5rGm+Fob70LM/3z6Wx4nPnXsH5PCthw9GKxBDkdpWV2LwHkWZD6dSqmZYn9zGoY+8VcJD5K+431rQIzy7fCdnrjr+net6zmWe2nYetp6MYppxzt5a8sfwdZK8X1+r0E5Gv06HN87Sc7lzO2wiIzIQZ570uG+HAGTaymx974N7qOft8vSfV429dC/lrgjeu6Uyx+ZNeDdkyynjnIXpm2tgJKC6/PIT0nRw5UH2ppt0AoKU69xDl3uvQF8RnVs5HzlNctKmuqOcZAOhT/0yGKfe6Ferr8dY41lx0kWnQEUPy71Y6A39XSSMcPjFX+xFcPPMx8/tM1mE85uEwHwo3H/ZZvojlEaw37wWon3z827vriBYgiOQ5UclVmyMaO34Wc//x45sH2m+AxEzYqJFTckSEKvMKDT92sObpcHUBLOk2MDYP9d1NojVqzupb9mC9Jdozqy1hYtJbAIbkZziXa0VR0jLo2Igw0QirClBwbFXgHw8JuzLF2vIkOg2Am3oJ6N394lhePQFsiYJrqWyowF/8aIHmyCPGw20PqlKPjEGjOf6gsqHttz3Fi3ojnviextZl4R0R+EvKad2TNLw5FFsAAQAASURBVF7s4UR2OgDq8Vd8zokhXiidpijZYaPefnPe06mCLKe/vZCwYwECTam20HtM2euFxLf2Hn++5xkHJFxjefrsjSrToKPqWZuUessjJtD37HgsQ337c0HNfwqfuJoOwMgv6IJIzpniVgvtZJj58/X7v+oLpttGWi7UHH95Vx5EY2vdgccjRCDHAIp9IAaMLZ8phm4a+dOyCvbHTWa+MEBuUY7ocvwl4yVv/6IHb2zdtBEb1w8gWYVs5nIjGv9wAXoUxeev27H0+DMKskzrGoMgt2WYUDxM70Y6A3/XRtpmtYS3EEJ46T/992jrLHiWYVXaAYO9UlQmYwvs2uD5RXzRQ/ftaJ/nflxuhH98+bauf0ZXUdV3WMffE1YVQAJVeezI2Msvy3+IgsSMx5/n2SGOPacYRwvgHNUrZI3vgCFp3SbCs1OIdMw3MkZm3o2lmRcgL++GJzyi/ZIFMObxhwTPQSCms5Y31wFZlvpcOEn1cJg9Wo11K/kFGf4IACg9TIq/pzKoOeFRkz3+kGKtPvPxMJnVMcLpZ3kLYI2BIXOEjHiaomOF2cgGoZ17fTGMeKf+BGWjqGA9nQkh9M9MBd9s3iru1SN4ZmpOIyNsVJbdrizFDFCsxWiPpeT/g97UmEeo3mNWSJimGPtQNLqMldPTZVatvVi3qVDfzfhZveNFG7FKqx0i7ZAH1g4q9XtCLpdlqeYxE+qrGpNq1rVHXm/XLX5qgKmVMkQFufdWsC55a5n+QzaqVONrY+MUWpoR7ste/djp7jj3PYcLmBsi05ikRkyU41jrJrTaBrT7ogbAItojWDzCA8kt3bT8Qlu3Q2W8PENbjM6rc03kCVaoslukG89+graPIWF15ICYANfJMeO+aJF5ThWZyH3fd/OGNJ7VHipZLhDDQ/HY0t389IdDCCG8YH1SmmpPVni3frCkvEI71h0xRBXImfFcg1NKU9NCCKdCfYFSPtr+9De/blHcb6XVVw07RpUEM3n9MGVDFN6mi3vYIJQSEraaIHUWKlTDxLTnm2UtD9FT0hu6BjOGwVoTtNQUxOzdagOm6rnQL/ygUj8RcpG9W5GCOO5lEETv1hUo9UkAF3Ngwb3OFOurCvWFXlDeXu//0kN9s1Fl16mADEI0r1B+ZlO+a0dUWVdTMK00CiqAhRLQH8Wxrb2e2IbXEhl0ZAI8Iv6bgkglgNWH+qoAVld9O60bb57lp3HDBMy5JlckTgOmPw+VQYe9Z+VwRZudHsm5e9GbuvIe26trCLxxa1mPvddQYvQ9QgNRVbtCfSFfH0wHYOb48/ITArBWDWu3Qi8rXqXJ+43l9fQhAvT9usXLfO4XW9TCSx99oO2YjyuQLLfOgLVwUBEwh84ZJzqSZ1aG+gbrPHTHjh/gLJZz/JX7LX5zlfzi84fOwN81kR7aBF5pUZCYCjUBApTMXhxBwmmcR5s6EZ0QRFVoBsSm9IX/6A86fXNKB2JlmdApW1WuzoKozyMeDHvAXvTMePNdHn/bQX89OTvCgMC/B6xFcxeV+opHiGDI0faUhOkBug564e/UXxT48fjHlGDZzi+ojt1VnhTzE9oV8U7z9kIH2r5noOp27PJ3sOIenpIle3ID4Y8CYBXw13uhu1XpkJeBnCDaUDaGi121+2XMWt7m40leUMLYs5SVtJnQy0IhQKG+ZPYWWDt0phd5iq1cxxSQKMLaZyLpEnVewWM8olz3URAJGybGPbDy3nXGBu+4TA5fZwpixSOMUF/Zk6gDJGJ7sTqtsV99g078mDNMWDm5S35Bw9oL78iDUXDKD73sx66W2vWUbMcrAQne9ugZRTy+nvLFAXB4gH+2e3bGe1AtGHVc7fdUpQXqWIIR7nRHN7ac+uJo58lL11UjXOj3SwghHF0vdEsGGjWKtGdxjJoZDXlVx91PZqTJNv5hoAR1na93EDCfiPZYw5oAUysHqR5BOGFwDoVsebD40xn4s+gM/F0hjQm9fWiTKnCHUBy4xYuWq/p6Y6OcRqJ1YI/wWBwaumJVtu+tIqcZiQLY9jmT8+3G858ablPTPGBaWRCncvz1ikod9sDJEv5Gx4aAQvCq+s6Dd4vjWeuSmP8GUQKK9rwrRdv/7PbXpb9/8v0fd+a2eRsawp8PxNjvWfzFeqgvEiSUUN+mz8jfJgTP6t9TFWLHAM/ZnJJmkuXyjCAh0khA0isxIyXNt9yuliJf/K2DjoCvi5V1K8U6aGNjrxNtvyB3q7TXL7Wq5VMEKzFv6yCG+lbeR1VHCtA8R3ZI1+kbb+wyXcmuMwl4hsgVrC0wxPVwsEFutWqmFcYXW7h8/WiPrRPa6+bXdtsQwmde+EX5azkEEcmdo2DIeO6wtN/A2P5bYCj1ZRQA8WqpintUq3Q1Hn+6sdw+k5S27QipCrWYmiefYfX9Izl1T3kty7WcAP7kYlV5tWZycqd164yX8Q9VhrH2ujcy4uujqVbssV3wLY42kVMSFwDayPMe65xi9liVmq7lO0vjZdmBb4Q7tTEMceKZhMA3WnW8HNs0AornIZL9ZODQ8JT8LAC2n4t0Bv7uFHn5cWZCm1RFx/ES8F/UeUtWzYBmmKu9LnqIjper5RrJCePzmu4B/qyx6zXwrCp9mMzA4NsnspZrFp09VaCPYQlPr637vtKB1j+6loQ/pFgLfZfv6e2Qval+6lc+4XVw+jRyhrgKIlxzEchxvDzpuoFkv2qhCDenpAjmWl53sxU7dYrvOOARzn479TCrnG53TyTuLz04D0ZI2LTAnkKmxXA0I8zYN5aDdZPzWc4LrvvPIa8HMbk1zDvLgL9YRbrIszfj8Xc4VO+VFuqbldMlGPzEZW9OMnMxPMmssqryRjj2uOy3inx5d6hvmnudszZVaaUhq/l3PfnKr09/Z+OA6k2NzhTanIYg+iAQOJMG8zKGyhtaC/UtDRP1fqNDFh30+6V63+Sw9glvnp1gbWtAvPXI6/h4rK+GP88Af+p+KT3zZ1IReMYofd0moj2QfpjY8vhZXHmUix5/YaaQTTJYN1/LfB0B/FehMTp6TkrfVa578bcIYh2XG/kf4pmUfm3zu6OzBX1k5V4vcjnuTjEzLK+Xsp/K1+9OOgN/d4hgzpB8B21vJm9V8ymlogFtpyqT6A8G3VuxNA/MAzl9npf6OqL8C6/OkqOSaYUTaQ0ZrJmrEOsAEjJ/nPE2dMBah/J+m6FTq5s3LsJHwwumeuDdcytcBkzRu8L67gWoKS9NwwU+TRAObV+Tq/qmvd4IEklRIp5rAIhRLYgwTCbJERroWafHGVRO41jOSC1ZlZiDqiCiFA6DgERXbEFoDr1SkoeEQ2DsBDRPeBmold1QcY/4rvjhaNt+QYAEK2SzUzBNoOakYp34ExRDGGi5E0SCBqE4tL/XK9BxaGibx6g5tPKeskI3ZxVr0TvD4I8y8AfWXCV0Fq8CX69/l2HYED2ScdEnLXLANOi4eADYL3KOv37da5mAedQUwJ9V0MUBQ7C34kaUPyHANK7bznxxav6u7f7nH3yZcz+j1pDI6e9cfnkIIYT3Hl+Z2xw0MGMNRZX7OQa1/X8WDDHGViO6gFew7IFlyF+V955ahCf0c/fJkJ9CcRarAP823xvhuRBCCI8/+wFxfDIz96A0APrKyWMC+JOfmZdCC/OIquq4sd/c8xAV90j/Fr1bC9AxOwmcyaIz8Hdd5MoBWx4FwNBuX467csv5SgzgLvYqUbJM2BZE2rQSYiZeS+AWfBQF9hyKdweAPyfPHqOyZPpMhdgl7be8bl/2BS8s7tAEicOMx5+hlN9zUVRYk8HaPZ6Oh/AXfueXjLe3PFEKunjm12nLDL7NzL0XwMr37KWLFuoLQ1alUDpbOVV5TJ+XL4IhDEWy39F1eGwkSahCs2Ut55Q9imePViywn66yHFq2QWcRBX7TUr9dOY3NgOJiXmX6CREwhYKnWmDDWLeDaGBZE2/sew3BV2699BPXGW2C3tNhQKI4U3SPPwPMcEYrCXkZKEpaBmJsOUL24GrbJsBezHtW4TBxvzhDg1Qro4n7rVBfb/3XvaG+hsG5vjxh9FVzj1ke7KFUTj2wtj8XIo/wjAPeCqvpcSxjUgiBeHg1eRNNUGAciBlLK8SAmFlAIX5qYG/aIzvE9p6/87E/vD4eQgjh7x2/LH2X5d81fOrWbTxWsR/2ycy2DOR7mFo5JbdP2TjQUuRPtLnpbViLnUzuLKNkyt+uGlVA6oskd4pn+Tbeb/rQXw0hhPDKT/0MbyeQdy6kM6XSq0V5vdRTJnIjmh6i5awE7/vTcH1+Z/csBoZXVafPhteCzh5/lM7A3x2ifPABTyBZ0cnfqYlnUShd6nvQ/d66A1Gdy+RqQlZDKI4Dx+rrVfW95+n9lh1M/dxVAfzkPbY984s5j8Ft8PTXqx6/37zDoj2gY3xk5Qj//R/6ukIx1vb6FAsvFOMH7x2fezuTll78I/9bePcJrI3gG1KsMeV1s+//I/f8Ddq+UG/yd9V7w1YU5aFSD2NbAEsFD0h7lBBcTSiOecTBHTsEW0FUi3vszaFlVvUt/maJsWGorxxuayu3Oc8es/oWBp0KCBLBkPiOTwie1fWStw5UYDzNAHlg8aERYJqVNObNs1cw5SC3WkGx9ApWq/qWaRTacSUylNO6f9K0Cb1MIZfq0OlGG0TSq9z3ILc/C8SfxPMwgW9l2w3Acl4070zxyeERgjEphBDe/7HPpL9VT0mYm7qbm01WJWbZ+AxCpFdx7pmvWx6iQTKEbY3y17Lh1HvP1HyWxdybT0iOZ60aoTPnNYd6i//S9kt5V9axQnj/b3x6alyFcESYarzcPi0vTRGIObb7RTjPyrnVoZe5L5rPci3fUyO0XDXCIY8/sQhPPLtvrM/x8a6ULLlT9JSswDdDdpQ9ku1vWVG5yplnoso9vjoKWvZ8/Qz82XQG/q6LHF6/HPviHnVz1YI4sdlRnhdZcE0N6NzMK6WAM3WYc5dk/TUHwN+T75+Yk0r9oaR6Hh7XtajqO7Fux97DdL1xXzc3RFn4Gx/a8q549QsfCC9/9H5wf017cvz5uTKd5s71G898DLddi11WCezq4JFHTIQJlyMZYEiaIGoZrXCQP6m5w5CCSNoD8ExOFoy8MxZh7KJ9KXQlQVqTmeeBP2B5TXyChWXBEOcxIair2Cl4GZQeUstFKbhqeYUCMEbJinW6Xqa+iGDtHKCQx3bC2fKAzfeqorSDIMg9/67I3kBX5D02AyIhQEGlVsHLY2uAhMljZO9WD2hWgcOL9hu/faUgOsOw9l3b0xdMQSz1/ctKDNTAVgiYpkrM2nu2lOsuV3/caZgw5n6owHZfqT/2rtzbDPaBvXIC/FL4S2F1vG3cD50cMXgWI3l9RK3vqvrKwF//jrvpI3YadNy8sbKH6UwqgkvzLtUoYp1J5TvH3tMysmmmUIQXteAbEDlIvodc71ZLhpEN9eW13hDnp6iJt6P9RsDaCsg18Ah5zW0eMVO06VzVl9MZ+LtCGlLJHcHVt6TFG0vXWq1tzs0z+fgN66UqgFdJb1VLb92BOZ5u/QSg52eBrFwpM0DOVNhonkX66zPv+teLuXmt4thXZ71U8kfEO0OYDM+OQvNyuCKr8cDQYU0C4ly4R/Wx/a33Y1lOD6oFEXrGauOjPHuxvyMTJMDzzoKEMzgAQ/JcNB5RCZ6iopMqVE/vNQTknEixvELAVBTAoHJLmxZ83RL+XKsvUqzrubEeyvFCKML4XC8oe68OV0OeDS9Ko8+cSh7I7c093t6HjZ6as7nns3jGGJWUkUOrbMRPoiAWob5zFPdLO6kIsGuhvmYCehFo7mc0xp9g5IDgTb3XMNGG+mZezRTE4pw38uy5TxOln0hyBG+eiwZMhD+iKBkRwDI9/sKSwTzmBRU9sHbzJxt88b2Ct6gFA5DwPbC83GEqiLRfVZ1Pv5GpTKfEc21bes4AOfKTWmCj9v6KYe3aeQiLe4g51ywj3Kl/JvvZvDVHmtChYRWKnFta269XsVeMzulV5rkWgrNuVddGe5c3Gvul6Isdh8jjb9wRaU72swvZiGPfpXQG/q6LZCWrfLFLC4l2GFshYZ6ikyz1HcKuouQ9k9Bz/BWJQPdUiIWWCSdRcQIV7sTW75VTueVaFPeYAP5WQ6lf7320uEMNtz0BIL+xPiKPbYYvnjrdJuK0T7dNrJsT2u13sEO1XPPclwmQPINIObxkhLjl9DQTRBCsFZN6o72ew0Z9RacDYg4qfwLX00YaB0NyoQhViNmnWLdKReZXvmfIbFVfa7+U7RUQKIRgh+hMgiE5cb/3zCylXgND4tjtmbCoDAqAb1FRp799b6gv8KiRPGtDIfCDUF9eTMYA34bOtrxuVqEKXkowPrN9fB0WCXOeeTbolAnFL+pO0NDQm1p7ZhZvXY3rrO1Ve2kGha8DrxQ9LMsx6EzkAVXPVlwNeZ5HLEv+lhnCjskDC/F1MfUFvC56JJsgtzr03DM7WM+sHsGZQTmkbUyDtxt/xWdwWNbWXlH3XW31Gbk17vV2UiLYm/6wzkMP+EMy83yalxrAYmdKnp9ZyMb1vkcGxDGQHBbCuUay07xo6QAg71SjZMBlxQhX57Ms9RzVsQcZTrX9ZqfmmdOZ7hY6A393ihyU29+wvYKoAkqIsctec4bnmko184q/faAf14LIm3sef3LYwwThBKo+nUJ9d7ihGwL7yPOLdx4OJ3V4ZJXcfCUuY98B3jn5LEdodGesa1HZbaq4R6+kjViw0nt66A/Esn917DgDbR5or28WRDJ2LpDRXhizIC7QM0QEwCq5UwtZ9Ty5XUpzA/uF5scBYw+Gs82EZ5d5e0rhb1GTLCcAC3kb7ssrpOSq675PILcIOkJruQaY8u/Q2NEbp33mg3s92DlIOQBm8KeRM6VYt3J/aMU9ar4+HlpnezjoBTZC1z5uXdm7dbIgi1X5uwStKUB/RHtVJRuQWIXncAQhYapyijyR5IIHhEf4qStsGUYPQTSU00VbNwQ6ripoaciNVV8z6yan3QC6xnAY3xWo8G0fU7rCwfjLoCsy6PSjjO1127uVEzrvVvFMyeOV+6U4X5jtMhQpjSwjngxi2yAvkzurO68h1Ffdb8hQT8/i8neZDjXefrF1y3SuUEN94fFnFRtVvXqNWW038PYGFpJzcV5jmpXPYToDf3eMekGiMhK5L2r8o9/sIQQeXgSBGGsm5DrM/6UpWXuqXbUWmaPIJMy8HZ8lssIfVfFgLVrNhA7sqShctr/SsAUxh1Z+suNzT8978iDfI7/VBQ/2AH9zc88Cexa6qkqnSp49kO/N3bnAOJDeUwFEan+3nhrA5k8xWbWuII5XKNv9nqG5b2vBc8Dbzyz/UxTAQA4t1r4O9bVyrXDKAhoY231mfftR79Y2mXlur3oStd5jytz3KYirIUeEEIq8Z55RJSqIuf1rX/Rg7kcEmue2u71uuX/c8liMjXsmI0OQPCrWjidSNOhUAJaobADltL8OO4iTaL/ZmvvPrPSUfM/xVc54FrXgW90/G/t0f/meqgB75K3thaW+jtoTxdrdvsizVq2ebchPS1hysSvK2MF5KBqycOqLdANtbp2H8fmrBh0EFMt7/UqAGCTLoLv731btW3am7AUcwH4L4jPPlU5L/qQZL49A7ox9ed7Q1jOrortIVNYpSibOvRxc5a22vL8KANbpxjsX6psIRC1wA2KmJ8rc6fGdlQHPcR5RV/W1ZD8tvyAyDujerf3cP/ta/ucGnYG/O0UrzwXlhpQR5TQEUUEEQq9/mKcGxVclY2cK4uU2v2VOOQbJV9OIYm6e6RChXdQzVzk34vG4y3tstQ7ECY+/KS9PeKhEJcsbe5t7m9xaGjzv9bknXigrgz3UuS/mw7OrV2tgDiaIVDVngitSrDUrXuYh4JkLVQy7XHVB5E/gelaUxkPCVM+1zrt1cNOhXJrZM8Qv7tHn+IuKtTd6vAF4GbCwz2Jd6jwvqvDH94vsBQWqZnIUaR/oiNY9tjqygiwOfXB9kTb2FeZGfM0LH2yu2mTzgIEN7xogZ8LaB8cGHqZ0vwLvisMgiNSnvhgzXtYnmqYgrh7o6FECsNq9LhhlSgWx/H6nx1/iT+q5YCjW+pmC+NPEmbKUABiTmbkHvOoNjZ65Kn/VaRk1OQB7wC/VdUQHx5A2YpjtinuIjUu5s/xb9luYsoqgM6m9DoY0vKD0nGv2fktAjKdjWaG+pa7ohPqmuVcyswoC9e9ZCIX8JP72eY/oecq5NHv5KYTAnXkK+orXPp7/kboSAfpOhvHfUwT86WuI1jyOraYrKcZWI03uUjoDf3eIMsqdH8Fz4R65/cEABSqPP+pPjfIYRObKx7ZCVsuD/ZGf/Wt46AQoTFaINUDLN7704YKxa0ziTnj8BWfdaMvKU/KC3Ik6MDxiRLD2dG88UK/O4y//Wxt7BqzdHXpZ9jUK/B1RPkutHwvMGKH8npZfquGPHAxRK+L1nmv+YQ7zKak5/sC67UmeH/e9nBg7jT267xD4tl2lOdeQUq+Bb7hIRf8XHrsef9Sjpr1R9TC1+FMNtjPQ0j4TdFDACZOhIfXln/0qucYO+MxVRSn+YQvsWo6/Od6KUl/E38xTSu4U6L2CLKz7StEpjSraXo3Xe6BY89K0xpbDs4FSP0zdI4/PDIPcMY/d5Tr5nnkeyWK+uKrogOy5BmRm+Zm392eIOQSn2FXSFdqxNU/JvcaBDDRbnkgikDJrVEnj7VdVR42/+RcWoHrRwQXrjOYnFQgCMWrUwrbuE2k3sgwzJ69nPacAScvcb47ceREtlKWeMypHACOcB54t6Uy7E9CIwd8qHq8YdFrQU5WftrvQecj2M9BzRtO89DxibO41f9K8W+9WOgN/V0gjRoIlJuwtGr17ff34mAbKHUKuemcTt5z6jN2y6OQ29773v8Qtj1nJmlMXemXhf/6Vry4sp7z1dGGAKyArN+In14ekthWItMNTEoe8auuSxx6ZA+g7uXJrgmfs5b/8/b9pYOh9Hg6VJ9Pg3qgrWJc5tMSxG5B7fGdGq2+Rl0at6guqZ2d1RQu5QOAbFVyBUj6cM6Sb+hgYskzlqttnWEBg7zEJ/IrHX9tpukGdRfNPwepbnDdVjr/B/IJ9eHd85qLnWil4lmAI87o7omem7hcbkMhHkmapt9Zo8UtYm2Mr4dmnMXsPrhpE8vMTrmsO9R3LGwvmnj7x3CNQMl+kyzFGqYVsyvDHwbDPubFLo2/+7cdqr7N1Q79bo/zMauPj2v1hDZ7fs+o2GdTxQqS19/RgKqecoEeyOHcL5D4sOdSXGwd4hI4/Nl8336Nm+6yMl2NGOBhWq4b6XoHhdlRutnL8lc/g5tMfIK3LVjPyOjhTBg06NWCqPbMsdzZ7W0wfkedmG+Go0bdMj3PIjjBq5AAM9R3lzdv9T9/zYn7/EKkAVgmYlnzdb9t9LxoH4jNBVX1pvl10Hor5clM/swVZTEN9ltfH8/9+/tMZ+LtDlPeihc775CcCVZirrai4YxsAVnmY3BYqdq5hKdzQB15Mg/vduDiEh++7Ca+XFEe8yqq+//XlV4UQQnjfg+907uwZ1D89vjlffupDuCVQrHXq98taOcTwZ2DlgtKH5gqeGjYaha53vOqx4bHnq3TtODSqpLfjza0k7iOzSUOWQEz5/Om7wj0c/LM07rd2UrE9yfFn5KE69bUPRFIFCSt/VxZoxgwHo2Bx9lwDvQpemjA34iyAFdeBWcsrgb33HpOr+oIQQjUJfCX8yV4GqUX1fW7vrBsABXJi7FEeYp+rJqWh50CkrNSX1Wk1EAkCzSJhD1Nh7ij8Mfa908uAR0yUio6tbChj98pp3z/ooBu7AmuZcaA5S0cJ5tkTDDooL2OqmO6BQPAsF72gEoso2m/yzMEB2F3vVu89syIultwfM0zgKqui/GzI6zWapZ0Lljf1cOqL+L2c37k36MzTaB/9bys9sG9+7OfFYedl5g4MEXOQ5vOwNPqq+0U06gJiERMhOLnqfuNf5Dbl+S0abfF+EtetcZD4H17zB0IIITx5z0udca+Coo5VvmcX/XWzafG7zNQ+GuiIcreyPVF5URreiu55uPG+3hVI269WePehMDifcb+ezsDfnaLdZcPjZi9z/JX5AJiiAwT2wXwnlYJQKSukZbLUTyYEdw5EX9G5olCXgn7q+IUhhBCedKxDdmhTsQgf/TnY9li5U8+E21r7bQJongi5gAK5eJgfdigra/rcLzjuyfFXhmfL4d3xd0/yiJwzxBYkuNfdPku7VVUuhELRIe+ppSSFUAr/4tsL8wIpv7sG2KORYjzUd5QMJS0UAJgU/miDte6TXO13XAmRLg1NFWAqe0rWc80dxPaeF5ThZSAqG+lMAuCZ7m0Ico8JYe1Wf6ceNEVnOoeWVd22BJSE3D7zvJXvNzp2/GMmVLfsAe11yiLssCrVuxXuB9lLs1esaxxHAWv3FWTpFMTkGTKRwkEOG+VgrfqeVnlAy98xcx6qXugbtTnXYitWbRSFXsre0K6u4e03I5XBoK7QPbNRb56rUFWXUTPciUr+9toXFxE6JOXOXi8jxCNW4y+LUmXcStzXZJh4uXOOGE67Ac4UxiMuCi+/G0XqK3HstO4oB7waIr2N9/zFqVDG0/c4uXYF8raElRdbNcKVV+pCgof+BmtsJ3cr509empdJeX0wIsw2OF+trv/5Qmfg745R3MxzjyCXPM/fLaLAjnN+qFaVOAl77lpV36VgagMAlJebx21f329MUJ5Le6ta8ROGHMjKxo48e3BszSIUwZBn1psjg2+dtPPewAxRkJhSMOOab//8i7d/23gfsavB+6uqvsA7gw9o73WdDEvYQeMRufojesc1giDSTO6wRRsbCjGKYl2uSeUZoin1C/KmFskLpVsD8wyJfL3pUxbYPS9P3L5MLbFUgGlpeWXjI8VaDRfp9/pS7XXmwYU84MV1c/PFzYue/l4HfF32kLCUNDEsK/HlMHmW23NXVgt5QT26fDqEEMJ3H/6hMzb3XGOeSFW+3aqYjApyI4OOpui044VQr4Ni9EVpWlzy8uypfL1ks6rnGgKBIn9yWh8sHrGM8YhprztgCMvnq69YdzmO1Sr36fLB+tIHBeJntWfGwNp5L836mbW9+J5vVW/Vv95z4KmV8i/M7e6950Yee2G5tmsoZpzAeZiMUby1CYaoob7JyWDSEAbAt0QsFcGNB/Jo9zxYXBmN9rABLPcsPkbZcZu7GmIskK8fRh6BZJiJImGi4RS9x2kXqsZL08vT4xG2M06KXNnhYXoO9bXpDPzdKfKAGL+Drn3tyq8g9HNCDFJ0ci9k7O1QWa3hBSpE7m7Uam6AykIR7z2+cnwCdE7inRPAXZX8eVeBDdva7QrNTfjjv3P79w4MDQ4VUTm1BDCdakFgNGnvnjNjb1XfgAAwkZLAXuU9E0MugJAhF8gAirVWXc3+3Tlhryd4pgbNpBTFugCwDO/YCzHnWv6dY88OgyHR42983YLoiZQ8/ia8Myrv1srQH8d2Il6hsiBafY32dZV7P3QTrdssICGFrDqkhkh3z2xR3rPC+2PKOxaBISo55yHbb8d8jpf0Axd/Z2TkgEAkNnZVpdnIZ6nvF/sdd8/DxFttL3IlzcteVQgZL7l3a5Y76yrgka87BOVOkUck4M/mEYpHTZf8Xiws4snMLI0CTs0TZV7vafKxaf7Tov/aqKLmDkMGnTQ4bY8A0yk6HKpZPB0ehLeGkPcL/IUE+KuWZUeoL5Jh/LyMxl4Xw6WRZ27c635hEcOYFPqiPmDwEEIIz68XTdSoqCtAz7W4bnyvp3U9RKcE7f1WyHtLbY8/LV1JZUgp10125kHvmWC8dEJ9DyqP6KL40g20PUt7dnAloLuTzsDftZGIck8Cf1alrfJUk5JyI0FiUnA1ptG3LDyJpn55KorS5iLQFJ3Se+wfH98+MwM2OT72DrB3KYXSqXDbOndF1z+be8l4N+HhV9aXhBBCeGp9wGpht0cCu7Nu9xxsJU+i0sN08Q9f3H5i6NILqqrkrNI+r+DFaL9cDAoSbXiRPLp9mEs5jUCxBTURO04CLwgxq/3MyhAtryrd1tidJehha94Krk3/Vsu0bvWaR4FIDUfD76nv/XW5LmaIzyEcp0AktbJbWjcTiHGUejC2WkwGg7W+kqYqUR4h7zHVEIbAELrua/woBW53qsXY9nuqhQHabW8Qj9hqbAdg5yB3wSNCv9dnc/yNhjbV8l4JYNHBUy9z5Ox19tsLsNbiEaonUe/NM6jcml4pfO4o/YQqwyAwZMwQ1naqGuH6s7heKnXupa6xM8ef+MwOu/drSa0Vku+377vxP4QQQnjV8uv5y0JuWUmo735o3ZGfJp5ZypEsvicwIswlziOOrPJ3YZg4GDxClQN63trMDTaPwOH2bAvD5W6SAVMbrKX8CV2Toz36v06tBKNvIfvVQ6uGMNSvttfzq1KkPStyt54d/no6A393ipIQM/kI0mafyFdyvCLQcQJEOq6Zsc8Mjw6t8ZwhS8pv1PY0SqrHg2WZkMcAeRRUMt2hSwugDIbMgG+O0Cxa0+ZCfbcPECoyQk+u3ELcD31FXppVvgr9F8Q7UWgTE8Di3PvKburY9l4f8x5rQUcx3BYIngkMEZSsU/PyXSm8a6SCB7O8NQ3YzGoMtKw7VYW/2trdtudWX/t35yTwXo0L+5mpVeksa3mZo5F7SnqeRCqgAIxRYnEPa8f4uyj2Pe65Vt9egNzFPlmpV7DR98j5kDyJJnL8wUrM6tjgmadXxQ+pDyGE5aIHkfyq405ouZwvrgStCr5O597fP3SmAK/gDDRrAPu3f/HL0/cHETDNXnPtXldDwuLtxV6veITmrVh3OvbM2vbRmMlzkEbA1P7dKpDj9Y/IAi3jn/NV7lVPqlP/h0ldpaR2z6o9fv+NH87/uOf+9Ofx3kdhm93yOvKUVHO2Wc8sgiHiM8N7fdz7PgRRhikcM6rR017X8lkiAMs9izuPv9jbfo8/j7Lst1jf8rO40jXK5mPGqJl0JfAslscGTimiQehgGAHraI8z8tfSGfi7QqpZlcPsIRiikZ2UWxViEOg4KEiAHDPsRV+AgqhSQv+RNYoyxzy344qAvx3k8pc49/FCD1cX6juwR3Pj3ILmNXFaQyVLEzzn2PfVPeM/d/t7Boe+mme2W0mrvKBUsHevYg0ECSFUJTZtiy2ouepQyKoCYKFcmnIuKATEiLRYfD0UvHqiErNcFMUJ9aV5XpCXZmH1pZZbx6CjezjYwh8vOlCPlUit6puK6IBnxnjQXo8/rxqy0/6QPBzs/crb7+MRtqJTjE3f0+2z61M9JWzFWikOUuVurZQNbQ4w9cXgXq/lL7//08W952H/noWQeQ5Tskqj7wM3bxRXtP2TZT84Am3vyszC2vQFNubDs0Mo3h2paiYwTMg8wgaKZU8kQ47QAYXmaznNC5L3x6mNNPUqOZt0497c38X98LZqXa4w1DdXWXXCs9Mz689DP8cfkrfVZ4bAt9jcB5FCqIsPpagFOnLA6yamUYg8IBlVZHDdJ78HDNae5oZ7uDzcl/9xMIqiyMYBdBb70R5tRJae4w/JnSrIvX2WLKL0xj0Dfx2dgb9ro3HwbIRMReeiEKZo3g77JVY9AHPOj9LbUHu5jgaYMUIo5OLTz52+f+42PxDLCrEXxjrM1P0a9viDtysHYpgEkbwQRA0MiZbXfLewXhn5ay6oinUGqodfF2g5lTtIf30yPETu66lWgmbAu/6ZjexPu8x9dslXQn1xAnptHj2goLQHHn9ihdgV8NZVUNLK96xSdApBguWLyyH1cS5j+w6HhKUJkrGRQUdbN+gp2b3zxtgAnD8UXgZ8u4H3dDAMsOSNB9VLE4KW6tj1XPupKUDx5HUnF5TjZlkIzaWWVXoZsHNh51kOPC21PKL7DKco3HZVziSQu1UvuoXWTdtvFhiiAjlrMfacPhTXDTwzyeBsA+xyiDTwfJM9/swQQi0PKALfVN7aswjBGJUA9qblYPhjAHvE9/jr/2L57ayx22cmvWenyZ2GE/PTUWoW/4UP3ANu5PSx9RH3nnpJx+e+Qv7mGyZOd/U8Qg+9RNEe6n6Lt48bL7N+WLeXU36krQ4MWarHYPT4u8riHmJYexm5d1iWcIzCJDmLb918NP+j8EpVnzksULYI+w0Ug9Gr+nIPU562LPdfFdoq9S3HGehupDPwd4coM6B9j6BirkUp9Iv3/QM2+OmjYY62/dgYEyin7XVz6J1eAmluTTjaZ54/9fvD7/mI1H4NYbfH35te9nD17/kQRJ+qnGi7gL/xXE4dGDI8fS+sSgX+5kSo0//3C46jelKVSBgpaYQW8J6qZOd5WdL4NKn3yiu7eWS534eQf7uSLBh5j3mhKm4uTSZ4gkrMNRiiK4jjhgQA/G2//ahU7Gwoe6Woc7CBQ8WLvBP+inVgjxxXp9UE14PFYyqlnoU/AkVn0KDT8uUUmieG+kYqFVJ3rzuWet0LCvAYjvbmjzT8AJ/dEep7BMU99LFtz9oMmCp7vZn7IIDVh6wmawElS/6q1oGC3PMyyGlu9n6TwFoA/KkKolc9e664R9HPRB7QYY+ajkec2jO+nnMjNvL6DqNIfdkxlsfCbqXMnZ6ZCKQA2c8DYrwcf2PgdXs2TSHfeWzqyb2r66KbOUOY5Zwh56uD3oYawJ5kmEPL17dPxluBfpiLyXjvOHBqUeTOEIqqvidg++lnT+/GZ249z9tdCUXdtoba07oJRt9Prg82j03l80DuFKIWoEFHLiq3fbTe1LKTgWH0rfStM/DX0hn4u0O0JM+QWWt5ZBKF5a0UaH7jX8C2uEpY0zfsIAMx9txI06vKzQMEz2eeu02bx1bHcAgXxi8YqQF080adB8KldKACa6noiTQntFvMuThgaFhVoejMQG+pOTpUVOBv6RU1dewryBEzSpUiMQP2GkrWWI6//jBflkIIYmCvCzqqwh8C/iYECckTyLp/+5dgNa6qTZbvhxrq6yhZHh3AuqdZ0bH35VrxFGtq0NnaduEeBRiiJLCfrdYe25e5oErhjwuP+0BH5LmWux/z+KtDnOZAJDVMJo9p73Xq3Zo+S0VlnD+F5RB+8vhGo3/qZpB6mSMPMNXOw0OlbIhgP/S+F0LDTxPo2lc5/ljy/N1emnFomzfz8GyHr3theIhHyGerBfxpxk8XDHF5RGxug9w0jQIMDRfPGM8Qpvzu0PLWOG9taCj7iXxd96YltBzC13/ll+7uRnl3Kt51haG+6T0TZebqDNz68hweIo/ozvJ2boAOjo7Gvcd2yn7oPBysuB75wt/7+Y+GEEK4fbkfPPJGRtVpZdDS7FTjrdluB94zWnUc7JeDyNehMWn7VjUOgBBpalS5S+kM/N0p2glI7CkUgbwEtBCbfH2muAe0nKqUFONx5TSEfOitIYSLxWAou/IBaIfxHjlgvgPu8Ue9K6rQpvEcfwhQGPVwOIYljEd87Ntve9zEEVir7zAvPJuTdZgvSz6glSIVfafiXAB/iwKYmuC5GjpZfcXBoWcIA9iLa8Vmq5LAX2duREtgDyHEp8lyaEGvO9U7wwHAZhI8L4WXAZW/YKjJWBhfaVRZ1OIeRe6xqs+dHjXKXi8vlZBz/xfswbwzz13LBdUVdLEm2F3Lz3ySu8ZJhD9z+3eEf+/57w/fcOtPFyC3/55efQ5Sf7+V72Bt2BCBP8Df1LxnOSTMNuJpAPsyeawAw0YKCZvgEaKnZDaWtxc0ECmtWwlgqekAIFCs8dY4d2gboDwiGlXsNVf3G1bqWVP7PFzEvb7XiLcnSsbq7a1v/MLw/779L0tj41621jKgsEden+MRma/3Mow7G6e4h+wcMemZe7q37UpdQ0dmpimwel0lhtleTT748We2hAIwFdYdeVPLgCkEa8dl3sgj3GIySF6XjSobX688ksdyt95tdAb+ros8AGkTyGer+iaLDkJCpDxUtpImE1AWGDizV2DPIWF2kmQ/NCr/dVXFPfTfMi/ExHCMtmT6QAf92OI8as+17bsk+Ant28bdv7UQnZOCOfj7rzCx6+ieTQJ7r6lI7XFlN40sT6TT+kWhRuAR02Pbhon0NFhF4aMtvA0nFAeCKxMkyrCA0sOhAskpGFy/Z+M5/tKA1fdHxUMCeWmqIRfQmOQL7DjcY+PLy+oIjzZvVAVXqyhKbdjwq7S2Z7GcH8cxpKk5/qydMu09lvYfpwyGlOkAiu6V/WaMq1AGQy7Cs+He8JcuvyP80vqEBND7XkzO2OkPlIPU541NT3IOUo8/+Z4dUdGxjXD8mdkgt0r5mdl7nQFgOFfdWEgYVFtEMAQXbWKpL+J71vSZ2JOo3DZzj3xdeWYdqSCQo/jyULiSP/Vh7f5OstdND5GOt89GHpR9nMb8qfULh8aeGnG33IlkPzX1RTzL+7xnblET5yxXve9xVV+SasWpAn3wxnYBLN488q+UWkU25uwnS44oDfU8/UTZT6/j+bouAN8EgN6T/Vz5CXrAq88sfiLZ7wz8tXQG/q6QpmTQnfm7KqVexp+AxTkyOdfifHqRDmBAyiSdMGGfUA4Hf+x1XdOhdwx2cY9dJAueE5Vxd4ZIZxBoXIAqBWIINDNyPf40sHYNyzAG1ob6/tr6grEO9tAV5aGaz/F3okOVgL4E33wPB2SYmPcyUJRbm0eoCiL2EvC9eUqQu1SsK++xqQIbKvXKaTNB0tS+loQgT4CK69Lm5hG27wr4epVrRQm3RcKjqliXHg4VWDsBIo161HQ5jcaU2zxu+eesd4UWNprydwE5YsYzVyX0nipeBisAsOS5IK8Wxbui8oAv120sBxYqnOR6jyUeUX+fizaRkXcCpug9zXljx40Dw0ngkUeyavStoh9VT+74YRtVXOU2jQ3ynk0YVfR1s87ioo0CsIdWjtDy7bpGOFHXuBKPv+W0llEe22v456lSdqbm8UJ93UgUg68fKsZOhkZpqMS97hgHuFewvV+GC9nMhvo23vuqQ4lEqpdmCdYuS5DOpLKfaulE2Q/JzIonN/L4U3PeIjlCfOZRhin5U6mn6p65dw+dgb9rI4fZXxEKfZgIvfSV0/HDvM7zg+lYAFhTRjEQVhUtpwuxZpUMAFX1naHRYg2VNaLpCY6xMydkXLbVsABWN5htCzBkCoRC1kvRIhRy/rBx3LE+VP765TeFW6tezW2P4XYN0at3FvhD66aRpSAelqUIGcL7f9mZBB5Xpx1JFgySmYuCBEzcz5SsEvirchrluRyJ0O0ZTTxCis6aPENYay5A6ZUnwXsqeX81z0wMt8WARBQeHQAr8dYmrH0DQ3iINMqNKIYZR0Vnh6ek0ar7m40N856JSj0KpVJytlXtJ9gFrGAteRnsA9hnQn3LfVzKX2VYOyWYY3kQ5EaKNQ1nux6wNiuIZGTnd+v5LJHBmr9nCeTuFOsT8cJJyPAax9ZkGHQmKWDILOhorVs5nuxtaESLzHokj4R9hjBpcO4oAigqiHRVtAf4a595ukEbEYQ/KikcZvkTKna1pua+h2ln0Bn1HgNrznljf56qKaSuguKM+7zYJ2K5W+vc1EWf8rohg078w+eNR2jIcsjQi6v2UrX1UPGY2qBz9vhr6Qz8XRtph/GsN49VNbNWPBhjv2ybbv8eZHJg7sySFhnUdFETKEic6F2vfNQdO97/P61PTM0Bzk32RBrvOwrNXZ4XkcwcMxOhvjPAX+t1140vW8Is5dodfWsXwsWyhOfDjfDHb//AYB9zdARh7boIsTfHX9xvhXIaSkFiT6ivKEiA95Ra4YCCOBzqi8L4GKBQhfr2ibFP3ftC86qCAID6qr7xDyFktfndB1H4Q4CCZvWNIHdNdW5EPHcY1j4IhrThHkfhmeO8jCpgGv9ojFFSPkvaY9CfGehDBf4ONY/IvSthgHvPcuQVTEZuPEzTK69yV8gj4nUt1Lfeb9ELygutTA2a78fC+FC6E82IN2uM2lqj4kPUoNPeG/sa5E+wuIcG1lrVaU+tcXtYPXt47gCspTwChUiPGXQaV8c8B8kTu37m6jODAL3IG/O5cNGMO0HJiytNbqobJc/eVCGGghZDvwuhBLk9HtHLjnWEFmOu9VjlrEIY+W3IeDkBsMvpSuL9M+9Zse4p1Pf0aeaDHyRv5hAwFfj6MT2z5jmPyk8w3JYZy5G8vj0zMTR8yvAKjJcV8LcjT/vnK52BvztEbiVAt31sPvEIE5MAArc79sYkqiSkGkOOFpf6JR85JG3h7w0veTiEEMIDN/F6lAzgGA7hP7z9nQPjXgXZAnukX/3kM6Ttvtw81tjq1itzwUVFfswShqxwokfN9rnOePwVYTJf8drHBxuHsNwun8ng4NG7dVZYbZTTr379C4eau1V9pdxjs4J2HBuEXNCxgaKzgRP+jLiSxrbbsVIQi3WTi3sgAUojLPxtgqhkqW87jesmAqZAYFcUa5TgOQSxuloHeGqKjpnguZgPs5bn7dLMXcxjBb15YutBi3Nt6HDICVPWPDvq51S1EEKk959JE+u2u4gOMCDuApHSHXzoNHfkpTkexleOysOU+3f8L97+dmc8Y5Ru2QUgZ7vWF6nY+JOzbH4uKKYYlwadEgzR+Dr0SJa9gmPzun3O3+XnvEWh4a5Sb6xb1UIAYk7N+/NQPouhl6bIW6/C4285QebzPKMlDZDYFeqLZBinedYPC12jzuFAWvPUPK73fUwFBTzXlIgLGNbu7nVk0BkELbfx3vjyR7T7JdLmjkKk5bO8aj4Wbtsbkw7VZda2l9fFsd30E5phAhau5KPflXQG/u4QZQa0L8cfNFgrTKJVdOKnahWZ8AbKVt/JqnIwX5wvgJUeTmsI4Va4OTGBecKhdCf6+Kefg21huIdK5mGrga9mSNfQ2Klx/bWoKJWhvsPjF4fKjYvxtXvkx//scJs0dIiKzk7gb6Pf8zVfMNTcBv6yF5SipHXKhrj++/J3xbFRqK+Y4HkiZBUl7j/IFsSduTg94W8ih5Ye6hv/AJ6SkmdIC56V85sBcrRcdXi/pcHJ2CAkf1jZAICpGqqSxs1/uonYAVCc56KA+4FX5HLaz1b1PYC5fzY819J7NmGMWisQqegzvWezY2tADgKRcqivwFuL7/4/x9/MJ1zNEBl0FN5qg1uHg8bX0bkQBM8SlK6kBG4XpWgT5K0iWNul5hHOQ8cjRs0JCc9uMay9WqvRs7ibVASwvLm3f8xT+77MpuXIVVblkadGOTUdl2FCKHO3Fi0rUIc9c+4B7wPNtm47Ivu1pEd72Ouyih6DrRf6d73zFSGEEO5TMmr96k8KN2Gyq7WHQl7X+lnqh7794cl+/X4pW2nF0bDRlxE2qowCnjbwx2Tmu5XOwN81kS/87fP4S4LEhAeXX4VHGrp2py2VZGoJsw6V8TXohT//YKiFjKuy+ulKPgp/lMZYM/g1Q1ZY1VJr5e7Yp+YzHqZGmPHpG3fsELKis4YlfM+XvGJw7H0K4s2P/vRUuxBCkU8EgDgOpWrG23O6cXEIL3/sAXl80+pbXKGJ2D1wXw4dsN9TrVoosPo6I2dlARgHKOXfZeXvOt0ihLPt9PiD75kU9tCuW903HpvnoWK/+5iU8rZpXkMppAwBWKrHH7BY8/xdaN3GhObZVAaM3Cr1kL8pQrO91+tbFBBpNgMSArn7v/qmtheUPpPtvvY9G9jrl2ttiMoeyXwOibd2j2zsXIiK1UsfuXfr1wd7dxf38NqL+6Um1TDBc48poeEhhLAaANbpHuFM6n625vF3AM9cyjcHgBjdCGrw1nI9VNmvGH9JnkTOyNDBQTOq5L2+X1WN8z+umjHJJTL33TnhHM+1qfDHquAByxcXPydzSkaaKnbFQW79LEZpEDygudaTVJ4eQgjh4+/j150uMEDvg+QYX4+/m4/teZgq+w3hCV7qCzMVQdGf5sHe7vVC7jz7/HV0Bv6uiViRiRBCIUjM5viLCiISwFhrlEdBFcBsgb29bk8LCX8igUTqYxWjdoxPSQ3RQc+cCWA7C0V4Vl9qAbSt5ZG+/y/9mOhCP2ctj/vpf/W1bwh/7Le+RRinpLX4/2eZUmjTHPBnJVkeESjjgYuSBfOYV8fi7BAC39ZBj5qqT9XqCyynqR8G3F2WIHcpSOR9z3Ij4mqhGrVKfRoz5SfyvVJgNb5JzzVF2VhTBWvkeeaF29oW50X1aoFed/EPoeAB8iRS3zkYoqN53S2p+IB9nbafCA8qrfjoXaF73eCtI3hS9m6d8AzZLUdwEIqDjnbbg6oYe97UonIalZt3vfoF4Ye+/a1pPpw/5bnP+Gki/hSUZwZCVmUAy+NPVDHOe70M9S33Hk+jAACs4SUcl1s9pXzWIzlfF/NZGuehHkLYfq/t9dQeGMKGbCpN1OJ1aACRKq/budAm+9s2T6F5Uzl2mbu1BLmZ7MdzwHuP/AAMiIk/MaMKCPXV9zowqsTLrpNBDbguozIA61vsozdebp8TxYf0PKCpQTO2wNeRoV51EvG8NFXv+2o8Ue68S+kM/N0x2nf8ROCvEmLkoW3gTq921bcfzfE3rxiDfCdCaFOd4+/qjn1V+Uhg7UxC8curUXRwbLjQNrQJgk/P/Z/80sd4fkLkUSNZAPPe+ro3viTcd89gFeu9Hg4Ffec7xorB+AUy3A5On1MFVfKofV6hKDyydefhHu4v8niMEJbVWZyHc4aMW6yRh0O57z8buRF7RWfrb6YoykF7ZrASs+D5tgS7uEc16kSosATEhGLuHcg9AEgA/qQmp8bGqFFLfXGuikp9B8Qoe73cS1BI1wCwmd2+Lzw791J2oRtVbKBZS9wP9su29zwvzUx2Hk9/r8c/8vi/9196rQgi7TNM9JPYulWA5uYz0SiI1L5nAiiAjJeVx59g0MFedyp/sj2RuPe9bUCUw/gs+atsQtbtCNct9qgZZLoCZ4sig5QyM0JyaPOut3ou+zz+dNBx4l1z5XVmRCt+V+UFNZanGEaEqWAtMngrReW6oaMMoz4zO7e076BQe/wdLvw0AldFngyjVsCuO1X5Ux8RFq+E4O0X5JSiyutxqnZqH/aeVsYaUIyPysx3KZ2BvyukIevT7lDf2Nx+hB99+lk8NFCsR6uEIW9F9ovi2PMhq+hAFKwDBQO5Do8/Nx2Toeio84hzn63qayqIlRzIhL/CM+RwCMuo/cvL4SALzRMAWPrcCcSEEP78979rqOURCb16D9vn+H45rkWeFzA+C/doFetR8qy+PKxq+2jaHkTraxZiugtbx771MoTaglgLzULOtqVVMjSyDDplP1OWV9mgk2dRkwKeAeBOTJ6PFJ3h4h5tZd3kZeCDjrOhdNBzLSkbUjd23+4d4CyWcq6VuerskbSQ/FlCwN/i9tsWCUsh9vL7xuUInpcxgkANJTDEU3SA7Jf2uqhYA8CUeoY4Pfvk7fVx0DGGcbqAKZAjsgFRzfEXzL85CIVkGA0YiNdhQRbqgWXvl0Ut2gT3eryqpPxoAAmxav3q7HU9hYMK3GA6LEtY1xJIme7KJS93od9BfGbN94lHaN20+Z1z94onNzA+ukDz9gmMl/wRIjlCNPg7XsFehdfe428g1NeRFzyQO+nVV2ZALOek8tbma+OvlvKS2oYwf+24kwGXOwvdtGpe6kxn4K+lM/B3hVRuMNcGvsObp3blttt/5rnbsPmSrCpAMxbdoRcAYDGrzN6k3BhEaq5bTY8KG5uYkniflUPrT3zHW7XGMOHu2NgIrH3uAueOq4TmqfGB1XZQ+Juiq/JwmKGjDdaOeqXMpAMoBRwsgClAzN51G3/m0XusEyQKw4SSL24mHK0MQ2l/+nFV1m2fQWcBgm8W/vxw2U5BFD1qoNVXeGYI5A6DykY/qQt37BCK34ZyIjGBHyjWyQvOVTadd0V5ZiGEddtfH7/I1bv1ZOTjZ3m91wEoQMOLts+dRrwlAKVuCuTWzgqcL85vewQgt5yHzAPoZTCk5RHCe47CjEVy3zMBfGuNvvl4UpVT2zjAm9rn4bIs4VLi6wiQUJ9ZHq/qVihehHhr6lNUrDF/wi1r57HeU3K+Ury2bll2dKfq06EOk9W9x9oZxd8utt8V6tvwxpjPUizaVI5c5WQXDBsI5Pb3ugNy06gsZISLfasyjD22C1q2Of7k9DKnuyg564YMH4pxIB5Je6MW+lQGAviWgLuaDkNrF4zl842+tW5aevyJBue7lM7A3xXSiEepXxmXELDU1xYdwXoJFGNvRpbgqf50XDFKJSR4+mEypaIz7TlHSbOElXP/qtc9LjW/jrDR8mz85L24aAbK8xJCCA8ut8K3HH7cGzy2rr8VcyLlfJbjzwwBKZ8N2n3g7ADJKyNE5wV1+jfLBbUCK1zeM6Jy2oU2Rcu95p1Rd5q9DNjS5qqXthBDc5Bul45N4v4QCoWVMfrmmU2D1hNgbc57Nv67QygELCCAKbnqcM40DiJBvp4Efi0PaOu5NlLBGgPN2tjtL1dDN1v6u/f/tvD3L99V9e1RH+rrW/pxqG/ZlyZHzOi26bc1j3wkCfy8GBFlGBBuS/d6NOi0AFYG3mbkr73nYWzFchqtOw1hfoEyxlsR2DpomADtKehYGsKQIU45kwDAPpt3Nin1wpmCQy9Fvg7ea3oWH0tdo/SAv2j6dqgL4xM9JZv793lPR9BMNehcEU0wRxi1oPDGyjFkMf+msp8Hcot7vW1/FNbdqjp+6koNuUXGARG0bIog6rksr4IiX7eNA+xMgfMTPXPb96wdWzImTfL11dBNq0nRM6WUYey9TiOb7lI6A39XSNUmdMH/aHnd5/GHintwuRNYReQDqgf+SqK9GEziH19+kThuSHOHis4MoLCTRsOLcHEP0hIlvdU7CNvg1df/1eVXn74WFEQLDAkhhL9488+G5dlPkLG50Ow/FwT2+pRlmDsA/G0HzizIjKyX2tiYR6QrVHiMjZGl3p2B3V7KobXtt+Z5H4rQASl0s9tuglJ/tJX6U69xvwoA2OR+iyHSh05wVQR+e156gmrAnyQQCRgmSmWDrBv0XEshPhrQ3An86ZkpxT3suc8W90j/FgpklHR5uBn++PO/VxsTvGeKd0Zl0Knal6CAIvAXw7KpNpQ9Q0Ayc0Hg78PRVOJnkhI5gBSdQ1gdwwR6ZgrAfhr5dLvNm6+1KAoaW5G/YHVaTTnFHvA+fzoS42XOs6eAte3QGlibwvhQ7lb6noIcWgmU8MAzlL8rDjAe6qt6QvkGaxHshWHKukx/mnNuob4BP398dTOm8J7tzSvmyMy6E1XxzMqqvjOpLySDTLGuqCCLVDCq/d0an/c94DUjXmx/SKG+gnfn5XPSHPHYcWj7PGTr/qrH7YgtNQepd6ZQGQYAf4eDNjYy6IwWAqzmXjlB0eHvSjoDf1dID993T/r75gVf2n3JQgulvrTCgXu61q7QrAkxpTfPYly3x+7DjP/W8TfR8ay54ZxGmnXgeqr68nU7BHSY++135/iLBBRjthqWK3fH5J/7FG6PPGri2JNhMhqBfEwy7T812h7GE9CP/+4KZIFhWYrVeFJgT2F83ZWtuZKcut0vhWJNR0dzFwAsoqgoVenauY/ymXQ3BFwFAWxnLs2eR+gCGAJDTveM77cU4iOHF80o1siTKIYZ06F3rVvVT5G46ahY2su+oVFEM4QdDuPhtlhJ0wjzdZ0/zYcZxz8QyM3AEK7oeIaJdUVgxphi3YcWC+/5zhQOKMw4FU4QhsaVJ9VwNASYarLfVJ49IDMvwtgh5HVrDTqpWjs1ioCxBdlta1jPNTQ7hNqSinULpa6hGkXs66tihAt7Zb+2s/ZM5nN/3/GlIYQQ/tzt754YbC/wF/9oAXY/NLwau1i3isez6blGPBXIQSlulPcU8QjvPMyzaGfljR1CCRxuaxULNiln+FMfEucGxgb6oVIA6MF7T/Nt/YD0vP3Iw3Sbg8hbq+935m6VDM6VDAOA5s9CYZbPNToDf3eM4mYfrFIaQi1kTFRpRVaR0eIeiEtw4C8KMeVU9W0YGTASPOkPv4aqvn/2X32nrHwk4Q94aVKK7sqT07asKif7Zz03i5LHH3tOSv6unYBEKzRLlH7g7PPesU+SALXPK2XOKxjn78oFD5gX1NXkRuzD0XxrOVKilotohXU8/kAYn6Qghp4/5WsD1s+ZZ1aMjHJBaZZ6oCCKgifCYVTF2m4cHM+3eDsADie9DI5bf0cplA4p1s68wZmkAArWJZUv13MbBy2r8EfAH9ViMjNcAudjUngE8G6VFW7gZSAkEzte2sakpQBrNcNE28HYedilIojAhpSKYJZs2S8bG3ze2JHqkQwVRD8MsI5+bGXuCAhNeCSLAFhW6tEE51Nf+CCTdyaxsUFuRLVSvAE6bl9s/XtAzNqMPb9/lwb484xJT4aHQggh3O48sGI/hGLUQhd2oJLnuTYOcpdcWqkijQwTfiGbKK+3/W4yDM0bC7yC036bC/XN+23M40+PlijGniRcwTruN6X/Sfkp/Wwgr9Ox1+rePPRYpMmc9315d91eyt16l9IZ+LsmmhZiFCpz/FWJisXmwFo+mnB3RtrPjP0Q3vyyR8bbO4xdzfOCwLpRHvHb3/WK8I1vfslpCrL1E+VTwhSBjumw0RgiDYAYNguYd6O6SbFA7gP+Zqy+44EdV0dHWOZeo8XwRJKrQJeWeui+L4AhrXK5Nfnwk7hqeAhFVV+oWCvgmw3EOM3JfhEsiKg6bdGKC0E7c2h5e30iKbecZBkaVXSlfrq4R/IQRYq1Fs42V0X6agxhffij752B+z71deGhtRAMiddFpX4C+MtVCGfJPstTf2TusJiMPDQAuZMM5D+zjj9d5LNUMUxgAEsDe2HIqgAi7S7IAtN2sGdmRy0kr15vbACGSFXLq2JXzZkmnIdZ7mxmOajc9mF80QjHxuYeWO5+QelxYv9qKF0V6qvm7+ojfEIo3x0RME37i97OaT2F4Oce5zxM07+EyeyGHHZGNpUzr0J96VkOomRkoHmjLr9zJKaj2WdKzjXHyZcDnPaNx1/0kpSAP6fzD37iM14Hp7G6NC/xj3GjyirqWAm8g+knfJm584BP/Mkb2tEPJ1IRVPNRDM53GZ2BvztE2IKoEFbqrXv6S1zRcQ9j5FETrzPFunjJf/Bb3hS+6S0voWP1YzteVAKgcPr76oCgmzdGQ8KKsSuLHFGyrqq4RyiFt6UA/tgzs6us1vNj+y0N2LZq5gb6Ts1nkObxJlfWAQTYB8eeyW1YHIgoX5wG5NZzf/cHn9y+nbXi+aFNyVOy5U8FaK0Vimi+Frx5WKhvLooyodSLhEEkwXqJBCjRWyK1aj1ilHC2ZJgAFufgzB3tFzWH1na52+sCkAONAxPFhJpZuWObrRadz3tVVrWzGIf6KmDt2pwpKvleBoQSoLDxk0E+ndcN7HVh3fo7clt+pNnAoQSwh/I9HQdMKx6xRwTaE2nSeYZoeTyzcQCdZ4pBBvOI0b1+mosmw6BIFSkdQFSs2wIZox41JT8rxlPD+CrgcHTs7lzYPkQPrEN6zxu6zQ2QJUVc4CiDjvEuW37jxyEPnfQIvSv9LJwrpWNI8d5MyTCC/BRCYfQFMoxSVK7jEWJIPZq7lCol9PJXBrj3g0f/7c98eGjsSEcp2gP0mYyXzn1xbGB45fl2PW/oyRQOQroTlIrg1Guc+xn4a+kM/N0xiht2JoyvENhh0lulPXpROXlADK8AlK1JD917I/zffveXO6PZffehA37I9PEaQn1HCOVwUGh3VV/Hu4L1ansJtC0YcwUHg+iGflii4Etv42PfgeeNn5k4lx0g0pEW99gORFr9MTau237m1m1p/NQKeJhKyaA64a8AkWhYVvyr5Qm+B9aKAKwgKtZpEpOeuaD9nmrIZW5EPjYKvfTf0yNSVIq+mMAPQ6RFL6gDnPuIUt8MnSzWY8pC6lYAa615Le0JKgCm/Xmo52VkpBaKmDHKeMWLpirjyoApUsyFvQ5yYEVZzCvugQyvelg7Um59BRFXp1UJATk+X88F7ZqmW19uHi3gha7wiKPgAU/BELTfBj1qUKEtpWBUS5KnYxDkTiFK5rguddFMwbBw6gDtl7G9jooY3vjJ/zsfv+yrw63EdQM8hf92GyjWyTGESfJTPfMq2kc6D23PXM8wAc8kSfaLH7bRd2+or7/ftv7jWn0Wq/pm2Q+dhzN9jvEnlANeMZx28pOYDiDrOeCZUZAb6znpnr2Fdj4P6Qz8XRO5W+2KPP6CUWnrdItyKCGLsyrEHJpvYi/XKHiCxNiKO3QtXF0hECR25eWqU6qE7RYkuspe0bLlPzMKlioef8iKJx6qM9WQLfDsegq7WEMDRUWkBQnNytglqDeTQwsq1vIMttZIQfQVHVT98dRcUJRmwhZocQ9F6K7nNS5yIKE5TZA0BfutKDowM7b0nkp7HbfHuerGeETruZZBbtxmAWdK4o2y0AwMaaPJpZdm/7FwWy9MRizugYRm5ZnPUj4Pbf6keitOUVo2W9ngCibyXMvzZh4S+JnFuTnK6WrLEUeJr+8zIEKQe8Co0v7ug6hcYwBLUBBBrrq6lbDXp9MBRBpPUXNEZ9JoCoeifd1Ck/3KZ35YREAEyvsqaBnviqB2c/3ZT/Dxq77W8OaXP5J7dabupd2gXlDpc1bPAfKTMjbKf1rJ/oqeNAvWbrcB/kT3Gwj1zWcxJ1gxXSy0lc/qzYhz0IymCs3mzh8p7IZkXj8dgN1eyXmLioUuixYmDdNHDEToWO2Tp+RnAbT9XKMz8HenaXfi/gnrALQ4q0IMzxlCKQkSsx4xDmOfOBCvjkTmOpWX0QlxdsjOFycqWQrouKe4h5iXcaq4R5rBnAB246kPTo8ZQI4/fS4IkBCGLp4nDH8U8rz0opbII+JhPuXxB0J9Ve8xJLArFkQoeObvjsRTsvVwGN11SKnXqvnZPEJO4WD8Vf1b8h7rf3EGJHzBtQMdRfDM9fgLzLvVBi3VULqsINrPTAWpYj8Xy9IYWQQj3oR3RRXqW7Uv/ha8oGbFalwNuZ9fR6jypEyxb2D8VIxwHb6e81BJTgazYe1gv4X0ngme3HuBv7585OmTJu4HcsSg11y7X5QwwFpBHH/mKNQ3F9HR+BPKL8iGRlV9pXkHIDOLTgKogI/szeM5GYgeWNgwoe/jJYTw2hc9GL75bS/b/q1xrj4/ob5f5qnXFUIIEvhWXoHFPWbSbqiyHwj1Tc9qR6jvXB71zKsZb6z6j2f/HSju0VZFkXK3gu/V+bt5scm65TRU3eDO7EJzHeERfk7I0+3gmZ9z/HV0Bv7uEPk5HAiteLMXN7nNcSJPPnxqBcZm1hEWXiiR5xYseJ5dTlfaQqT1h/Mo+LSCvGd6Bz0Qsx6L5VSA4lmC1ksFiMGWeoW8cA2PDs89NdUuhACVBVk82OEdu14WPAJV1hW00/ZVuVhOz+O3XPwkbecWPJBCVlsgpgStBaF7xvpJvCxHPCVnq/ou3R/12EpBls4rRQUhAVireI8xECgptzNVfcV3PrZq564k7keCpyz0eyxmMDz7xsVS8wwJMAUKIqEyjA9OXXnP9oJIMLxo4h1Xx15t5VQKzw7AeFnsF6ki8aSHKDJ+Knsde8SIBM5yxZi0QgUxA6aMkMy8Lv66Vc9jJh0ATFdizcicwdYcAWDCunU4sZjCwfBoLpdD2atraH769o+DWHwIpiIQjVEH9F4O7OP43rzuxQ9t//bes/qzJXqi7PWGRkCzJDMXsl9pzluKKsNUjkAeppohK60b4OtK4aM+akEEsABfz+8Zbd4Zo1RvZKXv33njH0gdtLnqgnIeAiolZmnsieggKK9HHuHKT/aZpKSuqLGQ8bnfrXQG/u4Q7SnuUQoobZhMcRceO3jFGkTrQKGI/8zxdbRN6jmCjtPKAsjNowh/u70EOMlWlZmk8Ttz/FmhdKeAJF9ybcMfl8U4gyQLYjsp/0CrcjhMgeQol9M8/WvP/VFxaCS8aZSrR5bPTOurqnYFhKCZQhHfevkPpfHdZMETlSfLCuYlsInGRgAYD9Ehob6Ch+oug07AgKnyzDzA1ONPB2Btl97TtNct3qYIrnxsvaqvLTQfmaU/AZKznpIIwNLCi/L9UZlugb/xvS6dh+k9a/fb2t3D2+e3fGTXw/AiRbkFPGI4FxMAJLhxwAawSkWH21TixX2euYfOM0TJA7rPiJdmCAyv/EixeUT8HQfnHc9yRLNuO6M9pBBpxFuFvVq3AntdLchS9jmYBqGeRYX8wRbHQoapvMfKZzAD0EspPxSZeQT424ZMfNm73173/Mz8Mfd6JKOoBTl9xKHeeXGvH5X9NhkRBo1R6fq47CcX9wDnoVxFugn1jbzm4goKRHzl4T18bPDMpYiJjWbTAUAHCYGvIwcHHTT1eITG1zHYe/b4a+kM/N0x6oWYtz3xiNSytJgssBqfP3QfMrF9ehNInef2/+nl13uttrY7wbd0KNW/WxGCYK6UvSR7SiKlPpL/0PavW35mpXLCmHPcb9MFUZBniPLMKo+/GeAvtR5vC+gfHb9YGxrst/Lfn3mOFcswFB3VUEBc4I/SgWgbJh4Nn5KGb0MmislsYxMwA1UdLwFQJ2SjvT+ErKwypT4CWHZxj01olioKL+W/BujUAlViZiEXaDQ110q+HwnNbGiWGzEqG0xBtMeWCwAB4THvdTY0MkwIIFDdoPmnLrCXdHEY8PhDQrMCnqVPYlJhIHc8kyYN6l7ifr5ddp6HMBwtjwDHPtrnWf4dq3OUA+V0GQUkQK66GQVRJDeMT+DrqDKuNyPorZiW3ecvdrTH9p4q0Sjd2BtvVavTAu97xhsRYKpUvYyjnG4EK0xDCFE+Sw34Q4Y01ShyaPZ6dzeTh5q+k34jgyFxruPvin5mANohM6PCZ6VBSQG5cXEP75lFHlF/f0SVmauh0VURdATGAR1o3uZ+ET3+Cj3zGj3H1jXvMljlXjIm1bSI8hPCBPJ1YjhBDjWLxteLwc2rPA1VEbUAZb/re26fq3QG/q6Jnr75UueOjbkWm/Uv/x6twm2V92wqKTcImRCtl/EwLr0N1Zx9uPS3Rl5FO3og7gWwHJqxqlSu+NRb8SSU7s2NWB4qj91/T1qL++9hAtS+MGMMePqKTi0IzOe6+2wV9KgH94HmH/3Fj8FrZtiC7D2U7+t5RFR0mOU19lOv+eXgM5hJAg89HEqPP8ELqi9SEf8SPGKMvZ75hmIt3xvqC56ZYtDpOh20+kLFmimI8T3rSSs6wAEs3+MvKtatIczf6yisajSvEAo1GYF/X/TQveGhe280LRiYso094yFRCOwQE6CARJzdMmlXiX3bxsvrDPWFio4QzobAjLLgAQW5wZmU948Y6gs9/nwZaHrd4hzQXqdFKsDYO4sPrYJhg0V7pFxQdGjbKzh3N8tbBUAChPrqFUd72U/lLxkEqkk2wjneimqV1giqt1ub/vIP/rNmzHps9Zl9/1e+Bkxt/B3XyTHoCMbLU/NCv1iKXyzst540Q1geEYSsUrkT8MbDYKGI3ooXB+DtG6C5kp2vFfgrPJ6Rd6twFne0V/aTZBgOOrqym1NzQJU725lrKRzuTjoDf1dMv/jQl4UQQvjMzRfxGw136Jc8cp80xrHK4WA/wofuveGO3SUzH7UgTnhgIcb+V29/cwghhCfXB2h7GNIlKTpeiPMsjfWHvDQZseT5Wgd9npfDYQkvf+wBt9cj8HCQhwYCvyKA1dX4Jsa/IkVnhnLRgFk2O9++8pRc2kqn8ZMBCvZhrAqyyCsl9TeRc60yNLB8cdAzREiMDRSdaj507Os2bAh5rJr9chhUrFtv6iFlw/jdOackSRCdBDiQN82ZOgotPy7CujVj5X+qeaiAYUPIZ1mu6QseuBl+9I9+Q1iWxsAzAZiuwl4/FnsdFwm7PuU2GhBbvp4LsjBAYm9IPVc2qLKyXcJAMd8xML+gWnnSAHJO0xrgT2EJr3oBl7XY2NCjZgJEOiR+47zk4DxNI0+AteV3NOctkJmzYUIFFBBgKoC13X5r+7bp4JxJbN3iktC0GwMe8OnbQe/W+K4MVeh85pNdb+VcvHW7eXG67zUvfNC8rsxlFiqCleaTF7nWc7nqi+rxtxHOAS8CzR1fj59CpAkA7lQZZu0iTbarnsffWoNvlYeu0/bWi97qzA1TCVxhAGs8P34G35QZGGeSJDPHe5EhzBvaPlOUuVfpRrobT19wI9zdSWfg74rp1+5/QwjBZ/i7cvyV+bsu7PY3b7BHax8qqyK8hcx8p6qsAjfyv3L5rUPtO3YgJGK3lPrvuPV/0MbVJkevZhf4GQBr+9jtddd8Hw9nwQJYekrOKXtAyRKTck+tGxC4PyskhPpePE9CZw0FUc7xVyp/QMFUEti366Z6nKIwvqzU+8/82AExGZCioCUUHtm39djTIavp3o0fDe5ZFBKmCa7omsbXD6vNIxRFia1be4990eaN415Q9v6kQPHRrr4d181NTo2EZtHLINLFks/tsgUT+JGCOGJUmX9mpbV92yND2x2s2+qvm7Lf+NAArBWeGUoZUlaBVhLYI0OY7N0KvYJJVd8CrH3DSx4K/9ff9aV0rNGxlSIVPYClvWeQryv8iVZrV3gMMAVFTyQRrIUeyQJvRKG+MhCD3XrdsVsq+5LyxQGSC2xs4PC9N4BRyh68+tflY6c85Ok9deaWDUJYfoNtFRlBMKog/qScxSGEAAu7Ud6KQEfNEJbTbgCPP+lMQSC3CNx1MveY3JrWuQr15WP/0lPzOsa6rqlQzowcAU97Uac/NL+761mSO5u2owZnMDbVFUAO0rLXc6hvT2fg75potuy4QqhqU32TIHi2FJmra4XbupkQuqNQOm0JAxZETfA8fZbgxc+srws/+Py/MTmbZmz1rilPSaScapQ8ajrvL0EI2qlkIe8KKeRCAf6E3D531OOvE0IyPfj0L8H2qdUEwF4flq0Vb/v3hNfcKPDXKYjxtwhV5axe8y2+ktaDSD7gqeSqY/s1e/OQ6RHKig4QXAXnCqwYexTXzVYwd6/bTOimaNA5gGd+lJXj0yglHURFJ56XMx4SCMAu3zOl+jYU2CdC6u17zIvb/+c2+wHstzgiBbmhB5ZGudWEcguV081LJKzOdkPGSw0ozjyi8fhL7UnbxuD8rV/0MjpWR/A9XarLrOlsAnrfk9s/EywAQAPo7WeWp6IBfxhEGpfXc9EmkYqxn3ys9E6aANgLOVJL4TAeUh9CEf64zf1LXv0Yvb8eOvf9e5/7wQJYH/XkRt3vk5k1PKKV3UbOs14/VLzvMX/TQCQkfx0VgzM463KoLyckP0kh9aEMt93GG/D4uypqI3QU4wC6Nv7MxoHiAIoY6hGEca7NjJJjCG6TPbmNaSly611KZ+DvDhFMVCxQnePPfoSKLasPIRxkEqW7v+qJ5AAxbi+xg4miAWEn6AhJfIQpTLl87dTHD3LU/Ae3vyv/Y0axFhTEo6Ag3vvhHydjx6HHLVmlNXmfx98dIMGjZrl8zm0/INoXbYvfjUJ8JkCB4VDfiVxQrmJczc8YOzW3PZo1azkGsBTQURHWLEpWX7TuQnGPLuRi0CsFCs2T3mNKVToUCpeUNSfUxPeomQgNFz1DcphxKzRHwXPeI8Ztjwxhae64ZRnqW5P2nlUefxMsCu23VD1+IvxR50/bWQw8krkBEckRp7aHZRVD6RDoyCnyCJTjj1WwZvxNoWyMAoYJet4iT0kNwEIhzgpweLzEsp+SCwoXFtFAS+gBLxjhcJ5iNYdWP/fb9zwc/tnxjdsATPaLc2j6rPCQmbQbglFkzb84GhDx2WT2YN+6xA+Vr0/oaEUv2uyasZFXsKCj8UiOba8z46XnlKKeh8jBQanqO/G7q+tAt/X4csoRGI04FQjnaNU7AKaVyOvRoDMU5t70NS/7xQmy1gisPX1eeOchCPVVdFPJKWUiRPrznc7A35XTmOA55c0TQy9XlpSbdRABKBsEcnOGGExCRfVR2ILK0lC4h1bVV2ASU6QdSknumCjIgiq7PVXmRKSu4HZuxGxVYczVB0xv/tpPkatcqae/u7AAwtByybt1Kb666uePhvZDfQ8rqeqbhCCUlJs0PRJBQvKCsq+phXE8JU0SXCFI7QlZQIiRlPpTW+t3KgAWFmIGqeURSm4fJ5ROT/A8H6Jjn38DIGj3zHxAYQ0YaFYqWK/QI3n7nPRwSArmhEJQefxRvm4/s0X43Vr11wmAXqQ8d5SDlM/s9P+4t5o+PQL7VXlXIHi2aM8Myl/SWVxAChN7fa/3Puat8TILqQf8KSbSVxVEILcqj57m+JvxXFM8sfMMcXg26wCchwfZ488Gcp5cH6z7N4cGSv1wqC8CTDnoiMIfJWrmntMRaB5/uSGS38blp5KUAkAz1WnrUN927mlw3D6+p90j0zy4Mr4KUklNeJHHtgfnLPXyp47KQCM5/vYQS82TVlTy/G9ayu/N1jcyhAmOIb2HaOkV7I/dR0wo+QWxDCLlbr1L6Qz8XRO5W22HglhWsukFCWEGBqAQgqGkA8JVWgVyvZg0a3nnDp2SwPsH2vVV9fWuW2BIAZ4qoXQ038i48KgIrvFMonkypsL4BKtvaTtF1a4kAeyzA/bVQ4MDraDliIG/DNZOWJwL44DVcwhBtNTvPCK60AE9LIsp1kzZyMJb870UNsq8NIV1Q0UDFCJKveYFlRrXF0a9UqBXhZ9GgQtg/n5DY3MFcQ2+xx8Bz1wgR1R0AG/llnr7Wvkt90QCis4AwN4pWcVaqeFsM9wVVafN/ZPG0Yo/Hepr87eRkPpOjhD5U1bqxw1hFY+AVTMVQGHfus0UV0PePGqhCJgyJLXXckF58zPpCPi6wJ+23rf7m/BsgT/lisTjRrTT3Hreuq4q4Jl7qYcuAZGZ/SYo9WWBMij7afu4TP6veJGfet7WbUZN3hvquysHfKY+cmDkTELyurbXkeGVAZ5HaLxUw0aRHLFdpbJbKXNv41VVfa8P+Ksim2BRFPzbX/wL/68QQggvWj9RfZ/TT3hewfGvHXkZQVG5EHiO5STDgLFH8/ana41R8EyZzsDfNZFv5Z9n7McEYOHHN6Xo5NbODKKSNeOtaL+o5QHJlg4XRVGEoB2hk5S0/q7Cy5O7NPtgCPL4Y+7QVh6Flhk/f+mHIM4c5twSFm+aATyvn1Ay8/IZLsfn/Y6m9gs7EOOnsm7tXNS9bgtgktUXAaal4iLl+GsVpfq62ZIonkeFxwAhSCKm1CePv3HA9HAYE5qhckubY6OKVKU1gHUTQlbXtUwobu83XrHTPlNG163z5FY8uAx62xOPDOf4Q0VRaPjjdomfKWzUnseMQYCbHIHyCtEQnzxiSfroXEHkIDeQI1T+BOUvxcMBgyFKyOreUN+0bvC3+yGrLcneY8gLakD2m67q68gwnsx8aACFoofT/6X8hE1L0aADjSrCuqG9VIG1VNfg7woDTCujL9B1+C+vr+ZQX9H7K/4uwNcVDyy+oxjIjd6zQR7RGRBPRItdIRlmp2PISK5ftNdVkBsV6lLbp8IUA8U9dlFl9LX5OtPRXvbevwau7JPXRyJNumdWRS3sMIRJY7Pf+dnJzfi5RDfu9AQ+70iUp/JtE0p9UaEMevyxdwWBjkv1AcnNAUFoFRRjxpphcQ/lQCSV3br+Z8i1IG6fVYh0aVFSGNyk153n4aCAGcVcL5aamX7kqVvhMW9eEMjxLTqn22eUFf+ZXxuB8OyS2H47GEKzugJRqDyGQ2h9oNblcFqQGa87kbBXsGA19kK6AhckcPijEuK8z+OvU3QG9uy6Ztist/oKc4fe1Kd/+1Uzt08UzsYEKOQRE0rFmj0zO/wxhWc5CqJXRZqH+jb3JorWclFZQN4Vgybn3/M1rw1PfuZWCD+29SPkdcQhiEI+Jda7GDY6w5oP63pasgkFcQXv6cGrTLbR4oEhOw0T1MPBUXToXj8WPKLLBbXxdSV367THX/tH8wXfTNstCDzzFEzPMMHXzRo7hNJYMQ40697U8XakWPsh+T0QEwseiPypBKZDwfckmRk/syMrFAEBBd+ztipieGHv1w984pnwBthBC/wt9adq0NkRccHvETpCholJNyYpx7IH1oqekr2uMS/7lYWTKCXVtHVwUGS/EF5w/MT218XWzWcp1JcAf0nunHjkepoXW35TwtqhIUw2DsT3rL3gj83Sd415NN9ddPb4u3ISDwkQoiM1LVBu3Nx/0aBbryhIlEqWDEg4FuclOC9qZBKguAcVmtcMhsB78Mi4jeoFheaujCGEjVKPPyeUjgtgPWO/GLCiIMVYEST4gZjuwoPfQY+/vcVkVkNg14dmycy3T8HDoVU25OT5cL/5oSa4kmChuFAPrtSg/lpYRzh22V5KRTD/jodg5bMUlNPYT7tsFxH6dfh68nxrU0AIPEIQwKY8cxOvZPvllEA6BLxuM3kZ8/EmnoeQt2r5mP7ei/61EEIIN28cwu/72jeY93RjI4u3wjOgklXdxDqwxxapXLcnHr3P6P06+ToATAUFMRfPAGBGCI7Hn/2eKcppuSaQRwje0NPPLMkwbV5GBWgGxssLUUHc9cwieGb3HILzzGAeUD/FTAilRzLy0iSNnffUjy6yx45yMAVMm888dmmEY0Oj99Q/zyrvT3CefuqWEmlSjzjKM/pw2fi5jzfSyCbPoCMayxGQo+WztA0TngwCi3sMpAzp1k2QA05j2wZEPUz5RDdvP7kNq4a07wOYuJemLne2lJ/BpGFCSs0TR2j2ixjq242VOzh9KOkjyHy88O67kc7A37WRp2TtUOoLQQB5/HEe4VlOJxUdgZCQUTINptPj4h65J0jAJbkdYZQS01QVxBmhG+V5qYgJzTzM2DnSTlNI3jdGzghBkJgJNSkPHOzdKggxxZr/8PGd5P6rI8W7lZEFxOgKGwPY9XWH1WUdysLfeGgTsj4GUdlA/CmBcZIXFLEgKvt1ye+KSqVwNBdyARTEYY8/AJhSBZGBFcK6gbGzxx/pvypkM55DC+7Fg+ZRk+YBqvoqAvut9UZ474Nfluckehp4oCPPG6sop8p+myOUl1Hy+BPmroyNK8T63l/d7BbtmWEgx9/rlQIFvFupB9dujz/uDTSTPqI8YxTvMTQ2/0V7DRPNvWlo5SwtwFoQnq0AphB0VHUNVFBPCRvtMO6lv8fuIbZoOlDWvDwPZ+TW+r4ElA7mbp1iMalrxlvnve7U/bYv3NYGgWQPUyA78qHBXhfkgDiK1V6SeQt69sFXnVoNAH97qASnDhMFNjANrltnLI9/TMid6nkInpnkbXgE/KX4bqoa8uc5nYG/O0S78r0VRSrQsfKpR6ADfKec5kmJ1gHjUJMPYEXZoABWFNhbZeEiDgDbHoF3RMkUZ0J9Ux4p5z5LSZPlb8VSJSgbvWKdboBNj024x+W6Gh5/Mzkc9PDsECwQqemfXCuf+cfDI+T+qyNJOaUeDvGP3P7pi0e1sY81WFtdiyGIUnEPtF84ZTDcVqw1L6h+tFisRAl/xIUiFOMAAf6EML4ZQKLKaTQT/ggVRE34c8OzBWXDMkwk/kjygMIUDgff6nusjAPjQHP2rLU9HdV1Axh3UEIvPxke6prmvT4DmPrh2UfFECYYVWbF6vJdKfvIQDEbGoW1l/cwsNcGoRQOt6K9XoWsCuc1HFsA7kLPW4eqjk9S4uudN4/QvxDqy5+ZHSWjVLDmCuJ2j2A4RbyRnyklX+973ibotkdAs87Xm24FxRh5YJXyN61OG9vDfHGi7DeDvrWhvvFZbQtxcN9R5zyknrn1p0Vs3XBKI/88KwdFhlueKsXRDz3HkO0yyt2qeSQ3fR6E96wYG4XLenNP8nIMLZbBK2uf6FTnNm3BN10O6EiQn04jbnsdCjG+3Nk9s1K7lKI9Wh6RboBNmby9pkd+Bv5aOgN/V04ykrPdPhMShkN933fjdSGEEJ67ycANbhXRFZ2rz/G3hJV78yCr8dJctwc/fVDhb55kAayrPOmPnio5s/0iCBLwQGTUAAq3nj+GG4EBL237OBJQFoTfbbYfGPvOhPraINJqxxsZ1BsH/u5D36kNTQGseI+v1HdCiDQ6FlwlIYZ4paztPXTsNsef35aBjlLOtqScxpBmnSrPNZDKQAtVqeeei1S4Mzjdd7ABMAV0ZOHUijcQSmaupHA43d6GT576o0oWuKaG8eWw9jllwx67UEJmCh4MpFHAidD5Xi9BgaxUk6l2o8T9ZjeSzvJtwO/9slf190jeYyhs1A/77MOry7xnSo6/Rg6QEvfn39TnPRvYLzNnadEeh4QJhomOP+W/ebX2+AcICRMMOrT40My5IEXJYLB2TeeEArC3fFkD/vIzG/f4S22bb8voi4XsdZyuRDHIYC+oth/UQ3VnRq1Jm7Ln+NvH9Rw//Do4htetHwg6so7L89CW31iqlOwVDGQQh7x8u1PFh0b3ejcpzfs+RkUsW/qBw+EgGpunjvmiLX5m6ddMhKzKe9cBTGe8yEt8gJ+HKIpPSEUghPpep6fm5yqdgb/rIm+zIeYqUGmpbw+GZ5ctVw4TegH49szzp36feY4zOAwiCQQrnXbTQx1sYwOhWbCWd0DMtBC8Db21v/f4DL0v5qGqnlkpQCkJnrtwjaX6F55jNMOBZ6Yo9SF2sQzl+EuCK/L4o1bfItwDCX+Xz5GxBc+Q6yIgxMjgmeGl+Xy4KQ5NQG4pzMZ+ZqOhxv0zU8AUZsWLQI6//3qZWd9vFjabnqZUbGF8v5W/qff4EwRXBJhGDwen8EEOBQZWFdGrpbskCI9o3RQrehkeOFfcAwDFw+HaQFlRlMBW6A1LUDxMD41Rph2bPzPQtrxl8j1VKBkQASAxEtb+Xe98or+HnAvQw0EBTI/1eZjbljn+mPxlP0/Fw5R5QUkJ7HeH+gLgT+AR6EwqZTmeu5XzN4U/zeduBTKMknus7BeF+s5436sROoC/KYpxG+2R+lSVegcwZXSUoj1IP9Xvym+L7sm9EZA7Ofbm80YF7MXg2zWm3YCRUYP7DeaQJwR5hHYWQ4Nz+kvzho6A2aEwwB2FKs6zVOcyb6PZ+ntUittHD89uLwzoCh2PKAyI0l7vZ1VdN+hIijYFgb/drXQG/u4Q7cuTd/qc3uwAfPux931cG98QmnU4wBagrHvssVGItCB4Aiaxq5JvCOG+507r9gXP/rx0P7JeUtaIlI36JnjJz5umMPbs8fRr6wvqbpRwtO4LQckqreUIaP6pv47HBHLnZ4OyF9Qsm+2FGBVsR7l5QshJvZVwtL7KqkYHwN+Sh8NUVV8NRPKUDapYUzAjgo7+2GrBn3rwUvA0h3aeGfrdap4aBArMC3+n73xAIoVsQM810eOvE5p1L02k3NJ8bwGf5YqHQ8l3yylWHn8CzYS1Rz2mvaP6txg2OrPds2JtAxL0PW3ecUuOYh4asLKuotxC/lQoOkI4GwRyJM+zHgxJob7MA4vwVoVyq4mQejB2XShiXIZZBDniKJ0pM56SAohUGnSQ8XLCUzLQb8vrUV4v+1wLfsfOw/iJ3hNPqT9295eT4ZWYy/fX/pU3bz9Nxm7mtXWhAqbxOsxzPGHQqa5d+nsdetayMSs5wj4XpFQECHwTC2SgXMHcewzlNoz5drXw7LVzDPHHrgH6fK7EZ8jzj4awDjlDNFSC3MjoO6GnRgBTreoLvQ0HzuK+LV87GJ6dzkPYNGC+vA8w/XynM/B31SS7Q/vWdkS0hHXyiFEm0YbCqZawHS+SUSG27Xsm1FfKfZGU+qulFz/1s/5NlcCeDyX16eMqX5meu60oaSBJMj0P63Vb1xB+PbyguWs8v6ByqNSV3cBqfeZjeOj01x1gdUIhG0ZWUm45UW0KbbJ+91Ldw9r3llOVv9lCs6QoEePASJ6YXpCIIBBrinlrDr0UwLOJ/VZV9e3AkAieKe3ruR8GC0V0RXSkcFvM19OUJ6qOL4tfYKNUEPvE2PEP3wMe50bk5FYbnT5xRgCJ1lsxXh4HPMs2itA86/F3SKCADfzNeIhWdwhVy5FhQlF0jtDL0gGwQLTHOvSe9fwtK4j+Oz4f5bDxCFCxU/IQ7bzmCgVxJqxdqXSawrOtaxEwFUABGLXACBsvlf0GzyTRMIFkP8UbGnqnlt48QnTRjMG5MvoW412+7XvS32/70N/EYzeUzjXR4y8P7s+vv+aDQBqPaPdbakzGLu4HxgFN9mv2dtpvmn6IQCQaMQFCN+PPcM9ipGtI3tB5TX78/Z88jVsY4C4d4G8P1WHtM+ehTcPerV0qAl3m7Z+Z6MkNz/IdZ3HI56EGct9ddAb+7hAh4U+haMmmHn9M+HMACZVJTCUzBWHGdVVfPH4OWa0tOooAlgsesHDZGRLagzC++pcyBmc/83e+6tH0963nnyczROCbMnYNKIyfP0iI8QuyRAT7yPLiCfmY9j7hKVr9/bbQ8Mt+3dS1Z7kv2u5HrunA3/bZ5rNUBAliHLiKsFGqKDHDhJJnD4LcPq2AR1Rjk9yaCwBrFxWQiH9M5W7dPg0+nCzmglI/kzy/SgcAFGslfUT7zNXqj3nu6LKm1LftFQ+uJEeAkHoFUKAkAoeTkaMhhJOi813vfEXudnBsRDRfXHpPW7A2Xt/nWbsrrJ2GGRfGgYl8THv402kEAJgKRrwAIy7KEGki+7lho74cMS0zA9AxghsHwfAZgpUXewTcbww6CSjmhMMfhf0G5IhlWZJMRot7OEo99/iz9/rxu/4jMl7ZQWHACDOhvva6p29V7zF4iyKATRgmyvOw69XnEV7OW49ytMc4gIXyxamea74coXnf/4uPfjqEcAKLs7HZG3v+EJQK2UyF+o7tdZxTUvDkJgYdRRHpoouEs5jnMl/8oe9SOgN/10Yag5qRmFcixAyFLcACG5z8IhVk5ARgkXuUsYHwp1jLOyFmJ2uQwvqqsCj7/vs/9QHcPj7zpu1D995TDgKbezmNGEWLblbgrXFwP26FMkFoZk/o1u3bfvs7gPwpBQ8Y7av8DZSkEMJRCbcFnkQDMziN3nmGRMsry1ET72WHOdvrsTnab0TwJB4x0YLIcr1chSf3qTlIZSCxKgz8KUmW+0rMPkC/BMzXFW9FCIak/YMbHwnwl9dN8UqxPRwOzqKj/bYKex32uZR7XXlmzX6LfH4y/DGS4mE8e3pGsGRdQvhD3/zGhF0qAnsuEkbmrhgQgYKp7Le+uEdpoBH2GwQO2TPDYaNpLYhnCi62oFH2GERhWeNKfe2RzEZHYK0AIkXDBJGZFYAego6iJ1Hv3dr2j9sjT0lVfu1DVvu/WuIh0vEPAURCnmuSwbnhrao81OyHBPhteouXnuaV4aP92GX3dOz4QQwTUjoAEJUlpo+Ar7nkgWUbRTwAypP3tegi+zzzz+KreU/f8OKHQwghXByWZLjnz2sfVUZfUKBsBviTDIDl9YmqvuhMqNIBKF7B3e8WwF6iH6bvrvG5fa7SGfi7YhoO49tV1dfq2GcSyDNEdYG3XLlf+6IHaJtE6UDEoKPinYGEP816edUokNJfntcBAKav+9k/j1uvNnOt7hE8Q9p1E+SvdDFXoMP32JdsECkJYILwx57Zz/3qJ/HYie5EqK+vWCvtS8FT1deigsdCfXk4ylreWnwr8jcHoNfCi4hSr1QJm8hVx/ZbbjUfUs+o9lyzQSQlTKYHz0qPGt/jrwdrm/7NocleT4+ceStyMIQL/IWiA4t7COdhQ7Er+TzsAFfhPN2e54vDJ5s+lxyWJeTtQPlxOMgNPLBKHZus2z2Xp2JWp0JP4zwuA6aHcPPGIXzzW1/aTNB/5qzSuyZHNPslo4+QmOeZ5KWJQMcBw4Q1fhpbUpT2yUB9qjoF5LbXreZPAo+YCBsNJEpmTZ+CDAM9kRgV/TavafZIZrw1j1bTaP4uFOqryG49JdmChp2C8zDJ62zoEsAaP0+fvlUbhFsDjfoG3PPULzffCPtNMZhMpL7QQqTZrHwegQB6JeVHOYO+aFPsbz6X5jZB2Bp7JI95wH/b25/Y+sktjk5VX+WZ46HZXhdkZkRL9eHd1hsHFLAWGMKqUF8KHNryvuSVTnWFOPcz8NfSGfi7YwQALKUlAYGk6o8NkJO/HQP+SsZ+80Lz/kuWcKCUP7DcctzQHaWeMnabQV09EGgNXeahmnjtAIOr/jXliSQIEo1VxXw+kpLVDu1bL5Fyas0PXNzGwre87zc+bV945hO4kUICWMtIyesISSoGIyiIyOrrUKnUV90OCc39YLkwCdvrcWwkSCgAljUrAUTa4VFTqfSoABB7ZEixLi2vQo4/7CkpeOZOemkiIEYy6FSJsdviHlH4E5TTbq/7honYQwihQ0MUj78Xv+f/EUII4cbSeqcU+00CkdrvhfcsRQ5gYs/sK379lF/rB2783eHtvq5r8viLckR+jMpZjvdbvkVRrFu5RcizR/lTBP6Uyt8ArJXSIFgGxK294kk0KfOkdZuIHECgo1ooAvEnBcjhBp3tt0zkhJTy7NFoj3lDmBzGZwA561rsVQGvYIAp9YRK223+TAkBF8Rj9NMf+KQ1pMYbC7r3E79gfs9VLB9gn8phOuBZe1wXCIApOhYKyZ9NBaXklETvae0V7D83CJiKHn+HTZ89LNnjjxdsCntwv7pvsG4zOf5SOgDRSxPnYdfe06pllQdUAN8mnplS72DXg/k8pTPwd22kWeGmBDBFYKeHMQgPEmdkeTjogr8NhpQ5UtbbLFddHM+2GvPKbtuBtrYH2vUzhio8thL4xYUDFWKruSvWduBtqAFEp7la8jFbQ+jdKijWR2GvT+VjKujWbaCkPfsk6VegBHLbMzr9Y1zRUehILGGKpT7s4U+hSNw/EeqLvCtCKJQNwfNtLsEzAbAE7wwYNipQnedl3KMZzv2zkTyfercKgEZatzZ3q68gViBL5ympKNb2uh3S2HOKTlbqcfvHPvjDsM8RwBQVFqEV09fYAxL2g1glbJzWtVi3Q52HcU33CPtlUrHOhrDme0mxPrW1qi4nxZrmqjvWY6ULg/m7ANCs5dCCt1DKnrfjXiloXlVxj5nwRynUl6xJeuT+2Di8W3hHgwU0C4BEsPmTmqsuk/3MGG/l+fsifxJSEXQsRklFAFI4TIepR+Tv9EnzMha0Hm7U/x4ADjW5uif3TJmkNCL1XkPvmbJXfRBJS8HQXii+UM5yZJhQwNaQgeYyx58EXk1S/Q5dHfCnVrCGVaSV8xDwxirFDAWa+X7RUkFhuZMXFrk76Qz83SHKSbnHH8ERWGROHQtMAljhkscfLTiQ2dI6YYVDDKQSop/9JBl7YwLQ4uwzmKtnA/46VB5/jeVVIujxlzugAtg2UF+xs+8Hjc0FHtz+EPN/tUKv4PGnhH1KVuMZYXHioK2b2yD3ZyMdQJy7pZxq4bb2uilzX9firinPXAy+pfZk6nkv24IrDy2Pe52sORGaW8/aIW9ilr9LsbyC33UQQ30PQGDPrNUHFFg1ZJ4bEQESfihdBYyBMBmpYFS3X1QPh7huAKwV9nrX55JHpc9stcdWAFMlxx9X/Ivx0rjS7WEt59asU448uL50AJFwiDRpe8RnSlasFQVzXNGpQsKAgijx9Z25W7uohYGwrM54WcgFGlg7D75RBVFQTvtQ3/jMyMiF7DcTuollmFH+1HSrAAqEZ0tFD9B+U87iqt/F+Muj5j2Isu6g3vLMF37n0P2M/u3nf2/6WzMg2mAvfceJsVx65k4qKI9yAcbxHIEoN3X9zJiuwZ1apN8dMn8rq/r6Z+E8KFvNCwGmM5qrXACovr+7MrFXy1Fpzlvo3TpicIa90vZ3K52Bv6smGWBAKLfQkgjsWWEd94JSlfrDEkGkvH3kXwEOlQ+uL0l/S14pYETu4RDBEJInbwbsEZ5hqfSOCh4hZKZ/7Bhzwd4UxRpa6pnltRaaX/uih9z5ViPE59lVeL2aHH9S6OVOS+kUoaTc1d+CgjgBFK9UMdYtr3P8KZg84tThfC6o05UBq3H3nvnKBptXDjPGzfNQ8ykcQujXLT6HmUqAFbgx8a6skvDo7ze2tgg8y+Fs5LlUYZXtmeZ7A2UP0eb7w6BijVZITMRe91ns9UEeUf1beN781+GrH3zgLSGEEP7ry68Kjz1wD7zP7LUwDrShvvkd5+1D6EGk+p6ZsHY/9xgDkXIoHfNIjmPV7Q/C2BXw1+VsG+CtxdDveOWj5P6avMT9inGg4xHV+TZRhGcgHYCdHifuN7Zu8RoKz9bA2hYw1fLsoVBfjT+lZ96OHZdTKLRFDTrCe9Y/ch/wrAzZV2C4zeKAlsLh0+u9pz9u3DsxtL3X/8bl1+V7lBQO0EuTjr79f05+Ysaoem42XSw2b1X4E5L3qwgIJWcb4OtKoYgQCm//pczbynP87YKXSt1tJmoB0KjxEo/N3lOfryuGMFywc1Y/VGTmu5POwN91kesODQQJqest1MQ6DJOCSMZO4Nu41bbOp1TcL57LOZyn/93PrxswdMkSPJ8+e8U4gkqMSQh5z66JjpU1abwacs7t0x6IRYg0+WVI0XnDp38yhBDCO3/1/4nHboSYi8MS/vYf+JfAPT2lkIomZCIp9YrrPr5jd6jvtZHgUcMIvqcDY+8X/saNA3V12nFBgq1bTmDvP3PkzTPruRYEARDnIPXpyIp7JABr3PIqV/WNXsEHO9yWKsbES3MdaI/mTp3QK2v5RIgPGPtQ5NBSAFcUeskI8a6l8DRgVVrxXvfHRnu9+qXkmX3kvteHEEL4+eNrwu/72te745V0XHuAvl3jWUAy3SGFT6J18uUIi3LetImQegHkjsDYcV06u0Z+z8Z469/4fV8N7ukJczVBOZWAPyZHgL2uGHSKCtI9RTmErVs/1xAykMeV02KkNuetwBth3jMxf1dat4nIAwbq5RBIAewF6SMU2W/rgE3TpSWs6Rw7qLkR4djCmbIR460cMAVyRAJvGRDjz4eHPwLeqKTdYB7JkmeureeoOf6wEU7hT8W1qjDFBnA7wN+elFHJscNmUOmuYUrdacYBWFhEMJbTKvc09YUtO6ZnKMh+XM+5vhDtz1U6A393iPaE+q7oRTv1vPXvVSDqlcslfSrofg2+yb8CFvcoPWpud9fKGWyTrL+VckGxdZsnyVOSKPUKIUGg+pdiQWyU+lc+81537LTfirG7kGFCF2kvjlvhMlDMVI5rCvU16N//7rfL92LFWp1LryjJoXQEMM3g24T7/cDYp+YoH5MveNpjRzCE7fX42YJIgrVc8TCVPLAm+Hoo1w0IUZLnGhaa57w8R6zlRABTDBNAWeAef9gzZASIaY1RZRgf05OQgpj224zHX5lbSABDUEiYch72h2keT/E2/Oo3vCg8fN89bVNKa1i70PJujRWwl/An9szj2H3qCx2QoMqGUHW8D6kXzsNjHMd6T+fAt3taGVTgzYe2mJvkDcTAt3iLwFvb90wAQ45E9sv8CRPMVVfwCER1mpeJUDp0Hi7Vx3B7pQq0In+xlYMRFwIIdCReUArVfDP/glH5eyZCB72D5Tpqxa4AyD0BFNff+QbA3gNL96w93Q6AZsIb036jYca+HIKLDyn8pX5PlXkXQ0/RSorxSSH1gFQvzSWxCCR3jhtFQshApiJ/zaTdYA4AI7k47zY6A393iPaE0il5N5Qwme57gUkcSXJphZggkV2qJ0LC0gB0dDh2e88QDYb61oeKNh6u5FwoabSKIRJclbFtoTmFQgTvYAEgd1J0mCAggLUT4Y8lXdx60r5gLNb3fcWryVjt0HZOI5WSYlxaH1XFmuaqUyxpzb0DxPKVSIcxBZFOxPOtxP0GBFfFYm0JMYLgCxP3C1R7UyPvDH/dujCZQeAPJfVW0igwY5QkuDbNo/ehEu6xTdbuUAil6wtG5bGlHIHAS3MmrCqEErQUFB0Ysuob8ahRRUofkdvfd4/mzV6lA9j25ze99aXN/JwOmrH7W4R1n8i5xsKMpQqQ0PNNeWYMwBoJ9WXGJAFohh41ynvaz/0yKogMREpKvf3MJG9o6hkihGeDUF8KYJXzgrlbydyP9lmuK/U9yL2GNY3NQCQMeJbrpij1Tb9SCOK+UN+279RF9PxzintkY1RNkmct4K1VzmWhGvJMTkiqU8T2VIcEKWqElB+V8bIzeB/c+cE1rdKVKKHl7Sx93lqF+hYyU+TpPAXVPmJnsZa+y6Yo+x08HgHXzd/rmgf8DuOAlMLB2JU+xn3X0g3/ljONkXpAxc08DgooJayV/DZIKaeMvRJixkNWF+rx57/oEDCVFMTr8fhTqDoQJ7w8Yb644jkruQyWqWeW/qq+/+fH14evufi5ODjuAIR7aNX4lGfmW6PsQhHbPI7Mw3QP2R41K/lXMK5NOSvudoG3PUyl8KAymfnBVlbmq/oO8AjogTXLI3RFhxYHccY+DWULQVoIIVDKA1duG70ot1Gs5STEWSo64Hk4ML6+KVDHtauFXFQ6nUgHkBTElbK3ODdU8IAZNi6PKxHC/HVD5+FSzB1RBrDgLdSivsebugr92Z7R7/yKV4cnHr0v3PufX4TgsmTgrVhNT+ARbVi7BLArXgZ+xAV6xykYQhSdXJ12AvAsbzleQjkh73Xb40/zHkN59laeigDIzBoAthb/bztWDBPxXcHGAdiyqk47rtwiWoQcyVvnp4/OAysO7YOW3FCv7Ld6v0i5w8BWkI1qTd/x3T4o51kgusb40Pn78ixW9jrg65w/4b2enrkgM2PdlOyX4zHEJw0LACmVuzvZTQv1TXIEBJG00PKDEerrVofdEVW0XhK5U+HrcEp79/rIfsOyHwVNofHST9/FI3QUmfnupGHt5Ed+5EfCd3zHd4QnnngiLMsS/tbf+lvXMK3PB9KscHNu5FuVVOrNoyhZ9kvOhRhQoUxkethzTQUk7PGU0CYmNBc9+WNPtCnBkPJA7BVdQCDB88c+dSvfQpT6AwgvUsiqIj3iJYAtOkpokw14/q7n/ljuZm+OP5S7Y4/vftF+FmjeU9U3PTPzPFSEoHRz29gfnIT6rkooHXlm2YuKebfGse39tleQ4B5/O5SFcl5TCqK9bpUQK3hw9WCtkFeIrZsACvQVXuM/dSDGrGCdJ4ivASUrJfgO3OMvNZ/w4Lp1G/NsxRCW1wXl+POfGX2nqffZ1npqr/dgyMVhCd/4lpeGmzcutnuE97TYL//WN72xvkXZ661RRklFQMGQ6PEnjN1FLfh7/Uj2+pDHH3nmincr4q08RBobfUe8x/qiTSP8icidCn9qAYkBw0QIBhii/G6nyqoH/B3AXleU+gzWGteGjFHt0ILst13jec/ckbvh1wSYckrXO+Nn/EPhy7BXx5iEDGnxTCAjU57te6GjsZXciHujPR56+n0hhBDe/NzPmmN77VPBqglPyZJvlnq5muNvH/ng2ZRxIKVp8e7bDDoo3HYmd2soVnviPIzdsblTQ1PirTv1uM9DGtYoP/3pT4d3vOMd4S/8hb9wHfP5PCDtkEKKjkLHBGBZHQtMwhH4uRBTKPUTgAZLfq+UTYdCs6LUR0HCYSWI3nN8FZyVS1Wob3moiEwJhBf90IdzYm6WAB8y14GxmfcXh1LB2IK1PB+INf3o8W39/Eh7Nr8bz3yMXN1BYK9X/xKeWcmmL1RDgQSw0w62SdheAnzoEvizFSWu1OMQ6bW5B3QQB6+/lnJKYk+ikRCfq07hkPPsjVtOKyGWFSYBzzxd3x1KxwDT+Edr0PFDVZiXZtpDkodpCzpeuGOHQMAQwQjHTyJfsU5zgxWsBUChbVn+DilEZ5xqMAR4oVPP3DiJPNc/+E1f2NwjzP1g8ycOvvngGd/rgMccfNCR8icF+BPmrnjd7fMMMS6lwZX9NgGA7U0ZAr1SdDDkuPYSc35mwrsEK557bfvzcF1FQIHOy+dPeS8DeZ2FCcK8Z6qOtVZ/R5njIAKmVyEzs/3GvKkxGCK8Z0Uv/ZgbMRALGZwjYKqGfQKQm7V/63v+vPl99eYIHvA9wD6gH65L9Z6rOf72OArw/PPzAJbKI7xQX0axZ7Owm2CoR8aBZFTZnc/yDPy1NBzq+23f9m3h277t2+T7b926FW7dyl5JTz311OiQn1sk6nueksWJbXYhr1CahA3kUGWkcofOd774oZsh/IY/JLO8ppFnqmbuDuOL98BL4RfXV4Q3hw+EP/H87w7/O2NsRnVuxPFwW5Sz7anlkfD0en94eHlGCu+eyTeXqkhTIYb2sE0CKPUTjL0eT/BcY6G+l8/i9ntojR/N3GVQaPtdxXv2wgdvakOTCtZagmf+njEq93prQZQ8/qgpfAlh1ZT63jhQX2dj03WbAJEUOhYKYtd6j8dfpfAp62a/p4rQbF9RBGcEKPhjH4FX8IkU0BGsW+FtqOX4G1fSuMeLDjSj8EdFqefnoQCGTBgAa3Cpk/iVHvxbdiUUF4xRlvFyOZz4k1CJGUctzPGnrOcoKRwwf2KeLRkwBXtdMSZBufVSek+Xxa46TmU/VlBAMUahZ6ZU9Q35LO71auU9jRE+7X5RPde2dWtA7ijP0Zze6RI21GsGRPsdp3PfGTFRbsYKBDz4+6Vsj0BuLeVHP/fLdQkXy+qESNdj5aEF44ACIrEzCRkXhPOsKmLYyb0KCARIrOoLeUzkEXTN83tavipqjr/HP/j36XVGOcefdU2QOxEpMm8oVqvFBISohYCKN4YCFNxh9KWHSnKImZRh7lKaQZ2G6E/+yT8ZHn300fTfq16FvKbuLtoVEiaEVe3Jg6AX98jb53u/TH2u8XcbfStKWpqqbU2ihxITmgeoba/0Vx52h4nw7rxfrPko61ZbO4dICQnjHZxadzq978WUhSMbpD5dmRAEyjvuuZ+2nCVeYMOnHLI63h6BGVuHp08FiJl45nU+y3ZopT8Mnmn5VjjQzD2JkOVz7D0rv1GJC3+KEITmVCTPn8gXp4XJMMOCoGygsTdeeZgGsBShGSmnWannYVl2c0VJU4A/Vn07J+5vLhx8UGBVeONkLk6P9ue8tQHPkpiihqohK153Sk6jmRymSj4mXp1WMPruVJTaSsyZfGMS2y9ZQWT8KYKWzfdKWHv8JF4pM56SCugY0bNjOHTyV27FjJ/297GrAwv1COWM87ty4+IgAgpCPktaFAXNbW/aDYGKsR+872Z44Gb0c1HA/YKvz8hAW9dWlLJSTAYB7FK1djavEe+xCf6EHEO2HuJN/thdy3IdfBAJyzD+O96+pynSw/H4e+wj/4RepyTo9FMef7LuEY0Ddritwhvnw5TjmdI6CSj7jUXoKAbru5OuHfj7Y3/sj4Unn3wy/feBD3zguof8/w9y9xpWbhN99Oft7yW3YEUAs9syqgCsYu4P3is6jyohiDOeIUO5eWa3PerbX7dSCZkKAwQg0hJKwNQXwOa8DX0FkQlR2aLTji0Af9ByWgB/U1W+fHrvrz093KYi8J6VK8Wmlddl3nts1uqrhHfDpsSbZyj00rokgUgn6kDuvbnqBEUpC+wT7xnj6yMef53AroKWJ8J5Xth+8UOkZyz1SvVH5pEshWc7QMwhaB5/LV9XBFf2NklVfSO1RSqW2L9vVKGGLOGZzSjmdajvjCHMBoGqMYRn3u11wYCYIxII+EbDZeMfbRoFvYI12+u7PZJB+3Vd814Hnkj8SPEVRKlAWStHDHlKWrx1+6RhxvGP8VyaOGQ1t5e8emF6m0Df01RpvlDqv/VtL8vzEUDL+RBEW6mXCrvtLcdZzOv3f31OA3AQzpTq+kwedsGgo+TZmyoGI0QtSOG63TPz3zNWyEZLlWJT5a0qed/bz4yOXHj8VdkuFJ16J7GohRyJN7NupfFSkGGgnjUud56unL7j+RFRe2W/+XvdA2zvRrp24O/ee+8NjzzySPXfmcpiC+QRPP8Z8+ujomRJTAKNrTH2GTCFVX88CkzGq2KoVfXdR50QJKxDZFCXrQlQnQzwqPnaN75Ysqrk/SaOZ46dv9oiLsubYHOULDiVmp8UYlI/ilK/0W9/5xOkp5puPb83mW8cm7FZRYiZGZopWUpeofjMxwc/svxdO0Cg05V4mPvWciQ085xtZN0kobvlzQPcZqcnNwLol2UpKjASL6gF8VbFowbvF8WzBHnASx4OQiVmreABVnT4U4xGldYo44Pce0N9YdGmCI5QEF0B7iY8JQViIWFD/RD5SfNubS8MeI8Z8z5K+81+ZnH7zOfSVIwqvQGxU9ABALauxbohvq7sF8vom0AB5qUJ5IiBNC/0TKFnEh+b5iAt3rP+VYlzH/eoGQVDyud888YhfNErHkszRFS+pd200tATQIzk3Qp+N2xhz6+bUwJDOGUwpAXolRmw93T7FIAkDMTMkfKeYblTyUGar6GoLJp3Fs1pMNS391wTUsyk97Tx+Evg1TXm+KNn8Q7AtADPWHPoAa/IsexMivtN0emR0XevM8851Lejawf+7laS0XkqNKNrTCnXFetO4HNGDSEfxlZ7hSSrr1LufU84Gv2FghAjtyjuoV6aQvtU8KBu/7JH7ys8Q3wvgxmPP+ZtmO+hHfT3h1DkqPGVer4rhUNpKpfmToq5eabQVqJkKUMf7bxApw4VHpFnwf9tDV7wiC55vu/lyQEFf+6wIp6UrwQbJrSKeM1YA8RTEQwo1jRM2Re6u/AkyeOPnR762J1XsJDHivFWJUcN8h47FOGybOqL8ddpbGWv+sDfTJVWCZAAaRSq+SoeWBNn2kpz3uqGNHqv8J62Y2cQaTZkVTiLUfu09ydlGMnDFADFBSEF91h6/LVeUANewTz8cVxu3VutXUkCj1JnaB7JeezeC105TwHoKIY/5vsRf2JjM1BQ997v8c4MSOCm88bHcuyOFA/RUMwZHOWK+MQNr2RsxwudNU5hxrMgUrrWyPuDVX17/XIg/3xDNYjIDGHAuKCsW5KZ2wKMcd7XWNWXpnAQdFtAJcjNWrvFZASwdzrUd3XGpnzdX7cz7NfTGfi7JvJ8BJL7/ZRHjWIdGA/1XVfhQCwuVZWTHnghblPNznYjL7tmuXmSwA68UmZDwhTKbGgcDMHMUZtLBkp6sFbJe4baK4TAtweXsigGE5q3z66q75jQDPsXwBD+Nl7T0ZC6nbEY5w7mcsww5TT+IQjsMCeRMHZgysYcWLumWwSlvvWoUZQNBIbUN5GxW76uPzsKcl+VpySaO7XUt/1bzbGSlvkTbA7B2vzMmHEAW32VQjZ5EnX7eL4dlpWe5wgMUbwVyxY3L2w+oYSNzuVlxEBMvkeQBSaO03I9Z0J9g3CeTZ2HCo8IRNkYCd0EYC3PsZyV077XQ7yJDB3fU+IpSQycmavZ3jzsPWFgrZYvLjYHYaOC7Lc3ZHXK4FwY4drRh6pedpaJ4t9T6U583qjIX0eab3ejDmAf8eaZJRuEyt5gfK9GD/g+HUDfv9GBOyvlmc+F+gog0jXt9SqlUeN1F2WDZQJAqyvNj69b9r5ncz9dO+X4K74X9Kv9hPe6IjN3kWQbZQPgUQJc5+SIeC++xGUYvt/4Wcx4RFy3c6hvS8PA36c+9anw7ne/O7z73e8OIYTwvve9L7z73e8Ov/Irv3LVc/scJRXIiZt9jweWpSAqYXyR6sd/VATPKodD0f4VXyKMxwUJKQQRgQJKuMdOrztIAniLk3KLhwmwwq1reZgrHn87PJGaqb/z8D8V/QuCxEyi4nQYMyBmQoj5bFDy+Gu/15qnEOi5+OwQAsoFNa+cVh5ET/6q2bLMh3ZAIRcSIIF5hALEQB4h7FWq1CsC/wSYwYs2KZ5r8Q8i8MMwviI8e8oTaV/6Ca+4B8WmSA4tzeJsz71U05lyi0LCguDZUV78wW95U9fz6ZZx3przp/oKKAe52dg7jEmlx9+UDJQak1sU4wDI2UZ/tgCwK5VxJ3JoZb5unONJQdyX4w8BEutahJZfANBSkt2wMYop1yjUV+LrQjiaAuSgVASKZ+0p1Lc1hG39TKxbCUhJwOGMN0+617qmKNZg3XencBCo+F1lH/FoZs+s3IbY8OqD3OxM0sCQ8XyWnHv4IHf2gLfBM34Wl2ArMg6M07KEcFz9/YrClBXwrMzFWb6nSe67xlxxew3O/8Xlbw4hhPDp9d7q+xzqS1OYFsZLJMP4csBswSkE/C0jZ7F1pghh7XcrDaMAP/ETPxHe9a53hXe9610hhBD+0B/6Q+Fd73pX+KEf+qErn9znJIlnlFR0AFzjlWx0ZQEN/fjyKdweFPeQiXg6KpYwVJ1WcYFvxzGvCcxxhmDopciUUKjvuq6Scps8kaa8K3IvZILw0gF6V5yEGpbjLx+2eGxeWCQq5fNCxyzlkIvZ/BPoMBaIrpsAxCigI8hBGirjAHhPpX1P+JtUAGg8ETtPB+CPnd6zCWd6VGyhGlvI32WtW7JaA0WLCeyZtQr7hXrU+N48/bngh4bH38TAkKkqhgdNsY6tUBgf9/jL83rpI/dV1+IzY4VFUpXVFqCXgJj4Yc/7dE3wVtyR8mO2Pcq5Vo2h8AgUsqoAEgxgF94V5AGvhFVRIIYCngKYAvb6KdQ39oP2zLgxqfyOO9Ugvu6PjYyXp1aRrwueSMArmI5deKX04pegGKNUK+V7SgFTsG7CXmV8bwREgnIAISmcf4IWxShSpSJoZG7JIJNH6/pW1g3oaEq+XQ7kjoC1aL9pYyPvMZZG4UMv+k3m94elfFr+usMCZQzsLZwzLDXJA5C8kPSPro/htoW3YXdN4BGfCA+HEEL4a5e/pfo+G2i0qIV2vw4VjCJ7fcY5Q3EMUYoYau/p3UXD2snXfd3XncCG5r+/8lf+yjVM73OXvKMqAVhUqQe9rNWH2WKmYmclO/zy/9dseiQHokQk1CQxPcG7AubvmvRKGaE9ob6tB5aaNyJb4ep1+4Hf9Fqp+mNWEGe8KyJoWSQEH1pDYC0XQn3jNca6ecLeOIOrFR418sP5X/LBvwuvWeFoemoA5UCc8BKobrGfSlXZDSaB18Fab4y+fRwKWKypYMwATwVgj39MAH/xmbGxBaHXNqpsijXy+Cv9vwD4phRF4euGWyPB86AkYqcAj5+HKiunWLFmib1jSFirLSj5BSlF0JIBEsiDK60bE5qRp6PRPxl7LhVBMa8pA6IPCvBCETYYsgjvGfe2ic9cqWLY93z6P3lmJM3LSHEPVlSOgkixAFCXl9Efe1VkP/Lb0zNr3rNUpVVQLmcVxAW8K7niJqb4nh3DweCt/lkMwd7iGUiFbDp5XQFy4sccgAXPBYk3AhOYqndUKUcKEs6U6jycyohF3uGRdQO6BpdhCAleUNDom4rxKcbHXo5QAKwPv+irQggh/NhD31jPKWig5QLOQ4Wvh/Se1rk4I29yPf6cc14xXpo9CMZLfCZl/gR9eUqDDkwHgElJK0TTd6XmbaqTOAMFaGZywBn4a+mc4+/KyVdyTncJijWgbHHGOY0YGILCqqrD/dO/DsYuFcSrFdjX9OkDOcibh3mP5RwOmEkwJvNo+LT5vcJWVlShTLEyhwDB2je97OHiQPSVjT2hvtPhsumRtxYdwZtHyDGjAVjkmaMDUXqybOg4d7zmL/2V/xZe2wMiMS8hreiA7VFTPwe7fQ2S2AI/408MfFMS9kLjwKG5bo3N8uOk/nwQaWbnUA+HRVDqo/DI1g2F8R2xwK4lFPfXTQtHA/tFSgdgnIcDHvAdVR414x6qWdkQvOYMyl6avsDf5snTDAQKb50Fe52RGY9QxhbOpLlCEUIxGcLX016XCpQ13mOLD0gsQSna5HtnUO8UVNyD8Ig4HboTaGXdeIviWYK8eRQ5wjpL/TMF7XUpPJt5cg+Ed3dGkeKfUoVY4IGl8HV7VgIQA/n66d8H9sxoLnOFAHCo/O4S/EaAqZB2Y7aIYQJiQKqU6bO4+8PsYRur3W/+c6jSvAAgR/Mea393WTHdl1s7EEkAmmuPv+Lsd2QnleiZsjOyKfXTtilS62Dgr0jhACN0ZkDq4jvF+75tLxQ1ZIBpNsqcgb+WzsDfHSKtuIe9YWnuCyV/F1QwF+Mee+xyrCEiYTKKZQUxqINwmC9s3VJrfO1rLn4uhBDCVxzeU33/4SdvwTapX5hUXz1MBMGVPPLs4TChpCngGyGY0yhaECXBc/w9OV3xLUIK/eXb3zLcZk8V6BDyfp1Kfl94GVgzK++x24PD2LiHfg+svoy0sFElHUDrwbUzV50geCYhZlf1bIOU9zY1JHMHvLUCl5CX5kzYaPmd5JWC8p4RojxU3+t9Dqwi1Bftmcvbxe3NukXPkilL/elqCIEKzbiKoRDOppw9UiXm+TPl1L5VEHXQku4MKa9Qr2CG4BgmCHiWK536Y/ehvgKART3+Bgw6hA/DdADM6CtVTL8avo6q+tJdQ96hFP67Iw+V9p5hsFaR11tDf+mJpoWNjj+zlZwp8TtmZMzLZgPsjI7sPBSoeibF8HEdqNxZtbV3FpUCVnzPavzVEkwHIIAZPB3AiH44Hi7LQqSHeEQXrbEUPI/t9faP2N02d8JfjoV+WA6fc2LvA/4YyB2IjjUSGt6NWVRiloo2IZ1e4U/G3EeMl90zU+RtaiwXeOtdSmfg78rJZ07lXQw8+9Szz5vf042sWLO6e0/09W96Ce43jV0CfzNgCrAAojEawpYwAd0HDKrKHiH8pm88/I/Vvy8FvpLCPZrnfXzwpX7jEEL25mMHg2BVmckXJ+VaEcCQHd48vKqvb3lth/4bt78WtikGT3/+0vpy//62ebQgTim2tnIqH2LUs2PgQJwxTFTfAw8JYa/airViQazHav9NQ1YpeCbkY3IA9lvrPWRsIvwp60ZDLvgz5948A2kUdob6tkBznMuFkOeFFjxQPGpImMsReGavt4vK5jfuba4qigq+dlSUtMTXO03n9EH3SzPN5mt37GQcmKDSO31Gjtjp8YcMYSMhYfwsJsU9wLpJIFJgPEJQUOOaEDkAGV7rFA4gX5z0nllXtnUT0ry054KW3xkbnNN5KEWaNGML6Up4gTJ93frCR/kZsFA6ZCzPYzOvvvhp7bf4h+DdOiMHEGPSOOU+DoWugHhEBXLDHoW9TkFuAaCf2uvxDmIcCKz4EPL+0vNZ1venL7abBNmvmfthKXmEUDipR/6q/s2Rj/k9rb0b47icP3jyNNvFOVed1VBZt+2WTrfNRhEW6otlIF32m9c1Ttd6Q32U168PML1b6Qz83SFCjL2k556/bV+gYIjPJFDi2He8+jHYJtHekuZpXkael1S1iXYQQmAg0pgA9oe7SorXQ7DypKr0pPPMWLfYBzkQD1QQ8cZmjL3tH1/r8ikJHjEsKXfqZ0LwfDI8SNq0bT0hz2k/GSKdx5xPB2Aqp4qnLgB7b1/mtX7+NgBDSgEJ5vYR8sRY6yaFKYN1HwlZNceON41X7IzE0gwwpX5RrOUAPCv7xBU7S4EdKGmzio6SVwisW+VFh347KpwUMljLC7J4+wULj6UScrhoQF1pr/okVX8EijXtF3nAV/OdAUx9qryEOvBNIFDwoLplBjA9CF7BZK8PVUzvfvehumy2ZLJfAlOYIcz3oEetuXHAB5GYAVEBd7Antw8isTQKY15QNhiieEHR9BF0bPuZlXtXSkUAnhlKdXKaFgMFB9ZtotCWFu1BqOIxxfcFWAunTrxbc+oKOji8kryghFBfeCZJHljsFuWZtWPHD/LbKtmvNXj7hn78ni1BA3I2HoFCpJmuUbyn5U/PORn5O/axTz9Hr2sAlpW+S/EiB98Xex155q6hxATsZz59HgqG+j0GHcUj2XlR70o6A393iJAQU9/ErVF2jhn9MG6T1ipJbJN3BUNiKGFlISegH7foDFl9i7Zf9IpHOxvJOEnq247+gwO+bQcT8yxZ44E4HoJoCc3tNB6+7wbrYWvTPrOtqi+1tPvr9sJn3kea2/tNyVXnINAuKUoWp238PUV0aEVhISdks26XBV+5DT1DiFK/E0QaCntAxgElBxYVJHDzHKIz/sx4GF//l9HDNgnriiMEEeBPARR4gmeBN0f+RMA3NPdkLWdAsTB2t3Clp62U96wd2ld0DkTrTh5/Qo7APkRa4K2KJ/eEUUWhuJ7XIUekO6bCH7cPZa8zEpT6tQ133Pg8z3vmAzEUfHMME6fm46G+aa8LSjnNQarIfsiASEaOTW3AdPucysvYzM1qKaWPUMII6/aV7sDOJGhA9MFaxiLSkBPh2ZHP8zQvNoClnq1IHo6GscXoux17ZDx7DmSvC+8p8rrT5CeDFOAw3WufKTyqikWE+fJTltf7lprs54xNCyfF9Dhtjj8/BVUIITx3m1/n/AmHtUvyE+q29G5F96ylHFGfSVKBMsIkImjKPJIjoVQEbN2yoZ7cs1OP+3ykM/B3h0gp7gGFqKiwm5tdYexRAGub+gdc9krp6cOPf0UIIYRfuvetpAMkhJTeMD5j7xVE3Xus7a8uFD9+yCuCwTG5kc+9ctlD1LII+RZIqOgoJCiISmXe/jT3QSAlwfPjz34AXkPKaTkiHH/neYGqGKp7DHlKaoOfeMTRBEOEkFUBMPXCZEylXgobZUq9AHJvny2P0PLFEdBx8YGYdr91Sgvb6+w3SZ6SPm+FIavFs+xzSu4Az0IolA3Bw6GLDiq/AIocTWYeeeO4klX+FhSCWPMR2zNk3uIcwRC2bigsSzjLhTQK1MsgPfLx9kipV8fWQn3JuqXm4zm0FsDXQ9DAN5TfWTJesrB2RfajIfknghWsi+87HpH+qchfTIaZAGsF/kRDpJVnHgB4p4T6Epl5JLQce8Ro69Y/MwWIYXzTf2ZI/hrzXJsD3paGO0eK3mCHhXhBkeq06R7pPLTabSSEtS+tcUCRmdMlC4hRZD8eZkzBffa7Bc//PPUWdFQ9JZFBJ84dNg2lZ21VOEeYt0KzReWKm9y+2zsOhcwL4YSwFuvW93wiwZuayOtcjgCpCCT5ifD13fLX5y+dgb9rI77ZkmcIy7l24z675zWO0G92pQpPQvdRDoatd3PsZBXp5/3eV3/f6RoDKojgqbgFJyUNVDFUmOtxLTw5nDb2DOqxj4sfjhZz/rRXZZ4keI8p4FsX2jQwtpL/0G6/zasZO3of0pxrhpfmCLXeX1/9uhcOtN6L/F2NoDAD/PHQJkGAAwJ7xSGcXFBm7wOHueWBPMQjWsH14IOONNQ3jS2sG+DrCuhIK3YqAPuE51sJCHae4IJymwQw5s0j7bd27FICB153yroJIHfngSWF+hbfd2eSsm6YtOrbabDmwqbcKgJ712n5u9kM7bP8/csrWaOtKQawrqq4h1YkzPZqkYAYBjTP8CehojAteCAYB5BBp56d4t3aPjc/THk3WJv4W/O9UqzhiHMkKwAWXjcl1JfsdcGjJp/TNl8OgYC1ZXsYbsuAGPyeSYVs9qzbzoiJalrlby/5GzLo7PT4Y0aVFNkkRS20F/wzgZ+zUfZTjJe2Vy+Xn06ftie3ANCDuVehvoqeM2FUSXnYw1KD6sHnq+XYiJh3v2I4nclVl/XiI/zp60qKPw7I60zXmIrQCcXc0cjUKeUM/CE6A39XTYoVLWhK/XrvQ/b3NH9XHH8mxEc44FCuuqAxV57LYIRJgFATxVKPZ+eAITZVln8UjnZkDEoZJCqn1rrFW/Dc91T1TUp9MfdP3bpt3WISBpqFnB+Cx59Gp/a/48teFf7c971Ta7LzwEhvQ/O7nw73i+19RQmRkgtqLg9VeQcHQ+xnpuR5MQaLl4S5wwqxW4daaLl1xedvh9Xn67B/qiz4YcpsTTxreaXoTHn8xX5nc9Qggd3nrRkExuvGhfYIArWTKg1EYN1CCYbUHey1OCveirkoip33zEFiqnHsW1g6gDiHuv0vXrzObbOS5PISCSCSK4QFa79tn5Nh7UcFfHO8oDhv3Cn7AaW+IqW4BzQazwGmcd2UdCWoejYfe/uwDBPSu7LNAYSsXki/2+yxusdsjgDPqqrveLhtZuvCulGA3Q/P7o1wS3Xd7FfxCqZktyw9H1EIIgP+lOrZjHJkkw/WouJDijGJPrMZA+JSfZjEDBNRDtZAx2bopdBzJvablFMS5uJUjDk+McMENV4qXnPgLC+jXBjQHEHJGQ/4rJti3ioV7ERemnjkAk/Asp9StOluozPwd4coCnfMiwpeIeCZZFWJd7J8SnBoZpkYYOyWUj8A/HUJ7AXhDSnW5b8e+dA/gu3zPJt/V8opOJQKa1JJF7IHHhPYlYNheyZXlOPvU8+2hWf8sbuKnQMV8eYB09or5eKwhO965yskIHFvCDhS0v7d5/8XYnsbwJKIFjwQBE9PWQhEENrrgQXA/XIC+3gEIcnyOhM2Wl+3h1aMKgLRdAAArGUeDjtDfJRQ37RuXa66krdyJW26ama6hA1hGDDNf7cJxbOStlPwVLxjWx6hFE6KxqhpT+5gtv9P7v0+v6mQ+kIKpWOGU8k4gMC32TNJ4REbNc/skMAQQgSIUQCJLAeMr3td1RfxCOEdZ7+Qhj/a56kGhvh59pSKwn1lXV+eWpnRdwCg73634A1dturzifvyFwMLklIP7yiuThX38HkEI8j7BGNS9f7O8EchRFqLWkAGHdZUeGYsagGBjoJhgqePEPgT4K1L0aeWDsA+yxXDaTt3NdT3p4JXKFIwwrFIkwk54lA4xKDRWaEtzZGJYQ0Dsl9nHFC875ncKdxzl9IZ+LsmurHeotcj+s+Ke0DVkSW0HPGIoTO06UistsqhlPNHkBAfVjUzyREzh1IPvq3rWnkAvew9fxVPHvVbhoi5ObTqeb/44XvFQeK6GZfigUjBtxN11a6UoXd6VyTBsn1mMdfKJBgyRlipx4LvvlFXoJz+2vq41P5gKCujHpumcWAkYS/Mp4SVAmphU8JGaTqANDpsnloBQWJ3kQpBsUbPSbGc2gqi4jWHx/bmXj5LlLhfUdJ4CCGxOEPl1s/xJ1WwlpQFnPoCAn+FAtUDzUqFWExKPibkya2AIRhIKf6WQnxqeio8XNwCntmRyDACSeHT0rq1z3ykqq9xZeA9bXOQKl69R7LXR/Kn0sruMPyxGGqCR+QzxbgkAKax2UyaF678CYo1WLfqvXPOQ8swkfcLmZ0wthQ22lU6jZNQ+NMckJNBJLutIq9PU3mmFV+XMrDi8Qd1NCZHxE9yFmuhvuBMomNj8C3LgwoI1YaW+6kIWK66oWg0A3TUPC2ddaMef7axPBf34O/Ju9c30usH9sz2Vv6O9wLjwKmCNTqLS9nP5q2z1dr7e3qCKRza6yYJqcPOuF9HZ+Dviilutnf8xn8Twnv/Dr0zhEAtrxD4oxbEEa879JL7TZl3hVRxygqTEQ5EZB3Iv5s1ZdaoeaqAPwBaMsauDaIApkzRiV5346988k6dZOypH5BPSclDNZtfUMlpdF0EE4LL7bfPGY8/msR9RIAiQA4QhFghm2WAP1H3/RkvKMkDK45N8jEpIHebL04hwVOSVyRmlxzFWhD+pBx/sx7Jq20IqxVr5GG6FbIx1y3eM7HXl1JB9EFu4GQwlT6i7EDxMO1Bbv+ZxUfeKzrF31II4YQxibzjag+nOeCxWSVBFM42AiLR4h5Cnr2uWIPwzOLYZtEmaWzb+74aAgLshWwDnrkUusmUNAlwHfdujW3N/NOSF7p9nlbgrQNyc8WYhL7DYjDFbxEKHvTjC2AIMTgrxRYQELNcfDbk9Qqpzn+WIdII5C7PQ5j6goxMKzmnm2B7HHHh8wgpRJrmhIw8oh1a4E8szYtiQMw3V98flkKGESqms7McUTzjWzkie/zx9BSeMUoBsKw7FLD2NS98IIQQwmu3zzRmURkX4ZYlv++KyUjgGdYVFJA7vwcg1Je0PdK0Qor8dHfSGfi7Tvpbvw9e0ip2IgGMATGCALUDDElFKqy2iicRzcfkK7eo2tWQxfmKqVJ2HY+aeeAPWLKqW8at5drQ+8AzmIdqoCLeLHgGgWKp6b79ghQddQ943mN8bMIjEosYV4ybUeyvqTePzp/M351CVbClPvHWtunhYH5ftZeUtPHcPOk6GzsBMazlhLW7aI94RPl95xWsKMbMS1M5F9qx0r+VsKxmnLK54M2D5+6DjnWI9Iz3GKbjwp/ZaYb2fsuFIigaLMxuXI5QuJViCJM8uBh/EoCgQxuqqYS107DR+IevbHSpLwTlNCufs++ZYNARPEO68Ue8yFl+Z+JVk6Jk2iJhQn5nxtdHPIn6Z6bzCB7Gx4a2ZcdlyUUUJB7RhWePPDM2dwGIaWU/Jdcv8ebRKPddrl25Dvg8LCEoe3xqfARGldOsovFyHKzVCpSxaW37ZUKOyM/MB4p5qC8x9EPpZ5EcQ5IBsZNhfIMz5hEKf/DfZA6Ykl4E4+W9F6ebXvpomz/89P1hWbFBpyra1IKecR195wybtwrGqO2z5etjBmesK5xDfXs6A39XTNX2Uyw6BIhxtytTjCXXWnSoYDoyd+etP16lFSunSg4HGNokjJ28M7oDbZQx2Fa4EIhViAGmCqGS50ETXFNFqamqvj74xlYwKVFdqG98ZkKIzSTwhwSoh8NnhNZ7D4x9oGUCayc8avK6Ea8UoX2f2Lq8BQgS9DDWvTOYkobe2XUteWtrHIhtBY8/Bloqc5/x0mQeooIAxgDToeIeAJDgIfm+gqgpp03eM8Xjjyn1e8CQiq+D9hXw1yvmIXBl4/bK9snWAc09tn3Cva6ch83vLn/r5HvqklAZl5MPrE0VuxoKl8X7jXulxLFt71bqAZ88HAgJHn8sN52SBxQD9Gyv+mFZmncrAGsl/mTPbLvJHbqbu5CKIH5veyTP86fDkn+xIu+3oeXSujWf9TVF19jC2jvQsZ6bRfEVsqOLBALzqkOkhfOwOZMU/sTWJD+zcTAkXpGiqibBEFQFOv/Tf8/M/aLIsTDUt1x3QbcFAP1cjr/I07nH3xc/YRfjVEjJjcjB2u3ObruU8hMauwD+YO5W4TwkhjCtkOCE4VSQI5R1u9voDPxdManADvKCqjtD3+PE/YoQk1ljq9SXTAK1V3L8+S8qU+q10AEbRKKHwiY0P/bAzfBvfv0bwp///nddEUsoBAkY/hhnNwkCKaG+gMr1vJgKQdznnYGtl75XipdXw6N08DRT/+0X/7i/qaFxQLhpT56Z1B4A1RIJeUB5xU4B7HWrPxLBk+6X9l5rDPCerXmXtopOWeGMdNzOIl8SKnaiXHVpDpLQjNeNhkYl0JKcCxAw9YU/DjcA8CwUv0cJpWt/ewVQ8LnbirUydv9X1TaoCqKtMLB1++uX3wivKWDIAYRujhVOwqR5G9bf/66v/gK/3wSGEA92PrHTx97iHjtCfZkMo4FvLZDjeyQr/EmrmklGgXvdD/WlcucaZ8CMAzNgrQ6GzCqIuW+U2zDA354BA8LXlcT9ncE6vz88X1w9VneFPTOhMAn3fENAjCCHMjlCoBKsKHso9w+WL7EhzLqnuyLoORrYizzXFB3L6nVk7PaZ+QZAbqj3wTfGn5IsP1XVVwBrgRe6AnCHEML3/tqfptd5SiMfwJpKj1OmK4G5W8u93vKYEdnPSo/jyzD4LK6vmyMLBme+bncnnYG/O0RKlVXf8soUHSWMr22qW7J2u9YaTOIoMNg4Kqr+qCYC/cFveVP4znc8IbTpqbtbyAWlgGd80K093S+oaanUT+RjMiyAl+1gSphMV/VS8STau272uyL1V0zre770lVc2tkoZwNoB/NGca2TsNHUCvkEgBlt9pRx/VGjmOf7WUPI3pKQJigrxppb2erQStwrPNPDnh0bhXE6+x9+xyvEHQn0VAYwCzRN8vTJGod/u7xeeUDyeCz1vdddN8JRkz/yZcCru9Jdu/zbjauxPCBttnpnnGXu6CeyXMh+WYEBsxci3PfGIeVfVlnkxKuxSCvVVckGhPKC+Ym0nYtdDmzqjr8Cfch4qK1ednuOPpwxB35cXxvd6yh1mekrGP8bTTxxG+PqkzJxlGBsoZu15zjXhTAH9nryg+D2nEeKZZHtKSnzdoKMwd5gyRAA898p+Vd/F+GUYKAz1rWTmdu7+2GvzWV8T5K9Gjsjf+8/svo++O4QQwmPhaTi25Fk7wZ9oYZEBoLg1Xp68W7nsFwJZN0F+SoUrUbjrTgCJG3TIXl/8353HAOB+CAEW3WP5LBWZlwLNvkcz5hGCTh+NSZPRj3crnYG/O0TQelmRp1hjJsGFoHRz2zj9hdzrV5pMUxf+bM+QNAhuv93V8qdVGDtbnHvL6R4q12LKC0ogSWAHjL0EaGaq+uYnU/zOAWYKLTqHWNxjhQcDt+gMjD3VPs/p5lSIdBQkdnr8HcbXnebdUHiE5BkCNcStB+bhoAgClnLLlbQy1BcpG9TymgRXHCLNPUM25XbHfrE71oVm+0jhAlzNO2zlVgnPtqtIK8aoCAo0ob6loQN5ecZiMgysFfab1XysKAoYW/Biss7bWIiAgmQAkDgo1bOFd5zudQD2Krw2e2n2++XG+nwIIYSLy1ushzQaHgOfKTH1RecVPOIpab5oipJot8+pL3xDmE0j3hkTcufRBlJO/1TGTnfD75Sw0c4wIawb/90CgAWe+UHwSObnoRIiHWWYPjRcyY3oebdKQA5ZNyl5PjLUT4YQSlT0vR5udmOHgNetLnhQz/3Nt98bQgjh0V//CTz00T5T/tdf9/qwpryMvucaes8Yf3r5j/4JeE0L9Y0yTNs0jo3pGHmEtdWjUUUC0NrfXYCpSuoLCN75fB17/O0D/g4kXEPKoy551jZUebci42UBcvcdxNbu2DTacQaslcZmRl9/7LuVzsDflZN2SEGX5ILgflVeNEWxNgSJSO//jU+B1n6or1bV1/L4i5YNwXrZFYoQxgYWnXGPP9syEUJx8LVtkqV+FmbEXinp98Aw40LAIB6DkNJ+y19dtj9T8ebphGYhTCYJnjtZlRiCXw++98CwD/M3vlTLBYLeU21oe69b94CLpzmQdcdh7VipV5JTM28eL+yCh/oK6ygU96DFhxIeYQMInGMzRWcnb/VCLsr17Pijv27MoKMIj4hHVIAWytlEjSo+6BjIWewp1hEwPa6GrX2nl6Yydy9XHfXYO/p5Z7WKxL2S5lEOq+rpS5/50RBCCG//uT/DetjGGudvdcVOWwaaBblH8p4hD4dZJWuVlPq4blgO8GSYrYOmY3/slRjCNM+Q7bPzuvNzQSmhdHtlZmiYWPF+kbwNKSiw7TeBx/TGKCG/YNwvoGevfQJrwbpNe8BLlNfkuUde3Y0dAknhwArZbPTq9/zHeGgw9z/yrW8ONy5GPNcQWDtHe/b6QTlTiEeyZHAGxsslFHOfAEwlD9MjSqEVZYDrDBllxoEBowrF3rAhLDUHxa6ksQlv1XK3Nu2jTk+jDti8RuZ+d9EZ+LtiUgGKJIAxIAa+qCyHlm5xhh4KeGhePnsodGBcySpb9cKfcCix5Pl7qLIgeqEDs9ZL5inJ170E/roEz9LY/TPrQ5oFRQdU9T01Rx418TCeJCnUF/S+F/gDY/+Rb32z1PwABXZ9bK5sKIJn/f3D990s/oVAJKZkDeShmrV+pnWz95sGnhH+NqHoRKJW321JLKV+GeDrDESSKnZOeEpmBXEcrD21Q6Cl/54yL00tVCWObRhVvHVb88xg7jHhd1t3KEKzVxRFCZNhefZ4mDFSskiTrt+58xB5YFUjOMakEPrzUFGM6Vk8EurbebfG94zxiH2yHyuw4VHkEUcrcayUaoXJZgMKYgciBX9sQW7VEtA3X5dTgUYVDHJn8IwMTYyfWnqcyJvtFA5KOD9P3M8MYfZ7quXSvJo0Lz97/IJwfPAl3djlPV3Tcl4z7wo7i4fkL2DQIet2cZsVrtPDRnuXv3puZpOVyes+yI30w2VZir0Om6eRYSooyeMPhDhfheeYAL511wSAPRMwyARm0Ck8/iYMOlw3FZx5Emu1mSt9+4ToonOob09n4O+KSSuQoYX6QiseC39cfEECupELByx9gQWEnoWsZsbuFx1AFfFm8gGMevzdc2EfiKchOHOdrerLQ325slIq9VOhvoal/itf+3h1y6ceeT1sjsKzK+9DN3n+LFhr73Xtie89MOyxH77vhtg87vW8TrLFVwlHEyyvfZ684haQZJl5t44kzzdBpIULEmWorzF6CCGEgyD82ftNsdRvn9tmH1Fa6JoIzz0JUMa96VmgZ8aEeQl4xgKYEmaTw/jq9oeS1zr5mGj6iYmct6c+nbHT52IUTPf3Ogv1zYqSAHJPKIiSYi0BCkSOcIDm3RU7maEVhoaXik5TDVkwDiyURwwAWF1okwKesWfmg5Y5zx5JGYKab3IZ26tSTknT4y/eQt6VZCy3ZT+l6MB0qC/c60rxIbxfsjzIjCosNUXk61h+SqNOFG2igITE1+1ntgr8aa/CHt/Tdx9fXz23KtQXjbFzbCU3olaQBYG1c95n+TwjXnMAyDkoxfjSpTnDRJ5h+57lvc5klQN4TzWZ1wbosyc1r+orkbPfZvk6JuEspsCfD76xZ574upCKABXj47/b5+tn4K+nM/B31VQy6ltP4tvSgcg8/sDXNNT3aqwTsDVx5ZaYK1WyrtcSlhl33farDj+P2xh04wJbVTx36v1VfS2vlI2EUN+ZQhGW9fKxB25W9zz9yBth+yx4svxdGMgJYQdgSg8Gj+z1/D997zu0sWn4o09aHlCbVlb5WwgvktYNKvVxbBzqO+115/CIMtS384IaCDNm1ZA5iOQr1piIUh+V270ef45yannzaNXasVKfelS8oFpP7hDC5eqcC+w8XPjvDqEAckgIIvQeK0BHlMOUAjEUMPUF17RuLYA14lEzWRkXgSlSqO81GXTsMZrvS5Dkop27AkhgI54SbpsqMXf7xedPSiidVP2Rrhs3ws0XdhMMGxPVH4MS6iu8Z5LcemiBYgXkjqkviCFs4j0r+2QeyTmfpe1Nzfb6Pc89FUII4RXP/3Lft6BYo2iPg5SaZ9vrO3Mkn3hzeUGI0KnmNSN/bZ9EhuEpQ2w5YiyXptVxfM/YTeA8FM6UI+URTf9k7M45Yyn2m1LVFxThocU9kldwA1JHgy8Br3Ti4BvlrXR84Aku6KbllHq51efLVO4c4q3teegbdNiZJBU4u0vpDPzdIeK5fSKhDcvCPRQlrb13o0qI4bkvzN4HKrtxjz/ferkntKm2goTw9sMv4TYm9cpppCM6lPZWKCPr5lnCqsqTO8JG5/ZqeQ0BMYEAf3tDpKMFsKbausQBhRBqQeS7v0St8IsABe237AIthQNRASSoYo0EkRXziGWngujNfQ1MQfQFCSbEKBbnXYApeWbRG4jmNCEKoucZciQ516JiPVvwQMo9lgDTFsAq5j7BI0ZCy+0w5Y0c71a2o5RQXwsUUMIfD8BTUitSIfBWwYDYje22COlZ8jBj1h4/s/aelupk5u3cdUCCFQBaBO8QpJxKob40FYESeokNzlDqTDKI0e/u3K0jec9QtAchwUtTWbdeZC69x1B7YezJMyl+B3PVlbIfOA/Zmn/xL/wHZF5xEGG/dZEmOsg9L/udPjreWoEhXmqeYL9rIYRPkygXFuqbDTq+IewAvDRnzSXKfvPkJ/6eKWleFB2tHXoJuSgKm3u8v9lvKRqNDB15dhsdlDwVr9PjL/6B100Ce7vmwl5fyV4XwFpesFPgrUn+GucRWvTjGfhr6Qz8XTG96WP/QLovCewNY/9Tz39f+httV1pZV/JKsYGYmkmMg45SrhUEOoZCCQBzP65Y+FOsUVZy6eO6DoNx/QjFuqEk8LuFmG1NDA/RdJSDn16GNh0OYphpOTQQ2P/R5RflOShh7Z0QI+T42xvuAcC3C6GwyG7amdcxucDvqcRsVsY9VLfYzW3Fuk5l4IEh2CuYGwfiH4Zyms5yZhywBdeD5BVMvKAGBIkMvAyQEBKmFB1gApgX2mQWZImfdGw/9xj3uts+jfQTWXHzgGZmCBOIGFUwxk3OWcETiXn8abmgtk/AWzUAq277yfu/oPiXAJhO2SXmQtXasbnHn3+mtAbEMc816z0dCH9EOdcUGYa8Z3y/CV7oEzwiroUU6ssA9gmPv8jXqTc08QrWDBP2fqsKRSAmccRjD50pJEQah/oqYXx47Ptv/Tq8Fvc6D1kFhon0zJS9PkvA46/Yfwpg2j7z//7ebwwhhPDRJ74Rjsy9w+JZzO6w3xXFI5lR3usKyG2/ZwpYaxsQdZDbLLTlyH68fZw7aQvSTyQ5lnga6gT0wygHUNuAnyev462Sx1/5fTsB5ZmhtoLcWbbqjJfKeRj5Mp4VLwByd9IZ+Ltieumn3yvdlwX2Wrn9jy6/M3xsffj0D8ejxhLeIsObSVSshBQyV+5FEHpzdVqsZLF8bxFE6vIBCPknLMX1csJ9+7nb9fzqaA+7v2MCFGZBIH/d0G9fixK8naKjjA2Ujfe/+nuKObD2NlirFPdAXlB/5ne8I/19K9Rhx00P22BEQQTfz1tV655bEEndcbjggUAs71k6y/1cmmxsHEpHckENKKfWI/OqP56MA1s/nXFgpwXRMUyc7qgBMHP9XY+/nhZl7sxzzRG66XmhhGcTg04CBSZCyw+Lfy4EWI2v6E8KzyYWayffLgsh5L+7/6sdm3r8LfZ+VQpFJMW4eU9+/ZG3hk+uD26TGActFTki/qZZjz+e8zYNYn9dGsJA1IOWq449MxaOZoNvklJPU4bo79lUNWTBk1szTGBPyakCQFIUAzPCDQASpEAZek8zuGTtFx+QYB41R2fdao+/1pCm7HV8Sdtv8Q973RQj3Lwklt+V6kws1xHJEUQvePrwyKkb6rmG10Qr1rDtty6fZX19lJTq2eg91UIv2TMTvO8ZECysG67qO+8Bf1w2Z4lr9Pjj67ZHE/GBv2qvd97Uipcm0bEG8IheNxX4Mo1supq0Z5+PdAb+rpgOQWMOTNnwiFanlRRrpCAK1gEKKAzk7yrav/0Vj566jq7cKBxtzYoOzuGgWAdqj7/9VKwbKvlOE9ALI+wI9S1zYuzxHmv36ssfuy/3e/nccHstx5+t2H7Pl+ZwW1ptNFErCFSD2E2u7MCYe+YHJMRIxBREfw8gQKJ8v7BHDeFPUXiUvDOwZwn2EC14xESor5aI3VeUeOgb32/Uk1sR+AlgCnMaEU8iLcefILgKAnvHnyrgD/C3+Mm8NBWDEANyYC6oYqJgbF7cYwPADFO/awirPLkbgV0pFJHOpH7d/pvLr0qzgJSWjaQy+MzH7KaCpZ6TYNBRQn2RojMJ/CXvVtIcgSEHQcmSPP4kJW3eoGPmbh3hEcQ4QIt7IDBE2evU2zB69IwbJqRCEVtb2xAmgECUP8U/UAqHQh/p8lnqAJR9ReHrMbJpxrs1nof7jAP9u+LrOSznrQLWpjOJGnSwrgjzO+/N8RdbT3m3CuAZK9p0UHiEbxyQPOBRzlvS9gj2S8oxeQUef1hmjh9MfvI9HXs9x9d1q4KUE6G+cOyg8QhUkEXxClbSnp2Le/R0Bv7uEMVtemg8/v7hH/66AshxmARRjFkS03wrOlSwVSZ5/DHPDknJynOPVU49D4cqVx3MP+EzifKO21eSsDWTH140qekoHg5CouIZ4A953ZXW77f8zJ+C7bOiw4RmtF99T0kK/AGhWQNg9+2NvcU94vgtj9CaKiGrviDR5Zgp7/CEZtMjWfdcY4c59vjDe11KKM4ABUF4zDnXJt4z4Xdr1nKsIM4UH4rvOfce2/ohoXRSbsSOxyw+AMYs8SOVBCdCpN//658ue6hICS3PqhBWMDVvHts7QwNijEvtPXYHZvulTKT09Ifp2PM5/tJo5B4/jK8HJBTjpQ9ysxx/0Oir5GU8Yr6eK6X63q0U+HOuzOaNpQriwJnU57MUDDpx7swrRQC5UThaCDi/80pTfujgG+MRUKkv93r/olb9W6QYmqbyMg6cxWb4o0IpNL0t7lE+M+887Okoea5tQ5kXfUACebdGQIuDIYSE/IJx3frw7AH5iRmcJQALX4Hv2brCnLdB4I0rCMlfN4+/Zb0N26rkF5NhvFF45h3GXXyh5LPsOojPDA/Jio0qUQt+QRbFOEB460497vORzsDfHSKkIL7mhQ/m7Yr2K7M87MlRU+YDQC8L9Qxp+8ft7bAFR/gjis5ByamVfnZuOxPq2/32SpBwANNp7y9gOQ2lYm1TeVBOVRsVvAQY5XLt7TPLgBb28vQBUy3fCVt31H7vgbFv3bLVd2Zotm4CjwDt6xx/SGjGnkSKcQApeOX4EhgCLIiOFFPNsyZdYKch9dCjBisbytxZGN/qCN1Z6DUuCiBSrkLIBH7f6ttV/l78ok/ZU5J5iCr7jXhTA/70E7/8seq+emhFsY4AGGkPvTRLkNtWdJRCNnaRCn/doGeIMUZHxLtKIwLQxyFgaFN5Hk4ot8QjWcoXFy81Bp0ow1yQDPSKokP5E0i70Qxifs0KACV+N+25xt+zEJgX1D6PvwzW+u8p8tI8DTFuVMkGa0wwr3UongVaN2YckOQAcknK3Yp4hHAWX1GO5M64IIAhTM/5tadvhRBCePIzt+DYeyt/x1ZX7fGn6B8oB3z2+CNE8s+vytSp8ZKv27riddOKD9n7LfH54xUAf1CvZouyR24t/g15a9HvxH5bBEPYjPwlpaUCBpkQyv12Bv5aOgN/d4iicGcpWj5z3qnopLMYHcakPY1hUTwcfCULe/OUITrt3KMAxSxZl+nuSDPAHyO3ctKs91dq33t/edb2qOgc12VufDR3sSuYv6tg7LAaMvFwSP1MWKzLLYaT3jJLmE/I409NNpvXbdzjjwmeQ5b+pv2TFy/MY6BCMWsMCTP6jQC9YC2fCeOrkpkDbx4KhjDlNO1BwXqZ+JE5CGhNeMRQDi3cHvIn4lUi5Xlhlv603QQPU6NiZwYF+JlkK1m+l8EiKBu7lHpBwaMhYYivV9Vpx0NW85k0B/zlVeufWTGI2XavISwrC+MGnXJKvQe8Avzh99QD2E99byA5U9Ig+WleuPy1tSee3J73mB3q6/NW5NVbf6ecSU0Yn6DUM68UxViOjCrlv3FBB3wWLwJ/4oApB99KHtFu9VUBTOm1uG5KiHQjwxz8/ZIiB3aH+vZLl9IKeZFNxl6N8/nJ99tpDOKY2yyMayNgyLhh4tZDr4TXMsg9E9buv6PHYs17innY/RBpehYjvh5ImhcB3EdpFI7b3l2uAvhzjHgsV/AUgFU6pUCDM9FzRiJNiEGH84h+rmXbWf4kGRfuUjoDf1dMv/rAW/ybKks9Vurhdo1ADqvYKQlQbIrjik4WYnC/GbTM7Z947P4QQpGoGDHHY7luMzlD0s3pu8vjGn75+FI24TFyQKTdOf5MK4hzMLC8GxKhZ671hxPuhnC5CWDIU3LvuiEB6rlL4TDYaSnC+eLG1q2c+5d/wePi4L6CKHkFNzzm+UMupAKPckFBZCuAq477QE65j/qqdIogIew3xQvqEBWygX27xg/yzCggEe+dsZYz4M4vnMSEvxGlvjfoKB5/vUGnHxsT9ZR0QhApyCIUnDok3mp1wMeuzskL21q+hNU1bLT77Stf93ix5uT3pWcOvt96t8fGPEIhrbgHGroETFtjlF+JmXqlCCGrKLTpUD5Dx/DKPYmUUDoid0L8iuzVrn+rX2ZU0cG31rs1/pMbdPB56BbwqebQgiEFiATye6/EC0rhjQzsTY4Dbphx6PKeZZl5NvTS4ctF36hCrJSTe5oyj2mfW+wZgbXZKNJfi7yRpZi595mPhBBCeN3zv2BcVdYt8ghkmJgkhUes9tjxPDuwM0UyACpyp3Vl+9KNDjLOciWNAuBPayrusddLHYOWAZylbWv/GtY1UOqw6nHAdEwzY+f+lCiZvmCnz59YdFHmjWfgr6Uz8HfFdGsFXjAFVYLnlPv+5lFjeQJFZUOx6LRCTCFQYU8pBij4B2JknuXv/rd/61vCd7zjiXwYu9XRDAUxKVmMeqH58riGn11fS1uN0BEqpzsVHZI7bDX+qudEqqwqFAUBIDx5hISYUxhfBHttaxoPbdLHbpuv8B/o6/HDA+dT0vqy1u1f/fJXaYMzDwfBCgfDqkpCQjNTdARlI4eNmle3QTz+ZHSwQ/g7fbcv3LYYBF3Y/j+rIBJAQlw362r8KVIuTVM51UN9ex6xpD6xNzXhrZLXHQEk4thOmIzdu7DXA567W8G6VOo7QCIriBjIsT2RvuTVLwiPPbAB/Ipy2o1dDIhsUSRsVCN77GoMB8AKwTC8RhmGRkwQ0FHxME1D2Uo9bU8KsiQvYyXUl1XChfKXUD2b8UaSMmQkF1RvQPQBdurVK4Vn22MflmJUxyOZ8kY69/hH3z7KT1KOPxTGN/sSCkdSLlA2Yain56EwPXKm5XVzUl8YYx9X31vx7T/zJ+E1JR8mKnhwEPYLA1my1xwmXHU8PzO81YnhdKd3a5YDuNx5Gmp8v8W90HqYJj37Sjz+0MKxdfP5U74XtGVjl2sC5Na9Ve41sLfZbwrIvdPgfLfSGfi7Ynrm8KB7T1WNj4XZQEQCC395swtWPOAOzcbOVZssbx7hRTNe1Bc8eDP8X77/XeHRB+7d7rGtl2UiXpSvhIf69mGj3/K2l3GmJlDZGiYL3ml1yB4OzFKPxt6XK4WDSFIHIYTeonNYFsGbxw/1FYYOjNXN5d0YGHty3bLwl+d+wRS2iuJ6EjBk8jDPt6Aky1hBHLIgzlRpLZ+ZETYaQgRDxpW0BOQoYAgNzx7nETncVhmbAFio6ADz5JaKywjPbGbuSzZYuF7BFKwVvHmINzXmEfGD7HWy1TPwZ189XfRz83TeYymU7giHz+9A/7tf/HCs2D6ubEgcajdfj2cSa48A0yLHX5tQ3GlbX7Pes82QJeWLs5/Z1oE9MlOapVQEtgdWPQbYjTTaIxqc8fT4ugngWzNWpEPB172xbRnGf2aB8FYffCMg99YdDaVjvDXdgowi2BCWQSX8u5+6H4eNalVWbYOOVD37aL8nOkVdxToX4h0cDLFDfTfjAJn7jctn8LTSVheMUa28F72gSNunn8UA1dAz6ww6+TqOCDt9WoXdkvwERz7NMIC7PC/00qMN7jf2ngE9KYX6siJiIkGvu/TXHICF0yiUxiQwp6jTW3nHJNDRB/4k79bOUK9EmrAIHb5f7mY6A39XTP/5S/+ge09lqScJLNF+XZLHn9E2umMLbsm4yhcePIYz7E1UzK3loHEZIo3cgil/6gHTFzx4M7zjlY+RRkY37BdCMIQopwK1IYTt1W0Qs+3xcqfHH7QAauwjt+q9eTyPmlTFcHruPoDle7fOEUp6u4pl6vgzd4jmNBrwXGOAqReOZoJIO/PFOYd5BQ51wF8Z/oiGJvtlJBfU1MnqW30pb01zx3lA8SPDz2zEk3tvqG//zMo5jefH0Z4Znrsf8krGFkJVYk4iizevaer+Xu9z1eWQegRIMMB0FUDLfHEcfOPvuEJRWZgZGRsQV6FImOIVzL0863vtuaAzCQOe64BxYC5vLHvP4ofizWPP7HQL80IH76ngRU5TGQhG4wTQm/ypHcMe2/bSVFI4YMPt0QFySkN052QgGOrf8/L/WQghhGcOD/XT8oxJAcsRSlXfhZ2HChU5Atstk8NGwboJOf7YefieN/zreFoJaBa8grs94z+z25dK8UdBtoXyExmdpd3Ync8yzt0Pa2/HX0KW/fDQ9jNfrzTHHxzcHPs0sLBuiKocf0jHIjm5FYhI4K20AJDxVwhiah7Bu5WnMrg76Qz8XTF9/ObL3XtqK5wlgDnM/YiBPymZuQCGuFbfSUAhC+yWssEZew2YtsCfz9iRgnex+y3I/SGvnaMBOg6NENdkorhHssLNvu6AsasgZq5I3FsQk7Xc8eaZVRCRJaxcCxcECsEOq/cIKGmKAWpd11QAqAW5pc7SujGgWBH+6n++/NH78j+c0EszB2nwD/OsGDMegfZ6wTuA4HqgYggBM4ZCfcl+cRVEAzBVQqSF4iCQtxLhbXeel+xeASnn7+qNAwl8QzyCejTryoYdNhrHRsrUWvzfHltJTm0rt3zuVf4uolhj/kbCRp39Evuu7k3fl2Nw0HI+/UT8o577u4+vc8euzmhQpVV5z6i3IalOG9sj4+U2SbuxkruVEApZfXa9Jw/hRA7Mhvoy3urz9TxqX/BASPNCeGsceyYPVWW8nKgQqyXu98EQPHb+ExW7Yka4yy0X5C8++K7+ohAqjHNT+7wxvqbzaV6yp2Xbg7duzPs+tmUef8/cfDyEEMKPPfB1sD1a99M+tM/DRSiKwkkwhIFUBmnsZRUKAJG9Ls2d7XWfr3dOCQd/bFSAMcn+V5Hjz5XXjUsC2JupXbfyTAHrxmQQJQ9o6pY8c3YernGvtzKzAPylKWCZ+ezx19MZ+LtiUiI6K4F94glExmwCOYpLM3hRS2YJvaBS7gusLLD8OCnvhinEHKox+uuF9bI9EBUlC+XHGWQMzxwewENMhRD6xKohd0N0F4iXpkJAWVB7ywJ7by3PSr2jWO8MCePhIv5+++gT3zAz+Da07aHAiIW11zd6oZsGSbl97Lm/6WWPFENwwwQDkRQrnh2OFr8TBPZWqa/AEEcAY2PvzI2ILf2ERwh58ljBAzfEhyTuT3ydPrN0s9XBNjQGirOHQ89jvKq+SXA1xi7DkxBloNlaN64oMQ9zxWKdi3uMKzpVztvOqJIVRO9Mou8Zs6izZ57vAm33GnRsY9LfvPza9DdWTkvjQLvf/GfGvMeknG3xjy4crVB8PMWagvtKqG+tZH3Lc3+qHMUem+zVHEoHh0792vuNr9txzd6xXeXv3XxdkJkBb675EwLfsAyiVGldjL/yrDzgrwhrhznb2O+OBufxd/zUNzAOpGfGur2iFDVm/lQHRCJ7/WUvOKVzetNLcVonbhxwxl5xbkQlnRJ9BZPop4ReNt8X/ArnqmN6jm9UYTzCA+irUN9+8tvYvtzZefwdTnn7l/UKPP6cHPDcaCsM0OF++Qu835hBx5c7UURYPaEJHiHwRlowSpBh7lY6A39XTJfCJquLVFiH0vbpvaiGV8kiWazjy9I17sboxyZuwQNWX9OFOLW3x65y80wkCw7gMH3yvleQNj399Qd/N74ILRsY8Hz/y7/tNI+LF8BuY+i2FRrulUxP3hU7c6XMswsbtJS8eUguqA+uLwohhPBPw9uFsRkQQ5uGX1tfEJ6778VkDJsQEHN5L37OeU5Yqa9vdDxDmFewdBj3z8wdm1kQhfBH9J6WfWKrL/b4K5PA4zzHgDeGMBT+SIt7oJasauaIRw0zDkDFWhD+6Ni+hykOqS/CpjowpHjmYM8sREFUCosg/nRqH8d2mIS51wWwVrC2eyDQ6dZWsdZDCC2vu8X93QWPAN9vkwRjEwBLIOS5Zo0hfx9CWC78UF+JtyrgW+ulWbJWmIuThT9u75kU7VF//8vry8KH1se3IcYVxJH8znZoebxFqE7b8YhsmMCGdwbWKsqpPXbp8TfjyS0p1kn2I8AffGb5+xYwVQzBCwXPlJBVBGAJINAVpcdZQ88m9nj8vWID/qghjBThydsFyOvrKoAhc5QNgP69rXGgNMr5Ye1mh9tNQqivPSPafiVh7YsC7oP9FnP8HaBzgk4YtIyfDDzz597tDEmnxzKvtNPoI+Py+mkEILcqzh5CsVFps99ldAb+rphQcYeKKqWeFGsAGzaHfVqCZ0xEOq4gVt4WE/lKFKtKmpcJYHGhuc5RYCs6fGybsf/zl343bFPSLxxPAOGTh8fgPV6VMItBffglvzmEEMKv3vNa2G+2IBqhvp4lLIG1V+w1JwhkpTdPdyaFUnD1w9la+tPPf28IgYeL5bHHLdZxPZ9asYenQt1hLq5bup0VV3DBN/zMqYKIQnRe8WXmHKuRaQihH16UQ1ati56SVaZRIJ4hDpBD3xXB42+mCE/my5ZirawbBrBi2DV6nxaq1G/eY9TbULFYM0XnRKwAEKwiDULqt8HjXWDmJHdY0X695EIzU3SYgphnxyzWiDfmv9swmejdegg41DcL/LMAlv3MJT39inK3SjmI2qG3331p5FqVQup37PVT3xuBBPSn5uO8VQLok5cnyQOKmoIq0CfS5S8TfHMAicoQ1nly5xBED5Dgz0xRTvu9HtftCIABBphqoCM2vHqgI02Po4QZsyI8QvvI+1DIKpXKGGCqUEw5sh66kVRvagbW0mIPJA+7l5dxDfmZd+kAFB2LIzHbIL5hot3rJZjmgUh03cjsmOebX9yjlJlb/dAHTBFvzWfh9Xn8xZ/E8qcqnmvW7/MLKMb7MEgtGeqN9kdHpz/1Hc+k5nshD2h+5gQwPXv8dXQG/q6YLgXgrxQQDsSKB82XR3wYJ8H1mop7JC8BU4BSPENsS1Y1PhCglqNxb/rnaewLFmuS+m08sJYbuI01jzYHhGQJw8qllEOLePx5DG7dm08JFfcQWpbePO26nZR6z2qMgRglyXIAB8NK/lWOcLo6K3jG391a2sd4BPdq4Z4hs/stF6loFMS3/yvlJMHQcd2sjhUFsZ1nSV7IKgH+Cs8zDwyxjZ8jnpLbnSPeClRoFhRE6gXlAaak3yJsFFHa06Y3j6PUhxzGxwAJpFgzq69UzY+EvLr5dRRvHgF0tIt7OO1JGF8JxKCQ1yVgA2IGBeyhzXtTv9UkzTbZe3Mf8MeauwAW2y90aB/AYvstPvMO5C5D6Zz9xgAsxThgG149UADvdS1sVOBP6EwpftMK0ry099X37FQQ07nQexsmxRoaEMlZHM+knQUPjshTsgRDOt7qnyk8dHMERLK9xy6mC7L4tDDeGj+RISztdeuiD2Zk79YJeX0tfnG319NdZGx8SQK5UWqfQlf1cvyZz0zx+BPeU1zsisjMgocpcs5YY3XZK/D4w7+drYkStUCGdNYt6znW0L7BWeHr3OMvNrdlGGo4pakvmvmdKdEZ+LtiGnT4MxUdv4NoTTLapnA2Pyk3d0TiwJ/FmKMgy3NBRSULAzmQPVXMoxWa8ZDF4Kf/z+aLiyNTsxGyqhChWQgJS6G+pmLMaaXJ7wUCh7kCiK1Fq0Mr/C1Cjr84d+OZXW775QaZxgKVeh/kZtbLj60P40FzD9tQ4+teh/GNe5/xA1EQ/hJY27rfL+Fnlzeemntec8a8D4JnLhP+kpOOk4rg1Nz2MmBeULTw0YDQTD25XYv1nGKdlaxxpZ5VMVyExNgMdMzvHhi79Eq5aA06QVCs9+715t6y76RYc0MaB5Fw20fvvwe298CQ8jzs854Vex1Oep9Sn/kbDln1vBXnvdDjWLj9jDdP9JxUEoqboUgjhXCA8TKEOe8xJYcW5OvV7LgBkSv1sNviFcT8yUsxE4JR7KoCJDzgkAHsgie3sWxeuC0DTDXZwJcjYKGIyhDWAjn+Wcw8Jf2K50SpP/j5LGmxKoWEsHgMIpGzOMnrDPgjUTbpSAJ7NayFIcze61pOSKtv4SxPxkscegnldRqeLQDs6VZihBNCfWdy/K1g7k8+e2rz6Wef43MWCOcg9QFT7UxiIDfnEaYMM1B1nIJvSqRKm0ZhyOPPon2A6ecznYG/KyaYSLugOn8XtghhgZ1U9ZUU63oc899QgGKhJsqhwpjE1idSdIgQE4TE2AuwvCoeWE1P8N9ecmlb+IvKhuAOTRFOrujsraA4k2tlLfOVGKEmcU6wqi/xunv5Y6cQ3IduKvPC99z8xC/aF4owvvax/uqWX5COuCc5tZMHNBFUEAWlXglnszxDUtgoB2u5cno9FsS6uIdtsWahvlrYqP+epsIOxjy9BM/My4A5NMNcKSGktfAET+a5xisJKiCS5yUQQuuFXuXQcsKUmVKvJRQngKmr1BvzEvIxPXTzNOa3fdHLrQ62vn2lHoXx0QqMLHQzvuOCgtgZEBXjZ5Jh/HvtsW2QW/G+VwrZ8CTwBJCQQqSbe9M/i7l7yfOtd1wAJA6Ut8Yh+NimHCGsWwYdja7TXgdDl0o9CBtt76s72OZOved9/jZjhOOAqeBFTnJK5ogJxFuZzIzPqHKEEMB5OGJABHkZaft0Js2pqe/58FNb+6X76VeRl1HLFzcenk0BrOAbJij79eSAsm8jQicSSmlF123I6Gtd0WSY01AtiBT8sYEc8XMf+UwIIYSPfPJTuK1ISphyT8Izo+8wl1u5l2a6ifRPjCoC0Jx5qw3WctARn4dKtfa7lc7A3xWTEuq70hCdAqF3vHmsx5cEE8UrpXlRK6FmQkFUKuKxsKqsIGJLWHfvRlLRAZTDYZAvvPNVj8Fr2FKPBe7knUEF9hiWZXkSeYIEAWslsgVPKgTHlmu5HywhiCsrSWg21u3r3/KyrVfmgh/3G77j5T/279ot03IuXdEeZS2RgqdQCYRa6QDKmdhf+wI7rUia1g2HXsKhGcgtWPEU6ycafD2e8rBcmvwpCs0Yx6Fg7VAuqHFPbiaAjeQeowCWY9Ax+90rgHnCX5Wsrg0J8wV+lnc2nklcLCZgiBOeRIEOIe1GCimb8HAoAb0uEbuQLy6BlpNKfcb96rnfqGxw4ykcNGJyRDW9/ntivFS8DGi4rfPMQsCpLyqPP8eASAF2Sf4y3tOVP3NWiVnjEelm42J8V4TiHkRu9cLZZsG3nE6EeSs6/ImGZ3OP4tNN1nfOfhMAgRkwpP5OAZqJV7BnhMOzo1RWTH/i0fura17es8wjDEq8lp3FGKz1KlizaA8l7xmjNSj7zeYRlXFpxoAo7Bfqmes+s2LdmvZr8HPfI6PvvTdvhhBCuKB6hkiOYYJGLUx7/Hn8SXFKmTsP0xlLwqRjq26/CYZTDuoNrNtdRmfg74pJ8virLDpWuK43yGYtt7y/UiJ2HwwJLaBQvLjYo4YACkLCXpaA3hNiuMeffyhhLwGNovv9F7/yUXzTVO4LweOPeWAl5ZY/s1mPvyyMt67/ftu1PE4MAMsXwLCCqBSyQVUzq38LXpotoC95PyIPU2HDVYpOs1//0u3f5ndAFOvksad4Z7AcpFAQwor1SHJqW6nnho24j6xExfG3sCTwGc3AY7O5xxyjrBIzzENFhT/BMySuO83f5SlZ2FLPi1Rgbx6vcmUFcndgyJIACVzoBxsHkge8lFx6nLe291WkhI0SIMZbtzqsvTGElXvABZHGz+Ltojn2jWLvP3/JzyTpEDEI5qEq19oJ47OV+n3erVIV6YSFtAVZymfGgRzzLBfyMR2ADFRMi2wXzCOUPKB5hHHvjLKit1VZN90Hc976YK0Evhm81Q15ZQYdhy9vF7d78dg459rpkxWyoWcKO5MUTyRwlh+ECB1mLP+ZV/+uEEII73ngy7pr7djHsIT7b9r5DVm4bXlf1TK9Z6y4B5aB8l73jXC9p6Tv+U+fp/DMk9H30D6zEmAfNyBmT0l/v1EjnJAHFHsFM+DPPpO+5gtfEkII4TWP3QvbqgRThigROpLXHbniyn4W+UAzzZ8qHO9eBWuWB5RHqkS+fgb+WjoDf1dM0h5zvHk8JU3L8Scw9vZlGfKas3sOQbMmMeuAFwq3dVBdqgFUB8hpgb81hI+uj4UQQvinxzfbbUMIF+lZ4dcGM/bTM7MrJwlemkmxtp45Z3Ash8MPPv9vwDFT98x7zKF1zXPvcvMUc0Kekiw0POeoUazlLfCH/5W/zQfiqx5/oLmmrAU7zL2WWIj5U7e/r7gRgUhHOLKSUDyHrFoefzHUF7SPCqKZ700HYuwwYweQSCC3BToKhg3F21AINUljmQoT329sbMmoQtpjwRy/4ylsVLLUj4NIDOQ+LH6Ovxy6iT3+OGCKgWbPyyAkHoGVeiX8ccp7rNyHNF8cP8tNL/QBj+bO46/Cr2aUDYUYkBPHQN+TM0WKemDePD5gmot74JBV9MxYoQgtx19U6vHzxSYRLEdIIBLd6w7IXcnMrXfrRXHfDF/35a/kpbnDE4l6/AngG99vKNIk5ppjBjwGUhNPR0GxhkXCKu8xT9fo5/7xh94Er+UhMI9JILdTQPHS/N3R4MwAiU3enyjuUeW8bYvJ5AHg0Fza9MFaBEJpHskEiJE8sDDIrXqutXM9/XtEhmnmftiKP1JnGo18eI7IndJpidcdhWfHbm1DvcIj0s3GxajTKzzCfmacfMB0PJXX5z+dgb8rpsvjGj645f/625dfZd4TQY7juvBQFbBfF5LjLwgeDq8/vu906+Wzbc/FXx4YYoXJtL30lAAJEpPvh5qEjskcqvw4jtXXmPt/fPvbQgghfGB9id2WUCXQuZWYeyAlJ2LHB8tB8MDywlwsMOQXjq8IIYS0Z02igienE/AXm1sW6+gKzoEca1dFYZJ6t9LQcocKIeZLXv2C6tK/WF7jNkcA1kse8S2HNajWgpb+b1kZWKtYfRmPSbotf0959UdF+BsXHrPHnzW2ryBSzxAvfxexOIPbzAvW5UVQNnhxDye86IivHgRr+dL9UV7kz6w0lli56nLyfO5hao8tGKMEbyBvv5hXlZxGSW4l5yF8ZuT9LfOeuft1n8dfZ6l/MJ+hx5sPgqbzxqRybCbCwtOQKKcHJZyNKRuCMSqfh40MI3jUME+ioVQEDAjycpCaRri2f9yeg7Xj0R7lFkKG112/+3TTiVhObsfoS0FHATC1li17G9ptedEmwTtVAWtZqG+S99u9rhjqCYgk8Y11m918lIwJhkjFPRSZWQCw2vNwKId7T8cBHsFCfdFZrADs7CxOszKajwF/TQfKfgEGoWUD/qiHp0qOt6Kd83bAoca8osnMVIYReAQznLJ35WIBe0YoAMTldX+v3610Bv6umC7XNfzdyy8PIYTwKwBEWtOBtFjRj74lLll9Le8v3Qvq4d/4qaZtwdihJBEBgVkhhhyIjmJdWSza9gWTgKF0wHusTPXPDtQvWH/1dA85ANziHqaXgRCymkJ9b/RdG3+VdCRJ3FPODyqwo/yCAgAViuIeM9Zytl8i8Cd4ONC5OofK/Tf7Nf/ry7fj/uKIQAh6ycP3uW1Li+rFRb3u1WzhXo9/zHo4AEt9yMr6pSP82cqG75FMwz1E4Y/l7zrdh95hH1DAc1eBP25UsYVmwaOGKBuplRsmgxU8Xq0dGzb88Oxi3Yxn7oXSsXQA0roBRSeE4IZlMU1FAbnpOR3Hdry/jjSMj3mh43NBAf7Qe3q4557w1HrykAaRvs5+84nlsywGAd9jL6ia3wHeSjz+Vmevh1ACOa1yWirWDlhL+LoEvrGUIRORA8rvZoCpFyJNw/gquXVm3QRDWPL4I6G+jkcN4xGacjrhYXokSv3WlvP1+GHxxji0wlubc0GILpK874X8gmy/ujn+qLzOeCOu6ptSrUych0res/etLyNXda/gVjmtc2nabZNjiLluZFrt2ODqqXMUOVCuWxs5EGUY5vEHnAwS8HebzE0j6H0m7XWBR5g63vY5Y6iX9MN8N5qPUmCj2+tlfzNGOMnD9O6kM/B3xaRs8FKAshSdQowx2zPBUwmlw+QfxoxBKfm7FO8KLQF9yyTQfcU9aN3Wkun5z+/hD/wwvIYtYSQ8KFnxWALUy605szgjgR1bnL/rna/YrjBAAXhnCFa0k8efLUiEUFSlc8LR7NDa7VBSlI3uUDHu6Zrivf7c4ZQs+vmVFXFQrL6Ain3UViirD2jPOIDBEC1EB7v/X156gAJuq1V2sxRErijFvW57/JWhdIi3xmdmXXSU29LiTI9WZFQhgOkS+50DsIKrbBDhT/AygGDG6WIcxB67CvVlxYvGQ1bzM7ObnnrHZ5KbdoOGPwo5/tLYBDBFBp1tTqzKagg+b7XlCAWQi/utAf6WJXw63LcN4ey3GU/samxyhwsU942rIwrKIdsfM17BIb8OvXK6JBAXVx3HoZcKWJvDjK0UDnEM1JqtW+QRhKj3PZe/VsJbK09uiDSz/aZ7j1kyzJVUiBVkZmvuR+eZKwWjKHNUwtqVMwl4rm2TRIPHifb9plzmeK+//OFTUYZvemsPhHmGsJwyhDwz6vGHZSCvSj01hAnOFX//eMp7+KH18e5a6k2QmXsZxgfYF2YckEKksQzjGgBLUA8YVWhxj5SipuEvFyfg70AKVKgEz8P0yYxwrGPyuxyQe6H8qZ2hRVj+covKVSkcSKjvHoPOGffr6Az8XTFdHrPI9vC9NiiwMoE9lAKYY7G2hDdJ2YiExTQY6pvmjgVPngQeM/bVEZorptkpG6VSP6borCEzKEUNWY7PwWuux5+1boIX1CEeiIYHljtrst/e9ZqTcHAPqxwbwzVaxsxHPTUN2ZW7zWl0uh6t5eBQJd6KyRJHAdP42QJ/hXDleGBZVw8pPJtZfQkY4lAJTLUHYg3Qe1bjOUtYystoeoY4IT4stEkKVcEKolfdlir1lccfem4ErPUUpbV/ZqYADH86sDiHEJTcrQx888M98F6XwotI2KgH9rLQphCE8CTmYersl62D7R72rowb0hZB2VgYGCKmvmDKaQgM+GNCs+LB1cxzo8OyuEWbkDe0Sigv408fX5f+RuDZUShScboBGAfYezZgVOlz1RWyn2tUmeURGMDK5MhPJl/X3zMa1g4BBXweVnwdjk/2W2KNvvcYTc0DgRwWJeMZFrjMHJz3jOoaihFOKNagRA60cu9BUuqJzKx4aW633HMDRy14ADuT1+er+jpncWkIA0UqmI4V+dpPHN/UXxM8sFAlZiUibCUyjGK8DEQOyd5jXphxP75UDRnwt6sM9V2RrqJ4/EnOPEz2A5F0LPRaiEajHn/9Tc3YhR7WrnvFLyeMKummGSeoz286A39XTKXB8a1PPGLewxLuKsSKLYwUPOhca6WEuyRMZiAcjeb4g3MnFp0qp9GYgriuWqhvHpuE8UFQAK9bApGE/F0WeJbHmBBihMM477cm5FQAtKokwKYVj3siMWtSzvHnWxB5nAF6ZnEg45kJIRdZ0ZkB/rKAQMPZ4NyZx59vNc6KDlE23GTBxjMLvgCWU36Me7fy4h4lj/Ct7T053jxGDlLzd4Ix7n3moyGEEL7w9nu7a0pIGA/1dSyvDHQMukGH5cDCik6h1NP9xs8F6l1BFes4OAnLcnL8PRieMToW9jrhEW5+HFoZVwFD9nmPoTQKhyXP3StSoRVJsjrYPppn/tPr64sxuGI9G+qbPbCIp6QAIrXFrg5Lkc/SkWGYYj0VZhxCeO3hI6drwAh3XMm6SXydnYf8Pa3Oww4wLUHuCUOYUm00ea5ZnpIcfGOKcZ47k9eZRw3nT0q+XSby0kJb3u8u2h8umva1a63dmHg6rgcfkFB4KwLY1y2sk8nrisefWdzDAd8q4K8zWMdPBvwJMoxieG2NA4IxKecKxntVGXsqzQtxDAlB975v99vhwncwkAnKEfg99bSM0x1sP8QhEI+I983p9PSZeSkcKpAb6/SeEc5eozO8hei8MldMJxCJgwJM8Ky+90LKSI4/CoYo5Ame1BtnlrFzJgErSQUtf9cCFMTTvJW5n+jjn36++nc1Lei5Fg8Vo7jHEg8WP0QnEMETrtslAWtTzg9CAERSyqTXeTf6UaI3z0xBFiW0HAt/K/i7/JY8j02QPSxkbALEeFRZ4SzANIaEuWHt5D0VgGZzv3nKrWCYoHmFJDAECRLEqKJ4BROvFN/LoNzr42DtW/75n4QtUmiTsNdXy5vHAQ4XIrAfCo8/mD+V5T3zPLmrpNwkxAe9j4nHYMWae1NHo4q139Ikzbav+vTPhBBCeHC51V9UwvjofnOEZurNU/QHlo3xp5HcYygPVQjYm2BlntwSRcNE3/6nj691WmL56yAZP/HYrjd0yGdG+54uIT9Lt2omec+UwiKt7PgP/jdfm/5+8S/9F2DsOA4DsBgxvs7D0VjifsWgI4WECXnPLMOEV3WcVWLOXlCYmFdw5k/8d/PzkLzjAkA/k35iCX7ifl4JNH764JvpZOB4QUUPU7MwyEEJWcVGFVeGKdYThT+yNX/nKx/F81Jkv7jfWKgvirgIeL8tznl2ahdpxoiHHUMk3RQY0lKo75V4/KFnbg69fecbk7p76y9PzXdFTCiA6bhxoFyPvoL1obrTbE/OpGxvPnv8tXQG/q6YTqG+jjDrhPqmFxVdTcUWWNiov9k/dYslK/UsiFhRoUIMqTyZLWHAJZnk3aitvmBwIAiUPOOBYChwDd3uLCelooOYKwn3iG7okznX0nkInxlmzJqXJlg3xQJmhD9Wlx2Bn4Y2peIebB620FzZm+Ezs+4+0Ssfe4CM2XYwodySKoZlz/gsx4CpFCYTFZ2ZnJLUy0AAYmi+OEdZoeGPulLPFEQYGl55aeJnjp7ZxZHwHuU9TXvdMg5w8I1WfyxARzf/FwNMBQWPVi2HSeT9sZXzkHmYIgDrzZ/8EdjdQdjrGTDtr6n5cVjajRCU4h7WxHxQgK2pV63dhxM58QrWjqJDQn0rYMf1QifGKDdHcg8inUJ9tzl5FaxNUjzX7LP8dS9+KP394Md/zm6spHCgIWHkPFTD2telY81VtVEHqDaLLUgFWaL8heeOQ33jfrPe0wt37DwMA0wd3koABQU8Y+ehFjZat5cAdiY/KaAlMaqsDl9P+818x30di4b6OkAOLe5x8H/3yx69b/u8H49NCKYDKEN9Hc+1+f2Gp+kZnOOczGJXQrqS/K40fPkqgT8vtzSVW+dOzeRc4er01kMTjEksBURWTu25lTzzAhsQMY/Qoh7OVNMZ+LtiuixfbBi2IIa5gJcFhV6GUAqePpN48pnn8UXX4syUeiacYuulK7gKyunpNoe5Gkm1f+vFPw0hhPBbLn4Szjz137T/lQe/qJtj34h5V/gAVkrKPeHxF0jBg5STiB4qtveX4h15JGEL1ZxcIAaD3DxE2pYklLkz6+Xv/4Yv7OfYjY0tzh6lxP2mVl4O7Qlg1tiCosPCRr0E9sJ7qoXUMwVxQskqLdbQC4oIEo4AVuUrIVV9saUfP2slV13ab0QIwmFAWGAvnxkybOR1Y+uOANPSm2cmlI78bsHLAOWLO42tn6cdSWk3fIDeL/RgkOQFxXiE72Xw+uMvhxA4//UNYXMiqFTVF86JGCaq95YDzdbLMuLd2uf4y6G+aN2UImFMQUy5ggkA8PGX/0tgbGawVgB29swcHpH4ugGGVJ7cINpDALC4Bzyeux+ejc+UkRykU8byZAjDa06CFtLQtjePwluB3Kq8Z8TJQNFzkMH61Of22ydCpA8Hf78oxT2UkNUurD29Zz5ZGLW7VwM7D0uAfQKsTftNMUzYV09jI/krPjODhJzcqKrv4XCFwJ9jTOLgmyKDEAAMRlWRsQfSAdg5b7kHfAVyt56WlXHA06vHdYW7mc7A3xXTceUZFkIoDxVwPb0ASGAnHn/JO0NgUjRfHGIS2OqrlJpPArulGB+40HwshL++aanocAbX/u7juoYvPfwCnnRLTfuPPJBBIKxkxRBEQ4iRinscq3ubHmh75qWZvXkU62XDmJVQ3zJExwQtN4u1kwvK3m+CFS/fDe+B4ZNk7Efuv2nc17Ynh5JD2TgAunYs1llZMC4JYC+r/ugJYDzU94oURDg0BrkrMMRLAr8zXwkt7gHGfu9b/gCYUx6bKWlpHxOvYK+SoFfVFw3PPLDycxQALJaPySlSQZPnK55r5nlqzLGZHex34Dxk4BtSMJNST4GUubB2LbfPiR74xM/3c1M9kSat8lnZMPpOY9htseeoVnSAPjOH1x8rHkH2OpRhmFFlwDhg8IhfPTwRQgjhqRe+025MQuqVnLdL90cmt1o7A7AkL00GePp7UPEwdT24yFnMjXDYA941ijA5QvKaY8YFf+4oV3AVxrdDqdcAU7JujjHK9BBNxR7892yquEf17jdzF2Q3rbCbAnI3sp/g8beSEGmpsFu61Ld3q/qyok3Omm8dnz5aPeezEeqbwqtZY3/uFu05i5VQ35W+p878iLG85hnA4Gz8VXRA297NdAb+rphqfsgVY9sKV9wGmqfy2waQIlVgFOjG858Cc2KCpxDaJHhX+FV9MYMKoa6I2nSw3Vyv+w98zWvhfFPT8mEYc3/P8VXb2EhZYGDIBr4pnms0ybL3u401T9YsBfhrrI/CQVjn5jGuq4oO8/ijoGUcux78Bq1q2I5tDC0lnmVKvTO0mAfUD7lgoSb+e2rtt+yl6QDsZseRR5BbaNhDngUbm1cC9EEkpiAiZaP2bsXPHC37s/e+MIQQwo/d/Kp+ZEWpZ3n2HO8MKfl9wKG+SnVaGCJd7RespMFzhebQUsIf4714bHyWw26HvHloWDt0EmBKfSESex5/tLiHL0fYz2UzTDi5W6eLeyT+ZBkmmnu6oQlv3ell4IbUOzxCLu5BPLmVvW7lh/7E4bFtDFQ1E8swkpKleAU7ABbzNjyNPvHMpfPwRCziwssvaO91BXzDhjA1DQIHawVAgQBYLBcykiPqnNyeN9C4ES6EQL2CU3VbyJ9IMT4lsinmGqaeSD4Y0hnbU3QQA2LstuV3WlEUu+1pDOcstvqVPLAISO7wiJTj2DRe+uuGDP0zxT1+6fgy+wI0wm1ToAZr4SxmhifHeGkGFwlRC1yTcgw6pSEM5GWU2tP9cgb+WjoDf1dMRyHHn6/Ub58wrOrEgEyPmEVIPBtvJf9+/S/+FbsRAWKya65/GNshhNqB6CXud/MBNGPHnBiMqrPYVE63a1MhOj6AlfOeEUXHUertdTsdahf0ULPnzgs01GOHYB9K0VsF577AykKu6uvn+Gt3+8/e/+WkTdOUgBHNjc1Nm+CpgIxtU5VHQAAMv2eeB1YIhcdfW43v1ME2hLPfyNi8+BAD37jAn8I9HM8O11OSGRcgBlTsdWvdujFq+se/cKrq++QzRu5VCnBsYyqekk7IhS00n747BCHU19zr3tiax5/nucbBXkWxxkAODatFlHJBkVsErxQMxLDfXXi3eryVAKaSsmHck7wzECBBBXafeGj5NsQEf6o9nJFBx/duhcaBch8ZPCIBW65BZ05BZFV9XeNAes+MfgUQiYbLet7UUgoGAuQwWjh/CqGIuKDGyxnDhLBuwHhZ9gnBM+IFJe0X8p658noI4WKxeWudk5sbJo4MwBL4OjeEgaZHzCMWobhHAqFI6govsin2VI+dzzMvnyWa2am58p72c09F5VwvcoO/SGle2H51QCSq5/hyADJsRODvYsDj73uf+xN0jsaFZp4lKQAW+V2ixx+tKKx4G9L3zD8Pu3NhIA8oT+1zBv5aOgN/V0yX5QviCDFuERBAC8uPI3kZ1PcOEUvwHLKCSDrYhjYOVPdAxB4OpQeW53U3FXrpePwFUfijYIgA/JkW55QLCgzNvKAufOAPFpMRlGHK2EMpNHvh2Vg5nfEwvb3cgyedCL+nSv6JrCD6oE03suMVvEvZEHLUpBAdE3DihznzurOLhTTzyxM1LjqCiBrq63lIUMEVKVnlXj+1/5mLtxk32mN/+JPPhBBA8SLP6628xnKtQOCOeIaMVGKm3mOgZeXwNw5ISIq1kr/L2uuxTwSesechhLXTXHXRKALacjnCB7nzIydyxE6PP6+a36zHHy12Fbz9huWIZWdV37RuMBSu9HDAc8cFWQhAv43NjCqZrzOg2QFriUeNY/JGzfOXjveXV7QJ64e+cqp4QXGPP65Y27x1QKmfUKyVdeN8nfDWwHlEfR62YXzFM3PCs+0No4OWFo/w5c6T8c1cNyV3K5O5HUCiNoTZ67YEsmVY2KiU+oLwiMRa50EkJdR3Jpdm9C638zJGg7MPYLV8/XBxz9ZWN/79RngUDQKGFjySJQCL8fUJo68QoUPf06SberzRWHch1JcuiWQcuDvpDPxdMZ0AIuc1OZLDOISiPXJpxoDCEkM3FW+szdtrhOJ7ykBHSUEkis5M4v6KZ3hWFcF7pmtaDYYt9W4idfNQEnL8kdw8eQwkgLGwg9PYF4py2q5b8Vt/Y33EbuxWp136+5o7QgBzV0J9gZeCVNyD5r4QDqUEOrpD9S0jgGU0/pE//PV5TvBnEA9TQWhmOf7UfEy2IOCD3MwrxROaFwaYlv05ob6mN4+jGFtJuf/mze8Kf/T5/2X4l2/9n+3xqv59pZ6HXBAwxAmzoYmx4zNbiMefwNcR+Ba9VlEhm6RszISECYmxcx4q/KKisZ87YG/xIaF5JkRH8nAgijXxjnVz/FV99vdEvoVDfeeNcCEU/IO2HwcUSmXDS8RuKlleMvOCR9g5/vjYK1s3Kc1L3OsWX4/y13h49pI+GRjCDBMeb8VKfQiZdyDAdJEUa5+3MhkG5j0TIlW4Qcff63hskpNb8YgRInR8vtwDpodlCZer2t4Cmn2wNhC+rhbYYMZLakxKxnJsTMJVx7HMXBoA8S8nZ8pAmheWigAbkxgI5Idn072Y1g3xJ9aDDwKhuS8XUUfSPP6gLhTwe0ppJDWPNaa43xhv1HJp2jPbBrdbVjng7b3O2jPDRDKczqz55zmdgb9rpQl0P5SHkt0ryrkWQqFsCNaJX3zpt7r39GNjAUypsHcgSr1fAYh4/AmCBPP4e+aex8msW48/Zo1yBE8S6qt5pUxYEFN+nL7t7Qj8ETf2JMS0YxdtPri+yB7bXTfuhs5y1S1CVd90b5dcWjgMUkiYs9ehF1W8d8LjjzyzFz50M8/e0W2t92wRvAxybh4MvmGBHb9nhyJsFBILe3AALOrdqhT3IIJrfnc9JSvnK7lcboT/7PIbwq+sL+3m2E0vYINQzt2KKQtnhD95QA4FgYgQlUJ9MX9CYx8v415H5yEPt9UqdirKBn7miD/91GPfDHuN60aNKqzyt6MoMQ+HGvgbNyB6Y9+6ncPRb1/293jeY3k994mg3DPEbnMk+eJKgALv9cgbx0HuEgi1vJ9TInYUtcA8JaUUDmTukSZCfUPybvXPVTv/qeMZsn1iHrF9ToQgurk0A/eAz82QDOVHLShgCJOZpzywFN5IZCDPpFHu9W7uSwEiuUa4OUBCSyuE2m88gqVTYmAty6vt8cay3xb4KwttwfaYVsHoy2Q/P7c0MV4OVLmfCanPobpsbLbXbR3tYvP483L8/cjl20MIIfyp29+Hh/A832bTASiGCcf73gTYB8KzTb7ugJZlPv6uvVD5O3dL3jNF17vL6Az8XQOl1wha6okHVnXfhJIllC2PdOvGw+49eE6W0OyDIZk/jXulLM99OoQQwn3huf5aKAQJL3TAGPufvfHfCiGE8NTFC+yWR3wYr8GvOBUIWHsQnhkXPB0gh3hg/fC/+Pip/2WFXlD5UKnH/sgLvqS4x6a60Ep/V84F5RWKmBMk0IEoefyRa5UbuiM80oS7iFLIKvduxQAWBpoPAwoi9wzh+80EuQcETxZKh4jmRhQALCZAeWGjddjCAU4X8YgDEcCCM3bVnoY/jod7VGAItKdj0NET/qg3Tih2isPXbS/0ffvNC5P5h7/4yRBCCD9+fFPfb/nuOF7o9Dx0wFoEhlwm3soBU1Old7zvbz2f+fWzty3gj4O1Ofm9fdmjXOkUi7B4yZn3ff4OeSsu6ZOASIAqTxl2r8djSJiwYkBkoKOXwoECWIQy0GxfDYHwVs/jz/XsJWdK8gbyAYk2AX3Z3gWKZ5V6YsTTw/isjv2XLxkmGNAsePN0heEWP0qGe2nqnpLsmWOPP+LgoBic2XvqeJjC4oRF2yWQNKBMcHUBT+08xDKQ/45TyZoYhPQcpJg/8aIotvy1pBx/XKeO416uhBe6eYoJwM4M9Qmgx4YwbAnzjQOMFsLfPP5UYdytx5/gXFEACsbEzsAfojPwdw30HRf/JIQQwrs+9J+a149EyWLfR6I5/oSw0XTrhNDNEmMrBTboYewIjy9439+G15bCgggBrKQsGElr73kohBDCr9/zhNm2sl4y64KTq2624hQv7sEZHKvG97VveXn+x9EoKhBCIfDX7Z++7xXhjz//A9X8WqoVHWKxdsLZbAHKD1NOAn97mCuHAQtbqKaDAA08959/yW8NIYTwnof7Cq4hlKGXxn4Ji295paG+jsV5XYucksQ7AyppxIJ44QtgqdWOfG+mpb68zdtvE0JQCs9eF/NWFMqaug8YyJHyWa5YqXeT51PQMfeHwRC8172587xA5TMff2aacSDeO64gxvdkNg9oupd6KyIFUY0ccECBCdDRkx3iMzteeuFRc8ifUjEdGkWIolMqG9CAyAwbA8YBK8dfBLC8sRn4JqUMMWUY/p4pxWS491icBDZYEzfNrQu+XxB/YmeSEkqXDa+Yt2LdFAPNWsVObPTN4Y8Tz0xIgyB5/EE5IH/fFrs6LIvLn5hSr3lwYR6RQG7H29AO9Y06FgP+oo5G5HXHGGTJC5XHnwNym+ehAL4dyLq5zhVr/JjjEczw6u83xQN+fK9f3Dh5/Hmhvg/fh1NnfXw9Odl4uVu53OmD3OyZob2+JhnGGto3JuX31OygvgeMHUJ/HipVfaljiBTtcXfSGfi7YlrCEl65/Aa/h+WhCr4ckixNJPE+tpwWhzF70RARQKJSBrxcUCQPlSI0902XbEGEHhJEaD5wodcr7hGvesIfqxLGPP4uEhAznzPEemaPP/xAcZ8N/KEkyeu6hl9ZX7LNHVlOy+8xYIpDdLD7vpTjb7UPpQ/d/ALYJs+NHbSKUo+BmF9/+K0hhBBuHR7oroXAwx9LkNsL3TS9Ug5c2VjX/J6aHqZePiaaO0wPHeDeY5y/IQUxeUFNWRD5ukUecQw28JdGcDz+GIjEOPTC1k22+hotK09Jx6hC8wuCddsJYLF0ALlLpuhgb2wXAItgrWHlV/KAJkOYmYA+Agq8rWtAdEOkCVjrKir2L1Pzf9lewT4lnm+uG6fkGUJSEZzmyD3gbbA27iHPKAIA+viHF/5I+LrkAT/B17mSpRh0sPeY944zQ1jdnvN1WimeAqaxPXlmXvVt8z3zFetsLDf6dpT6LPtZHcczxR+bhsui89AodpX7zf/HWTfIXnc8z0534GfWj9EQyYsdeTX3+Js/DwNLRVC8Z6j56z/634UQQnj7U/9wfOzTxe1W9p6i9n5OSZqPLt/cX3P5E5afDoJzRXpmzTOPbT3gL02vGf8/vP2dxXd87kzulKpI70nzQkBHpSCLXcSQ75cqL3bLI4R0Je08zbEVJ4+7jM7A3xXTn/4d73Dv8RUdTizHnxc2yvCrG4oLIM3fpSg67DB2woseeqUzuc0aBb1SImMnSprj+n+6eUJJo7nqHIG9FOpIjhlYbZQBCuUeQsBfUk7rsS8uDgm8RgfqcdXWzVcwDcurUCiiGLz613/3yHf7LZi1u/oOPfO1vzVd1PYbqnqZgeZxT8mDo2wc1zU9T1Z5cgaIif1dLJjLMcXaKzqwrt66LdV9PTEQyVE2Ck8iKyTM4+tf+prHqjlWQweHR4TyPSVK2kRuxIqvT4RIB1fgx6Dj6XsRrDXP05g/FTQNhRcUTaNgr9vbnni4mkFFlcWav6f2mcQVcx0wtYfOIDfz3vfPQ2v8nMLB4RE7Pf7MdYtDQMMEqf64LMnTBs+dyDCe8dLJ8RffU+wZwjy5Ha+5wNfNDc9O56ExsgCw5zPJnhlrn4otAItK3m+eYs2e2TWBIZLHHxtaeWZI/hI8YujYpL3rucacDPIzg3udyK1Z9xGAZrM6bZyPJzMKOYYXAACRx0lEQVRjQz3PL4idM9Rnxop8BQL8vezpnw0hhHBzvdWPPeDdakd7xOaeQce4JnhpLkTed0EkFjkgAFgr4K037rkZQhCAPzK+x5+Uash87G3PTBR2S+8Z04vZ2OQ9WB3Qsi7u0XoF6973Nm/dPs64X0dn4O+K6Ste+7h/kxPalIl7QVmKSqxAhIGY3Gc7/n33CEUIqILo5zRKOWZMCyIH/j7zyOv41JyxmfC3OMmpqwTE1FLvVTG0mKsTslqsh1UJMHE4qBdjb8NwUbinA+DvAOb+Xe98ohjSt+jYob4cRGJJkmPuDa2KYd3+9nKTtIktMaAgFfcIWPhzXeAJj6g8/lygmc0d8YgCDLnA7ylUlNhhLIQ/skI2fj7L0/c4CTwXwLKHKCl44PDWo+1nWXhn2O0fu+805qsff7C/KBT3YF4pnmId00dYIdLluwONKlSx5oBEWjcgZPp5Ypjgqni14P3mzf3ei015neYRcWwLKOYKoidH5OT56JnZHg7bhKp7+r4dvp6KVKCxSboSgRCA9doXPRjedfjFEEIIr/rIPzDbsrDPUwjidt9ECKKXe4x5QZ16dt5TWijCV25jGJ9dJCwO7Sj1LIxPOItp3jOPR6C9HuUIT4aiRjz8uxkY4hcdwPslvvazifv9UF8SMTHkzcPkdST7lXJrq9QLob5HIjPHImEM5E7gWx+CmfYRkteFHH881Bc7GXieljTSpNgv6L73v+A3hRBC+OUHvsi4KoBvRO71ig/lbgloSQ0ToJDgqYOtvcefrGfmeyQjz7fDpmf4DgYEVPQ8/ti8pHWLc+vXzXtmK4n2iGsxW63dkzsr4K81DpTe9+g97cYpyffkvlvpDPzdAdKr+tob9sCAHMczpK6yOmNtx5bXi6q4BwJy1nKazUUHUNgY1wcOr7AvJwbHwRBL6D24QgzP8Xd0lTT8zCK4Ag/jyirSCzHZlRs1x/vtQ08+n/5+9rm+aEo1fgNgPXLfPYLHX7kPxhVElsw8PseLcCSKdfyjAf6UEu/EBb4UZD0FkSUEx54hJxDWLO4RstDsWdtNj5gDf8+O65o88szQckdg56FNOhhClTTvPXM8/jwAjCrWnjdOWAol3NrzjmHC5E8DAJYB1qbfAy3OUbHGHg4h4LmzkDBXsYZh/tv1qNx6FYWZRw0RmqPBxSxk4ymnETD1PCX3ePy54Y8eYOopG4RHoGdWVPK1uFsEcTFf53P3KHlTN4Bp+c83fOi/omOjwklenj3mvZ9WQwBMmYcpVNKIcrsKob45VzDxgoLnGQnjE7zHWF5GPwE99+ROZxI81/FZ7hepKHjrROEkqngqIFIcZSZf7zEawohBRwEUKEDP+dNprHqvH4rUPJ7Hn03+XufRRZGvo6GJvJ6KezAQiQB/8RYHMLUBrAhCYY+/n3jq0RBCCD/83Fv6i0n8GTeW5ysC0EyAGK0SMzuLx9ftsPhjI4+/mOPvBtEz6nlaxOfOwDMvyiUErtvyefFntggG58Des8RifENYO8oSCu/7iXXTwtrvTjoDf3eAjk6FMo+icmoWenBDffNLcJgYfxWscNudqIftZsNb0VEQmZJVjohz88TD3BjbEZo9S/1lPNScPHnWul14+SfWMjzImHu6z1GMQZ6W21t+qvUShfpixh73MMzx5wDNnsBPBc/KwxQ9c3vuLF9kcVM9x7Lfoj/fe4x5UXEhxvbACuHh5ZnTfbf7cI7u5smxQwCCREpm7gA5bugAP8wt0MzzVvQqpmcvKO5huhLA01u3NWQAolT0PX7PBLDkZSlY6pk3NS54gD2wKpAbWl79vY7mHs+zS0+pd/j6rBcUy3vmKtZUN/X3Oks/kYEY0H9STsFlx+MvtTff8RgijQCsY/G3dS5wHpFyj017/OGzPNJzF4bnrDP2yZs63uYBEpg/YY+/8llgg5AbNsqMvsLRdjAVa8/4uX1OeJGf5oUB9vx7PJDb3uzJg8sxRjEQCD6zwuOPeWn6IdKT4Bv1zI1jI4CdAaaKx5/gKel5OoZejjgsxbqhAkAUDPH5BgNDPP60El1jcXSs09jRcw3nYfcAiSPxKD6EFRomPnPrZMz/5LPWukY5AI/NCtnk8xC1ZrxRMA5QT3Btv5lXB8Lauxx/VVQU9jzLefYwYOpFqvBQX1+GsY2Xcb85shsximgeolbPzl5n+mFxFntpXmbX7W6lM/B3ByjnK+GKjgeGxLDe6lq0ICLmWL4EU2V9sXdF7fFnj5+qhU6FDnjAn2YdsMKq8iGHBHYOYKXk7hM513KRCidMONiHsV9sAQPNF8uSFO4jAP4OCWjux44WGVjVt1o3Akg41ZBtQcIH/jIgUX/7Q9/+VnB/2dRuexo7f+lVVzPz5LnPjFjhir8/8iN/2WyflQXm8YeeWeHdShRr1H4hz0wBkVIr5pEMQccoCMzxCBYykT2S7SnlcLSDraTFObgeWJbFWgGwiIIY75nwlFRA7gPZb56ycDzmdTOvi14tM7nqQijOJMJb0TN77P6LbY7YS3ObpNk+g7UWk4l/eN4VfN0w4ErAkOTV4ntp2tuNe67FkC4LuPt3nv89Zpu6vb1uy7KEX19PHi8//QU/YLb1cvy56QCIYpxAVAeA2ibbXT+KMozNW+Pz9j3+zHQlLghFlCwhlC5dmwGRSCXm8ns/561xzQkhPK4hHBbyzD2vYinPnqLUEwALOqFH3oqfmRZmTPg6NIQVckTnmZvfM7d6tgm++XudG1XqMbq2BKw9CJ61zJPbK4rCqtMm0HFZcUTYNi+r4JQWNoqfeX5m4yC3UnzoQJ8Zf0/zOWmtm18IEEWq3Ljhp0Ni9JrHHygAes5b7aPUf2Y5KssyGu/QNbwol7Jfanj1PeDb9qX3/UwqKC+d0t1MZ+DvDtCx8AyxKKHcUGAnnmsLZ3BVFZ0Zjz/hQNzupP2Y4FtwmIyYCwrnFcKHSnIFF0J9LUEkVwtFAFb83lq3mOPPExxDOBhgb3EjaI4Z8+EQwuWWAP/y8vnu+oniodKP/fu/4QtDCCHcewM8k6q4B7aWu5YwEnJxmiICkeKBWo/9hS992B6vmptvvQyBKbfY4rw4QjMLbarGfvZJs3muXGkJfzw3Yp1w16r+GA9js3nBI7il3vOoobnHQMtAlPrye8wj4rsy7pGcBSgwtXwjuIEJMZw/hVBa6ie8DGJoOQXPAvQYpApi2v+Ot6Hj8YfaSx5/RHA9kPc0g5Z2+1c+dl81Tt3UN4QlBdEKz3afGfFwOPV6ug5/OlaUvPBsqKzH69tvh+84Ccv6H49vDCGE8OH1cdg/2m/ruoYfOb49hBDC5cHO47oSoLkG/rhyaxcf4mBK1Sf1HhvPFZx5I97rFwzASnud5z2zDRPxCtsXWI7w3jOvWntsj/elD2ChnsvzkFVinsnxJxX3iLdOefyxdfNBR6bUe6HhtXGgCfU9FLk0nQJAlgyTi8IR7pdSZ4yfh8w4EMNt+djE40/MVWfLnUXaDbBuqdI8feYMMMWgpW+YIP1K3q143RLI7eg5dr7d/I57c+88/gaBvze+7OFwUei3r37hA5mvOyH9PNqDeZhGGWYmXQmZkOIpGW+dKMiCUs+EcAX5dtMtZ+CvpTPwdw30n9z+Znrdy82TCOxXZhVJSW+FUN+vev2L+PhmB1jJkrx5IoOywoPioQYFCa4gXibrJ6/qa1YbTYzaXvTLEvhrfvu6FkqE87utsKoawDJ+e9HnDQP480vF43U7LEu4HT3+bvPiHtZ+e+Dee7Z+7LGPl5zprs66MU/JupiMk/x1HOPOoKMpSJRgCPIMifcya7tNUYExhZhqitw4YCqn0VoO1qz0+LMruzkKIlFOS4UTh276niF+fkHPMwRZy7d3hYQ441ycpw/kuRYBdrxu2wcJkWbbOOc9s8Bax1qe9hvz7Ag2fwocfEvKhmNUQaG+2auFK4gcDMEUFaULI3+q6on0gofuNZou5Y1me5qHygWaI3/ihrAj3G+Yt6ZcUp4HVQjhYy/7zcYNIoBl7NXI83goHQOwPK87DCiUIYiwKAoxCHlVDCNfvwTx2Z63YZ7EjFGkMPpOGOFWxp+UogEEMPUKRumhvhNGleSl6YO1PF+co5ya8hffL6fe2V6PfzjeYxPpRk5jk3X3jFHifoPGAWr0VbwVifeY98xIVNZB8B7LY4+nj4jPw/RIvnB0hZDXxAT+Bjz+WG7qGdByFXhEjsoyzuJ0zwxgmsEz/NNtufPGjWxAQlFR2wRCCCF83ZteEt77v//WdgbVPX1TLPOO5E+dyQOaZL/JiIm0X02+zsdOeo5xHi6heAcga8XP/Ozxh+kM/F0D/ejxbSGEEH78+CbzOnPlLr9H25WVio8HjeLN87JH7+uu/73LLw0hhPD3L99lt0+HTb91ylBfmBg7T9S46DAZB/g7OgI/z7nGcxodqzwkdfvjumalFeaAIMqGk6uusjhfWAciBzNYzrUQSo8/u7gHEzy9sNGcSB3sdSdfHA1fVHL8pTWZYXXKoUKUNKKcuoJADGsHeajaMYwetputw9zxCr50PByc3GP5WVqHef4O5tlLQgwGuTH4houiKO1p+GNzT9e3U6Ti9vaercizNobUU4u1EiZjvWsOb2W5oBaBr7P3zBPAvBQOnrKSlHrsXcHXLXqGEBBpYt1qAJa/p3ZxD65Yq3KElzLETPnhFfco+nz64df11yNfh7k08bpl4I94AxDFOioRMBUBC6UTQhCz/HWdz2w8tMkvPlQAMXSvI75MjGtOqpRTewaGxNaIR3Dgb4+XZgicR5RhjVaOZbXQFlfqGWCKAazgPDO6blLeM8yfshzgGxCtdU/FPaD8FAttMUMY8W5NntzjhjCWRiGCb1Kor1mtnZ+H1HOt1LGArpH55hwYws/D7dOL0DHnLpzFUQaiuaX5e8YM9ScwCTW35YhY3COEEC4/8cugdSG3hiXcKDz4n3rgNb53K3tmLlDMeYRftMmX1znIzYA1xwM+gdxGv0ueE67WzgBT3yv4bqUz8HcNFBn2BRKaj1gQCKF4/ZBXCmOOjjWqSjFjPP4fOX5xCCGE58I93bWth62xYY2qDiUHyDGFZmOSFUXwDFl9o7KBrDJYEDg4+Q5Lht2OXwJ/bsVPGgoXTOZcgo4zHn9HYvV93YsfzB5/IMlyVhBx+CMGmrEgUH3vJaB3vMcw4MoEfofIoVLuF+wZ4gv8UPijOdcETyLi8RfBY+TNU3v8kZDXGU+iQiDyPf6Ma16uFDHHHy7uEZUNloCee6WUAFYJ4vnGAcXDwSfTS9Pz+Es8goQmhYA9uKKXgBGy6iX+X0WwFnrWUq8W55ldHpO3sr1uW2unyqr5jgf/PY2VIa3zx8svmPeLA4a4hjC813HV8bwPXvbo/cbYh+6+poPTB/HG0XKP9df8Qg/xPbUBqKNznjIZKE/I8SSCb7JjxCO81fdILj3XGBjijE0MExSsTeFo40Zfz+Mvz5Er1mZ6G29sp9iVm1uaeG+yKpzlCKebx3nEMRlVrHNc8cDCMozr3bqt2+W6VKGPxQy2uXv5nbHhlO03nvPWeWYUrD3NB+l3IRRyhBnqywGsDDTjsU/t7XV7wQMn+e6dr3ncuMqNtqdRsczs7nXKG30gJsvMDGD3wFqj3yISzssp2fLWUuf65N/4N8HMy8FOY/0rt34o/B+f/97wS6/4Dn/dkp5kdeeDtYHo1R5YWxal68ZW6gAwY7kXocMqWIdc+XuqWnsibpC/G+kM/F0DRQUGHUqXabNzRQdRdr/vvb88F/jSemm9p1E5feJh29U6CfJOjr/LS6BsMCDGseLF6l9IYPeKVGTQ0QJyuMffZcF4jk3uoNuXqws6Mo8YL2T19vZ7jusSLgzFOilPSMlK3mP9M33Jw/dlj7/nbU+kHOprFZPxQCTHUh+FIOiBhQHTRfH4o4KIR1zRye7pyKMGe64la7sHxLhQDxckLKttfs9AXiBR0cFTIs+sKhTBAQmzKIoDCjCQOwRfCGLgm+uR7OT4u+2G+vqKteTxRz0cuCeSl+MPhhetWPDMe5178yDgLylpMI1CVLKsUF2ubJQg9wXxpvafuWOY2JV7bNwrJYR9+Zhcr+Ciz3e88gX92I4ndwb+JkN9I29t9tvXv+klLvCXQW4HfHO9xxhAz73H/CIV6EwhoIAX/ujkqgvOutFQXwFEygZEHFKPgWYMFIdQRns45yELqZdy1WHwDbanZ4rP1+OIdugl/9153ea8v3Ira+7c8y3uYVTs6v/X3pfH2VFV+X+r6i29JN2dkM6+QAJhEwKyREAYlUhgGEcUN0QHHXFhUIdxZ1RgXAa34eeoLM6oA44DCioyguKwBWQVwr4HCFnIntDpJJ3ufu/V/f1RdW/V63fOPa8bEqBzvp+P0nlV9ape1a17z/me7znHPjNe8ecJ+kbCWozcnE+MN6kcQODJLnINFJsgTKnAacP1DUWTij9uPexoSc45rr2x/ERz481D5Ahzoy84kJ27CeUaVctcVP7zQV9H1gaGPTxgFKZ1pPXWNcyVJ2cGsnftPrMPLqqdBBNEufE2/PmpudqI/PFy6Qv3LcS5mwgOeH16e33MoZ7mQ0GQXw+lwKvHblXBXwOU+NsBqDnijzMkpKivhd/Joow3KRqVNyipF/UNcyYBAMbQdbFzE1TjsXlSiuv6lBnsI1AZ2Eg9Z/zZguIc8ecMdp/iT3YQV856R922uZPGOqeeq5vmSBZSgeVX/NVc1JaOnNYCS77Rv9vY+8EazWkKIkdaeggFa1RFHInUpKMj1kYkieacQedzYsEsSgKyenHE90EmkTICawSKP7HhgT03uyU9D3HfbKoKS4bkiT++uQdHYLlFmrhvdXVAJQn+SMoBCGSIUyKxCiyrpvaRtf77JpYi4BTJpt5wrD+3rPjzdad9KQRW/jlwTpqvuYekCrbztdzVl9zsVVdk6UXyWCcLiksF7A3vWIfDIP5otaFguApNwiTCFJ61OBDXYpPfmT03TxTz66FdE/xqHnot/9zCvSGlZ0uEqT1KtGFG4GyI3WkD4Zm9TIo/39zKE558c498h1hpPfSmrLJqQ/9YN0P2azw3ryTylXUA6ucIP2Hqv+90MxghKAJ/QEdS1HgDE1al6VuHPQGdrMEGF0DM7FYfxHIAZE3J4dw3H1nLTq7JZk+gvrkapD4FPTPWwQd965t7DD9YLpFnxhg2qAIAsVB31p/q20RwwCMyyN4zLqginxvgsz24mpKF3PgJ2bU0mxXtf6d1JUr4N+89MfvFUgCQ2tJEWnvgbD9P8HIEKdLNNJXziyvsvRwBUYxm5nXfetqMUnLXhBJ/OwCZ4coNdn/EWVqU3Ete4BVYUuolwJACaT2DgJngsuOJY3PfV2MmV2vMk2qewG/8SSooS2DVqsNv7iFF8ewzq5gItag+tem0I3cXm3tY44YqWhvmFzni+LgqEH+WdOQIBV8aH4Ba4O/qG3qMvyDyE3+x0HkyUytyi1LyvSFD1jrVHZtu2/iXxUqTNLf5RfVY+tS+xS4XjeJJR96AkiKAUpOK7Hsk449azKXO3/lOzLzDwNsw/BzRjAHmK54vqjM8RAwA0QALPOSZTNZKij9BmetJTQoFAgvw1zQKpPvmUXIDWd00qRYnrXCQ1Ib+gE42hkfQTEYgQ+LcnEl37BScW0/tsPrP6PP71kOpi3Tm6HCBMP949ZYiiCTFX55EIu6bSCLZ+Y1S/NnAaTNOff25W4oR9uhOOrZLZTfYAKJT7wtOmi/9UbhvMTs/NUfQ06nlfrI2/53+GlrcWE//S85Pdrx4FDUvqeaaf6w7klsicjzzejNp7fQckRzPEcV+MoRXhLl9XoqS27MeBgJBnoAfb9K5s4Z4nL2eBuqFtdxHco+0wYbc6dQTcBbmxuTcvlp1gt3oU8DnxgCfIu0hHYX5xZg8gcWTKSx5NkT1Vn9kE4o/d9/4IJxkd5KB+rrn6Pc1ho6XvM8V+uqcZicDANz8ub/CvV9egBnj2+DmJ6lWndfm9ZzSqVv595RVzXnWs+ZqkPqCUcL8BF7xF+bq7fINFOU5wqeU3FWhxN8OgFX8RayDyDvGANBpepM/uOKthjcEpK6++UuibE/XPIJVpVh1ReO1Rzl5tmHItwLS76XSqlx3NcbREQisOP1cVvxRpKWg5qnxE1SpEGJCR6v32n2R0yB/L4jFPFP8hYiIh2YVfxzxZ5V8hjEyLXFomK6+PjWPU/wxasPsfvgdHd7ZSI9nyIxMDTT8Gn831l4PAGgJuGYL7kyN50ZuUeJqcXqIP0mA2Kzib9m4I7lvSM/DG4/cHBFLTr2QOuAjYvIEh1iPiawF5X9PpUY2meJPiH76FMkciUQ4p3mDpWasspYbbx7VnCuSzDsbPmVILDl5HnVFcrwQjPLWeZEUWFbxR89P0jPzpfq6d6+pVF+KwGqu0zy1lkeCkhvIyAZaleKPthsPCZRuSE8tPDNfGp/klDPnF5s2ueYejcfGTTmI/LwudrD2PLPkmtLdWBW65z0VU8ubWw/Z9EfnWFNBFf99yxNYIykC73tm1lkuoOZp7OYhyQVVr68WFJAja9k5wv4mPhjF11zzB8vF5h6+3x0I9jpyZVQ8akM29dKnQndOvQde5Zo/y8V40viAjKDh6+367M5mCFPe/oJgwzhlridDpynFn9d+oo/1qoLrym5IgTDP8SwRwwdV6q6JHeqe+a0JIsb5tsRanHGWw1ck15eYGV6wPP/esn5O8s11Zy8XInSPTdKtm63X61PPN9fBegRdpH2qOSnDpm6bR3XH2uvJ5xTJHQS5uaMm2Ouk3Tn0+hQWSvztAOw/rQsA76TFQo2ZbrMJADDxicvI7XahpWS9drJmnfp8Gh/Fskep4m8ERE4UhqiaNIrHkFAFGzGJqOYhdoKTVCl+468mpqzyUTz+mWW/e96MzsZrE1J9s3QP6tzZczQEaVmrZqlwlOIvdgaYQNZyhKm9b2JtROL49Dmyij9X54Uz/vwLi1We0gosuWGCLy3rQ4X/AwC8K7qNPNa3oCWLUjrWmaYofoNfImI8UV8AD8WzAQCDYWNh/eR43pBw6gx2rOYVfz7yTSL+/IYrRwr4lGvO0RFVdwLRLARVKIWppAyx44CKOAOZ4o9TU3s7MArNPYwx7r6Rnb8lFbmr8ceRb36C3t+0SZrXBcWfBWuw86m+oSNr5fWQWk+l+qk+8i0KA9SM/75nTlbjepiRIZJTLwVV/KQjqYIK/eshr4Zz35D8R2zuwatxmqnxRypMm0zP5sdbc07aSOoUZ/O6oPgT1GO+JhU88Zcb6976XYJzSp07p4Lijs66IXuUa1I9S0kBz81PvsCrlM4m1PiT0215tWIzhfubKY/DK/48WTLDqblGEsX+4EDsqVWXfnv6RQJBTwbC7H+bIUyHr5TM6qhTzyxTt3Lw1531j3V4n1l2PVIDRS74WbfPEMQmO6uvKYqkbvXZfv77Zscbn7LKdv5uOtV3+CIDC87PAfLzBxGMavij4eTp5hH4CsjPEb6AzgjumwtMeNZ798ypC5PsdZ4LyYclpEwT0kdrgjDdVaHE3w7AUXt1AwDGlhj1hKCCsuh6YRH5uXvJiQKortkC96LlPifrlVgCjJ0c3Ykazx1k6jFOdWcVf0HUWEQwkIwYyTlNj2dTfZspoMqmhGUG+/Rxbey5+QYbHtIxjJyDGBPpttZgrzFFku09DzmVpiMk/Km+ZiSpvq7G38icUwjEnXHnppz6IFfUW1C4Cgo7+lje2YjCINcN2a+U9HVZlZRrUgdrtoaWc06JOcKR3P6xXuMYLCF6maUOUGM9H3nliD9rNBPBAclJYwo0u81CFDArQD985Rql+Ms76HuEa5Ov3rKKPB6e+yYpQ0xsELnutL7C2P73lFdKCuoxn8JUUvOk7w+r5mlSiUTW7xLqCuWbUFH3zTm3wvxG3bcon6rCEBJ2rIdUt3ZpvDWpHuMVyZ6AkA0gCqmXMTNH2GvnHUT+Pb3oA4em1+dzEJtQmI6g7hmQERX8WOefeaa68xPNIyZrfXOE1Fgkr/jzpvpKKiieKI4Qe1J9fYo/icDyP7OsNiJ3bp5oFlPqpZq38NuO3vTsJmq3ukCYJ5WOJR19za6Go+YhlbWC4s8RWNyaYucI7vy+90xusOFq3o6gXpy3dmuU87EEdSsZsJZUUF4FVu4zIaBDlo9wCnjyUBgD1+Wesh2dGnsE194cyW0Vf9R7JijgwZ+7zu7kbD9fanmKwjBSfYd8mJxbLMNAiwzSg9lTZrWpKZWmPVwI1I/4mdk/eHWrWLefOXd27QJpOYI0410ZSvztAGR19rjF2G/ESLALWkR2PspFVYgBLzX3sIo/Xg3kWYyDPBlCk0gFTyQsq48zMuMvFokYP/nmO3fsKUYO5J1Tv4qKMhwLUYBq2qG5Wm28b9WaJwKIHBHKGmD+VN9YIGuzaBKlMBVq/KXPrBUD9PYmo1GUIVAI5VRfb704AYFnvBXCwDV0oZ5ZcjzvnEpRPCnVt+nF3ONssCRSOt5q7PwkETH+OSK7RPp4Z1yR0fLmlEiisyF0pyWjvhJZ64vU59B+x7fpDd4i8PZ304jr6lAR76lIkPvHW0aGcPctdXSoFB2nBpKKwEsKLGm8NT6zSFrPpBp/9r6z9VPt3Np4zwth6O4b1+XeKf4IlaZYe8yX5oLcOBQaJ9FlFKSat5Kax78ehp5r72grp9/QhFNPpoRJQbjmaizHwpria1IhOafsmyw5Kz6FaSSdO3eaEQQHWIVS7vuiwIhKJG+tOu6ZszXF7FH+a/fVvJXKAdTXvB1BKp2HPHNkLXvP86pgX3da6T31BZNkNY+PdOSuvSYo4O1Z2YwJjyo4yPs5DNzcRZVREIIivtTwqK5pk3+8eWv8sXOrfz20WVUiieRLSxd8LAAIohEQWE1kezSj0qRrwPvP7RUZ5K6HL+HA2xEWXsWfXRdIxZ8UHPCo5ppQrvnWpMym8wfxyG9voiEL3LlHQBx6fKwAufdUOH4kTXR2ZSjxtwPgSCRBAi+lLbDfzxQhBYZMmB5jIjmeMkRS0lJIG+W6pMqKv1ThUCDaBgeCEWQNBFbN01yNP2pidylhnPGWfmeVrUPlrwWV1UqhSKTQEaa1ymDD9qzrJXPPbVdfLsXZpUxQ8vkmFH+u4C5x/tRhLaBGGp+tPc+S32khpzbZ8UaRtUEu1VdSvnkvw3tuTiVQdWOdqdnmMcCyNJvhR5yBzCgcU6bfhcCjEnCqYNGA8qsrRCeNTDMehuKPKgdgDX5JZcAWz3c7ktt9tVKiJhVYEvFXnXQAs4UnLfP1uyhnpa68AdH0yRpwfOTUX+PPKWqY8epTmIr14lyqrz/NmLvvTnFCKeBdPSYmMJFPfyTINymdzdc4KQyza68yzkambvWk8TEwTSr+xPtGrQuh/75509GQC+iwzT14pz5swtlwihrK0bEEiaAilxpFyPUsqY3CvC7VPRMJds/cKpC1TSv+2Gdm9yOuPU9KMe+KL3NAIpFiD4GVXJpfteeuydPBmlf85caRR/HH1tnzNbtqJt3WE7DOXnFuvHlS6ZpR83iemaiGFhqyyLVbfSSSPwiXXBe/JhnhmXuVkvl1hi0xkxJYL4Gs5W2/dLwxfo6vVrAUWMiPYZrAqr9G4gvS/fhgt886CjyBMGle9nWIbSbgnM0R/LrbXNro8AlTM2S/+kNldau3HIB033yBiSYabeUWBuLUzY03WvGX+1xMa+fvuRJ/jVDibwcgFFIusrSfkRF/9nsjanLML0rEJBNsXln3TUPhZOxCF0NuUar5yJC45mTktntw3aWnTsbM/ifJ746FVF/rbHD1BTOnniI8k8+mYD393amqqwaaPLN1ktj6XZ7IRKL4Sz6vEeqxLM2YU+NY0pFp7uFpyJI/XkxZpe57npwhfvvYtfeQ35l9uT966dIWiLEeNZPq6yPfBGTptvSxdqzXKhxhatM9GsdbubIZALBf/4P0yQXyzS6Ik8ZQtTLhNf7sGJTqgHLOqVh7DB5HB1kKMZfiU/CRIUJQJbsmST1Gn9tbXNq9P4wRU/MTf0/EMwEAAzPfRF+ZV/GXJ/6oc/sVf2EgPDMPEQPknVuBMKXUFcJ4s82HWMWfS+PjCAVfqm/Re+5a3X2jnFsbEBLqYRLnLoQhINw3p3Cg0tql90wIIErPzN43Ks04y1rgFPCCMS3M6/7MgWbS+KzClHLq/cFLp+QWGtnIhdipOcKuxX5HR0z15eYYd25K3ep/ZnU1/nylDERVMEXW+usUJ9flUWc0qUTig+VNzk++8hNNKf6I+U1UaXoc6ybsEl/NW4k8y565L/joe5f5+yYF6iU7ImtkM3wiRurWDuTKKIygxp+rxUmVcMjbvEJNSaphVCCsxRDvm2Aze9Zip0gWyNpkVyLV1847rJ/jWZOk2tDIq1v5ZyZ1xiU7xOa/j6th6qlnabGufS67LVsX2C2ec/NzRDY1jpSgl8QVlqD3KSV95+YVf2LjIy9RnJVKYUuG+ErUuPWMufBdGEr87QA4x3oEtVKagesWSpAhdeQMcf6wN0f8UZNMWnsvZI1mj/QfWXog2dU3RwYWCMXffssvBwB01F4kv1vqYmgnjxqTOuCLivgk3ACcGq7KOsapao5bEF29EUrxlyP+CMWfbbrBOiq22DBHeFpDXOiGzBrsHtKyjnwmzl+LWsjvtBA7xHqae4RhbpFn07LS/45E8ifUi4s9ZG36Bel1Nt63fZ75iffUsS/iDKCtXEz3kxRYHnKfS70UVHNidzavUw+RrHV1QAkyJHZOPZc2Kjn1zSmRSMWfkJYVeyLOALACE9MdOYI+/a/HOQ0YSiAf7KDIkIyIkVSa0n3zrwtkfUGhHICcstqcMoRKhbNjPWJTfdNgkgkYp95fx8opQ6gapLn5qcqsST6n3jluI6571qyD6Emlk1TBbLqspB7j3zP7u33NPezcGlEElg0OSKm+UnBAUN35G9lICge/ck1U/BEIhfqCeVKMbg7iJzwDD/mWD5RwgVdnt5KqYInA8gfLJbLWX37Cn+1h10ObYkl8e7KfkI5Gp/r6n1myzdqtfDkAsZ6l73ezZ4ZASPiDItIzM0JAJ7tvvIK9mfvm64YsBcKkZnzseuhRrokZE2iu7AavSObvm2QG52vRhsTOrnu24OeQ1ILQdRzw+xquWcNIlGv5pijCekjdt6e7jgEALB8zj7lyv2/s1kP2t3vYqWHURhxJ06bMPqAI02aCA3Z+4ucISU3N3xW/UtKd29vIRpm/oVDibwdA7hDrd+rF77fRJLLZQu4zYnJ+al1f9g+KGCz4FX9SSphNG60QZIipZaRWQCj+lk9ZSJ/TwpNWlf+cqxniM9jjzt1zX0RMFOm184o/GwkT0m1JJyufNtp4vKT4M5YgYQkF65zS1+6IP+Z417iDuG/FUo7AjRuf+Yvdh5Hf6RA0Z0iQpGOQpfpy1+6r8ff85OP91yaMt5ptJlNrJGuBXPSSMEQ2jTvQe+qap6MdIEd94YgYao6wjjWXEuYfb5khIjjGjHLNnpWrtRLZ+c1TDkAmkSSil1GPecZbpgxhvtEpkrNz5y9j0NgURHq8ZIYnfWXJ/xtSbRXXNangHUTWyRLWJJdSz9Vsc6lNlFMvqMhrtqYR/Z7Z8crNEb6uvvmmAxRcIxuBPOMDE3xQpRCGIpHjiL8CQVqGfmfBOWmiN8e9p3zdWUkVbPGSO3ZSAZ0gqxfHwZFIlDLEjn9WAe8PvEoqg4D4K/tISmsX1K2iQsLuRgUH/HVAXe0wE9CKP7EOKK8KznfhZN9T8GuSqD4T0kYhOIiOLGDsr/Qk9Knd/OQfL2JpHTKdTSbfshRpSlEjqNB9wQFJlYs86Ui9Z3asDz+NL7km6ZnxNlAzHTtDT3md5lNeiXPnFH9ceRyn+BtJ6qWrU8yR3FJQxaNIFojiOB8cIJt7+O0An3qsOSU3b0eIKk2PmrquxIwUsCbesw3tcwCADyYhR76RjUmanNc9c4SP+POuh1I9ce96mNmdLLx1QL2nzpXHEbiQEYkMhHu+C0OJvx0AqeOUb6FtBq7m2ghSfV+ojM3+UWxt2J7V/2KMN1fMnHDKkS0MFUq5liMDKad+c9frAADPl2g5ddZBkSP+knOLTSoooznveBGTu1P8Mc6pvSaueyN8ihhkaaNVwpCIneFJGwJ2HLBGiId0BDIVlXTfqNTyYv45EuSbdQKWRnvQ3x02Z8RQzkIUZqm+XPH87ESN9+6FyW8BADzRchB9akEF5dLaq0ytFXtq4tqf3/19AIBB0Km6saBcc0aQEC2nGgBlnb8559RfvytLf/Sni0gKLnJBzpUDiIpU7bEmU30lwlToTksSpkJx6uw76ftWScdLZYBudOMMUl+XVS7VN0e6U2nx2RjkDCg/yW2bD/FpfLzC1Cn+RhhMyhqy+NP4yNqtBSHVVxzrL0HxF+QUf0KNP2pdyIhmQXUnpdKJae2+Gn8vbY7gbR3rZFHzU24cUCR3bLIGZyNR/IndRv0KCbix7lFKsoo/gUSSVHeemkZSwDnfQZHkikM/EZOlZVGKvyi3m1Q8n3cwpTqgfLaHn9AIrM3s6XQq1iDl6DnhmWWEKR0IS66vGTKEanbVHMFOnbtvMJ17mlFgkWpoux4y9VObJGv5zt88gWUVps3URqRK1BiBPPOp0PN2sLQe+lPq/eOFL+1j56fhNzHMUn2ZU+eeBfWaZnbnCN7xYY11jypYILDI66qrLS0IQ8h53ZZwkIk/OiXfnttPctPK3CaUkj7iT5gb2VT75OTuW3ikY52cm6O6fRqOTNdYbm7lA2Tp5XnHm0yY7qpQ4m8HwE5anKNjBOdU/H5X449yNvJGc+MLbYm7VWY8/d3OUeLUOAmhZ8iaRJl6rFqliL/ss4hQOFjjUaynJDhpbNcmn5on7/wQ57cLfI1pkOG+U1Su0c/cOtYxUS/Ops5wBpSLQHJNJjydlAE51Tcbb43nL5fLuS8ifrtVODCEgjXEa8KCSCuwMuKPSy9yThrlrAgkt0SGWPVnTbhvlLMRF5L7tjGayJzakzKR+5xz0kLffXNdVhkyRFI42HRboc4LT76l/6Weee45Fovlhs3NN1vgFMl+hWjoUY81Xf+UI/5SxV9v33Zyuz+NL3tmlOGbL61AGc2BI2Ik59RPcnNzTOSCUcS64K5dUPwx53ZqRWmsE+uhddJYhajQOEkiud38xDQAciRSjb7vVvFHkrWCg2gdGG5NMo5MGX6KtKT48xVST78g+S83r8c8EVPnLBP3vWYy4i8kGwA116BMrI0opUiTRI79i7tv/rEuOWnGo66IBCV3niima6H7n5lX8dcEGZKpUhqv3UgktzC3ioSpN6hiayOOTKUpq3msDeIhHT3KWjvWyblZUq55FH+rNvcDALqDzWI9SzqVTlK3CsEBIT3bN96yDrG8U++vjShJkaz9RL1nISomLfPCNcTz1E+1YJ+51HVcUOZ6yzE1Wes32ZVK9fUTYL4a8M3UZfSt5VmXeimwwQdtAZ58yxR/vLqV9+/gb14kjTd4SPKX2IQHwnuWBZxHpkh21+VR/MlzxAh8hWQDe+7s5yjxNxRK/O0AhJFkSEg1ZvzwKbDqnD5ich5TTI6tGnpBkpzbKFWWxKziz9aqIwisVPE3aCIyUi/dN5+6IjmwyVp1ZLQ836SCOD793ZyTZRcLw6QZ2wmKTrHJHAHKkHCplxxRLBF/zaaNCvctIhzEYiHMat+QDV1SwpRTSjrFnz8KR431fKovl96ddYj1KN9Y4k9Q/AX+Gn82U42MhAV+MsQRmYKDyJMhyfFUEx0x/bHqd3RiqXi+xzHOfy9VpDkfHCh4rp2vT+gnTC3Bzl87bzTb8gQR6GNjwmDP21pWLbz42bX0uT11hey5i0GNVCLZ8cKl8ckFxf1zRNXVMOW6tafjjVKPBX4SKVunmPlNqBfnbe4hEX8u4sydu7lgFFdGodmuvmS9XoEMgav9yijg7X/Z9GzeyXIdYgVCgO1g7UhLaW7lAxPJbo3H12KDgkuR5lN9A6EepXjfOIWpSxul1K12rNPH1qr+oIqbG4VnRl17FPnPHefUFWSNPyFt1Kv4y1+P2OmUIP6kcgBNqlvZumeeciWBUyRzqeHJsbURkrWZY9y4JXRqHh6+RjYQgiK+RjZRJSv7UxvsJ4934gUyoOMPisSiKtgGRaSgCk/keNWKHqJZUmkan9owzEpD1Jhsj0zxxz8zDhLJbUuJsOoxn/0lkG/5AJU31VciYshrt2OdJ7kDz1iXUjdjnyo4T/xxZV58482uKU0p/qhOzna8MQf7amkKAbzk3J6gitBUJRtHVIp0GkzylQOwWVme+oLcD6+JpXmaU6GTdRXteNNU3wYo8bcDYFUPBc65tCoDRjUnIVMJUBNUnvhrHPDTu5JzVphadZFQDD10xB+n+EuOp2r8Wae+ioKLTtd9tzC5NlvMnFf8JfejSNVTivyGq02j5Qgse985g92nXANyij+qq6918LhUX5tuS9TYa+bcWacuf6SeWoyLYZh1tyWIv8ARpgzRHPpVmvBEsqIwSIrye45vSRWqYbGtcaNAcovNPRzRLKmgqPGWKmsl+T1H9goGv3ViKAVWICgc4lqSilrllESOMPXX0OLTstLzEI51JRcwKJYpxZ/f2ZCUa+43SXUZKQVWei+5uVFKbRpM3/GWiL72Izf9FgCw75rfEefOAi3UeHPqL4SMmsfOT371F1dGwc17zBwTee4bhDXFpT8KY52tueYpCJ4192DGuvETMaLiL/bPrb7OlSaOXR07X509fqxbNbVfyc05aU6V4q3xxwUm7FrMXFqTTQdoJXee+Gs8Ps6VAyC7IVuieaQkkpCm7OZ1kuyVVJpSUMWmKfsVyRTRHAq2X564Ixt+SunZnrk1DLLmF1KNP1+9OG5NkeZ1yUH0BlXcWuyfn9hAvZjq6yGRhqVco84vjDePzXxId/Z7qwzxlyngeVUw39yDV38l1yTN65Zg9yklfWmj6Xgj1WN2XveXcKCeWZSryc0F261tFRGBCYnAcjW5xRp/w8+4yIUkmUNzij9iknBrtJBmTKasuvFCHgpASPVtsp6lj3QEeMI0I+iJ90wY68nV+a7dQlKuvbRyAGTjJHGO8NjrTTVFtMFy3/F+Ze1IVcG+Bj7NdEzfVaF3ZgfAOvWcyiCQ1GPS9zeTHgSQRnec1t6jlEDJ5/6On5FJrt1QEUBkhmutQtR7q2Z18kjir2CNP0GVwqjmsuYegnKNSgkrCIq/mv+ZSam+3q6XyCklfYo/jnRMSYGALTTsT/W1Rjeb/ugxYgpR4GqXVQmVZ1bTyJ/qy3en5RfTMMil+hKKP2MMykjGe0v7mMYvF7rbBoLCNOvqy6mg+Gh5QUipjyWVppCW5WqHEe+5VVxwZIh9T7lGNrF10pixHro6oPQc4WtMUq1k9e8oxV+mqBm+9B/IfhP/rvCEhCP+GMUf36AmgXUWZo+n1dIW7YMb2XMDQEyVUXDK2pBWNFtHibnGrJOzX/HHzW+W1MsTlNnJhS7SzvjjlNx+QsJ9LzHepLXYETFsd1qhto/xzxHOuSVULfnxElHraXovQ8Mpue21c2PdH9DxKRSk98wIJHfW5d6v5pEMdiqgk1/fI2KOsLaJlOrLl1qxhASnurPqMb6WptTVVyofwQaT7G8izl1XioN4V/L1Bek0Zf+aEnrm1qCu0Zb/vtGqlJdWRqHprr7kvO6fn5CbW2nw5H5yUR6nXmiQkXy7tR0pNbVENPPnbsnV0K0QawqQVwV7iGY2qMKnXqYX5T3ekSTkuzKMenG+pgMMjGeOCHPEH5/qa+1WSv3lV3JnzT04VbC9byMg2KXxkvucbLDhsjX8qmDqBtsh2ExaO33tQ89RjxpbkxX1418sfcGXA2gu1deTpiwQ9P6GLPIcQZVjMu5w/1pOP7Oo7vuZL0j28XT15VXB/jkiy1oYgb3vCFN+vO2qUOJvB8B26ONS6VyH2IB2jLcG7QCAdTNOaNxojItk0alwmQqKInKyJhW0Ux8Kqhar+GOd+oBfEK3ir4IIEemcCjVDfDU/gMxBFBV/lMogX+OPIEyrCSHBqSuc4o8zeg1vQAEZoRhTTVFq/pofltwJGDVORphyir/U2eAUg57U8mIUYiBtUFEb7GvY7oxm9r750/gil7LaSChEYc7ZIMjegUoNbUHy3FraGom/QFSu+UkkSfFXTAmiAlGrrlAQ1K2WyGSe+UH99wIAutfdQW7PFH+N901q7mHf3SrbRMdeO2P0ujmCGet22SGemSWPayYglblS6qXUkKXq6hMy1+4jmp2Sm1P8Naor8o9vxoTO5DNGbbgpGAcAeGjSOxq2BbnxTxL0tUzxR15blIzBiOko7K2nhNz8xKS1O6KZbCziTy2X6jLatEQ+1ZcnFKxKOQoMaTgbwfCUurQ6ZRYXVAlsqm/j8fnaoGSdPWtHcPVLbeYAM7e6OZcb69Y5pert5prJ+M7NN7sS0pR9BHvuOVJkSr60Apla7lJ9/WoebqzHgpMWeVR3WSodp6b2q/elert23qOeeV35FIr4c/MTw3sIz8wXHEga2di1fPg1b41QdiPLpBhZSpjv3Pbd4zJ0bOMwfo6wgQl/WjydNmrnRp5QiDzXDoEM8ao02zrd35TdCeQVf3xKvrQWi2oeNjjAk5YueOlx6p0ylxQ52LE+fNVcGGbzHtfYzdnMvo7CXEq+kP6YBU79ae0UESOpx/L+C1UOIFP8+e8bee1N1IuLPISpq5HJdvX12BG562FFBr7ARhOKP0e4EuSbUwWz5SN8dmsTNf7AHy92/vaIDOx48Xb19dYBDTxnzq9JfnUrhPtGz43CeNmFocTfDkAoKEMCly5LG+zXtZ0EAOgvdjVuzE24BYrAqou8EsZf6nRyzkJkVQaMIWKd+oAgM4BM+UA194hznXFDSvEnRl4lFZSffMvk93S0vGbTRsk05fSZsTX+/BGh0NXAognTmketaMTmHsmz4MiMLNWXc055ZyOOjVOuFQjjrxAG2I7k/LWBRuLPpbWzqb5+stYa4wFB/OWdDao5yPa+be7v1tZ24tz+lDBpvFnHmiL+kjpUybUXi43XXij6lUhhLUm9qUYt9LWlGLv5afJzO/dQihiJDEH67nKKP6us4owgp1Ci1F/IlRkgiT9bDoBWBVujju8Q6zck3G9iU3T4Wil2DBZYxR/vqABwSiTOqb+3OgcA8MuV4xvPnZs3DEEcig1ZCsk4igzdUTibI/wkN1fPMvKooKzTKD0zKdWXd3R40rG+diulHuNT4ZJrai4Fke0075xb4tw5giSkUsJCq/hjzm0JdpastWmjAllLpY0KDYCklFWpFIGvNk9YR/wRa1LO2abmN0gkklMkc4EJ/xxh7RMqEOZqjwlpfNx6GHvWFCAL6Iwk1TevwKLLAbg9yXNbVRql3g9yKig+48LOrYQKSqgb62saUPe5WMqAGK9C5++45h/r1jnm6gxnzT0IpLZbgVUkx1laO9kowl6TECwnrj2adaT7m8rWAPxp7YGk+HNzHrMWu7Huz9Dxd+wE+8yLnmvP0vnJQ71KoqjOx5JSfanggKD+soF+QfHHE6aWtBx+mnEt9yyp8Wbffamxm69JRTOKP+rcUvmI2CmamfXQCmIYGiqrA0ocL9X6RbYu0CpP/7m9tRGdipxH6OZWXh0rEabUmuTq5HkbsniCeG6+ZuYnJ2oRVMHs+T1kbRPXvqtCib8dAKvAKiAmX7ZAUPzZhYrsVJqb9EpMwwN7xiphiNimGxzpmF07R/wl1x4RRAyQGa5U+mOtktX4o2ANab6mkSViGJVB2JzhWaRSfXOLeY10NlLClLlvmRFEnzvyEFhAPtJPEaZ81BbI1HBcSljgidom38un8VXi2I2FkCCwojBALa3tU6Winy4dzX/fuChcIf1NYaGRaM53zaQ66/Zt35p9T7mR+INQ+F+qexZ7yNrBwYqr31UsEYq/or/GX5AqTGshTbBfVn0rAOC6vn3J7ZZkCUnFX95BJNStUlq7fU+5FEIbHGBIbkv8mWojCVXJlQMgv1uoT+jS1Lju2ZLizxESfDkAuVEE45ymRE7AqO7se0b99iDImugYgnyr2sCEoPgrxjTxJ3ZDdjVIiWs3BsUgJUNIR8evMDWCAktq7mHfU0q5VvcZNa87AosxqwUVuiXluKCKC0wQa3GewCIVDum8zjUdCDwGOyCntWfpaHxaO2cH2DVlpIo/b7f2OpKbn5+SfSlCQijEbudrqQ4oR5gaS/x5Gh6wJJLfObX2BaestXMuFUCsK2FC3XeXQhh4C/+znZg9CixATkF0tYIpJZKkqBHOLTfY8KT6Cs09agIRY+9bTQpGkfUFk3MXmWBSft4oEGM9blLdSquYQmwzadCWS/V1tiNVMsRP/GXqL/q+VVL/J6gxa5IvPVsg/kyuDihth/jHiy9zIJ/qyyvgU+LPQ9Zytl9WDoBLf7Rzq9RcbQRqw7r5llf8cbXM/V1W5bTRwEP8SdduXLMrjjD1iwx89cStr8DPL3DzJlnKQJqffArTJgjTTGHqu2/cuXlxRtZHoIn6giRZa1N9mVNL3dqH7DcUWTDJl86vxN9QKPG3A1As+FUGNqrJNvewTgBBKOQJjqjYeHy5GKKUOmHVbZsajxdSVq2jVECNXFCt4o8iYoDMeaOUIVbNwzXIcKkDnNEc24gKZzT7u9va76VTfbProuT7rtMp88yc48cSWHyzBSBzBGjFn9/wtIRcyJIZfufUOEeHIIprcc6pJ1LLgyDrbkt29ZWaewiKP/gJUzveKkTEerAvIf4qiMg6e6FU1Nsa7AJhShN/mTFbIppUFIVamkZIl+3BWAB8Nz5736g5Ip9CS9134wITHPFnU8uZlC47DiN6jnDEH2Hw14Q5wt5zvvaY/Zxz6tP7wbwrBaSkJaUwdWQI09XXW1waYvdtO28ff8D0xnMHeaUkRfz5671ZxV+BIf5eCsmdnzeo+c0IBDuE+c3VAWXJt1SRTAXCcp/FZPkJP2GaGa7ctXtUAsg/Myqgk6vxR82truwGU8JBaO7h3l/BQaQ7f/vHuiOaBbJW6v5Ip2fn6lkSc0T+OdL1mPwqTUnx58hMoe4ZRXJn3UaZ313zr4d2LeaDlzagQwQmhFTfTBXMBSb887pUB1Sq8Zc1u6LGeroecud2aaN+ZQiXSpcFdCjyzR/QcfeNIxTsfWOemXM8qRp/6TpTDGh7Ox+8pwIb9tyhWMKBWQ9hA/X08f4GZc2m+tKoBOkayxF/vvRsqZZ5XTmAxvEWu3ndr+Qm56cwQNXY9dCfOUAFJtwzG6Edkb1nUq06Qq2YftZZ3UB/d/7dJcZrRjr6beaQGutNpI26xpWe2ohsJ2YhEOaOkkqGkCp0/1jfOlDNNZwinrlQ1zFwSu4RKPaQy7ggn1lzij8q8GpVc75nltVYptKzm1Np8rWC/epWb8aFCz7Sh+7KUOJvB6CQV0YRDqaNwMeM4s9GF6h0j3y3XIrAKuXqCwwOUI61vytvXd1A4mW1TkhUZFIQQ2tIENde8RMKkUv1ZV7y9DtDLh0tVUeFlJMVG7cYkw5irl4cpR4zqWHE1TZ0neHYtCpbq45L9bUGP9Xcw07MXI0/S/z5nQWK/AJyiw1xfDV3L6hadUC2qJH1TqyTxTmItjEJR8TY8cbcN2vAUQrT7duT1OMB0Ndt7wc33pwqRarxR9y3wbomFY0kkk3/ZRU1rnYY/bunTugCABw4iSZEnUqTeOZ5BeIgQRza58il+oaC4s+NQ6aepY30x4TirybMEZlTLxkCnHOaGnCMwW7vG0X8Zam+w492AzmHlzn3uJbk/d6to7EDdRhkTXRiYn4brFjlGmP0poGaghlZjb/Y1fhrPD6f7kTOb6FA/Bne8ASQGbNSd1qS+Muuh5rXXad5brxJNf6ExklVz1iPc/eNipbbeZ29bzX/3JqNdaHmGuVspOcuoUo6DC4QJqig2AL0HjVPFIUYTB3rGhHQsaRYxUS0AsxlDnCEhP+ZSSmIWbMrnmhm6xQLamrbOInrOh54x3r+WVAkkv09jGLPEhIsUSw1HbDzExfE85FIzTVk4Z16f8prVn+LUrfaGn/0dWcphFzJD1vCgXtmdl2gFMk524QKTOTtL6J2WC30Z3vIxJ9QwsGrzPWP9UxNzQRFUuIvIOZGILfGk11W82OYGOu5dYoKflrfi7OZRTvCkyUDZNdOKbDi1OaNGJvXCOp7ST3mxjoxN85YezMAYObgs+SxdYo/X704Zi3O5laCdHTvXjPqMb7eHCcMke+bnzj0q4L9ZYGWb+zLkW/Ee+rGi5CVRa0L7nfz8DX8hJAi7cu4sHUivV3H7ZpE1rwVVJrC/JSlSHNj3dowPNHMKh13YSjxtwNQzC80xMKS1fiT1GMEEVPNJp4i2bEzwDIzCQBQIZ16v5JISo2yxFZUYhRYoVV/8fW7OKPX1fhjJqiomii4qqUOcruLvBKqlsFajAlBLwCgUKRq1YVe4s8ScoZzEIUOjAVP6iWQM2jJOns2ckobUFHRpoRxzRas4k+qK0Q4xoOZAUV2WQVy9b+I2mNuvDGko71vjNFcdIQpp/jja/wN9ifEX4Uh2O1442qP2feU62DtFkrCYM8r/qgGG4VyKwCgaGjHGoLib1xH8g5wRI5NW4qI9OxyS0YsDQ5sb9huXGBCUPwx9y3ypGcDGRlSG2x8T6uuozCzNLluo36VAVurzqmC/eMtIMarJZ+5IvCxUMwcTikppfERasMwSy+qeu4bS8SktSLZVF+B5DaeMgrVnNNYopSSQo0/SUkkFc8PPEZvfj2jggOxW5P877hE/HFzayVtfGSopk2WrDUBGYySFH+Bu2+C4k+q8Uecuy5YQSrB/Yo/qXukS88m5rdiFDglUrXSaMM48oxTiApNm5xdwyr+/OUAfKm+UcnWbOOcen/NW2NJJJaQ4Btt5VWAlOquYptUMAFEVxtRaBLGzq2wJT/8QRUqmBW4BmWcstbOb/R9c8Q9ox7zkUhO+c+sKZnt5ydMWYWoVfMQ5y7m7OgaQYDlFX/UM7fjJWLWM2/tMORqS3PNPXzPTCiDAGGsO+KvRmct+FJ9JXVrvmYhZbfWHPHHEaZ2PeSCKjbYzd03m+rb+Mwd6cgqkv3PzFc31u6RHN547snr/swckyDfgJEKqojNPTxBFStU4dRjxpgsRZqcmyXlmhD8tP8VaiOSGWX2ejjfNAwwJUgy7KpUirRQGzHw2ECBQJ4BmTKfCvRnKk1mLY75+ckFPtkz54QTnlqaLPHnFH/+2q28utWS3LxS0nftuyqU+NsByCv+KDLF1nhiiT9PEfh8HbUiEckCMsOVchCt8sAwjk69wd94fqvA4tRfmeKv8djKoNRYxJ/G58ghRm1o61iFhAE1mItkFfsbU6CLUab4owodu2guo2Kyihqua2bkUlY58syj+HPKDnoKs8+CrQXlFH80eQaf4i9n2HDkm1WWkISpdQIYJ8umg3KpKtZZiLhmMtYAI85tiW+plibXhMeNNyZlNfakZVVzhClluBZT4i8MDEkcWkUaR5jGtlkD4+g4xR/xzErFolPUVPobiT9XDoCrZ+ki/cx9E+pZWuKPcuqrTm3oTyHkIq/2/eG6Z9s5lzPYLalH1WW0arYoMGTE26qgeHWrn/jL6oBy83ryeWWQJ9jZ1Mt0zixyij973wRFMqVCHxzMEX9UQCjwK/7sOscRCoEz/vwpOpSDl6+xRKf6+lPLs5ptfoOdWxfsWPfVs6whJBvZOIUpm2bsSw/Knhk/3vh6SoX8cySOlxV/qRpaVPzRjk7FEX+Eel+aI4TmHhnx579vVBAOyNXvKhKqu3SdKnIKLCGoYqQaf5Z0LDTet0LuXlI1Ja3ij1XsuaZNfiUSFxyoOfU9YT8Z497/AmG3hoJKEy7d1q8i55TcWd0zvp4lNz9JgVe3RktqHmI9LZUzW3ZwgG/aBDD1u4SMidhTqw7I+QoCgUWlGWcZOlKKNPee2aCIv8YfNd7qSFCC0MgrhSlfpRYKxJ9QK9iVBeJS8sET9PY9K7DvWTq/sep7f0q9L9V39ay/JY9x5xaCKnbu4Etf8Mq1LEONaSwSm5zij6rdmtr6DAkUe5RrQLZWcQ023Dimukhb35SxeQtxZsvGhF2brcV+hSkV6HfkMdeQJTZJPwHQdqvUHC1L9SWCSU3UF3SqYEpNbY9n1Yb+OqAZISg0RfF1z9auvg1Q4m8HoJQzbMjaGSmhQMpykXuBiEkin+pLGgLIO9aNTr2LXjLnlhR/1jmViD9aGZI2LGDrC/oNMHvfAkZJFDsjqPGeV3Jpz4X2CQ3bgyBwi3mVTPX1EzH2mgocgeUMdk655kkvEtLwItfcgyNi+BQbICPAKJVB3fjl6hMGHuLPfsYRfwVL/DUaf8aYTPFHKNeSc/MqzcGBtDMuR/w5RQ2TrhH7x5tbKKmU/NSYHUSBNCSKpczgjwcbuyFDSJe1Cq4opqPlRUeY0qrgQST3s0J0YpZVwf7UcqtQ4og/a/DXCIPfnpubI0xklZKcY51+J0tyC8RfOt4KRF3GOhKVcBjM4BYAwEDUmKoLZMpPifjj0tqr6XtWJe6bnbPYGn9Rc8QfX7uVD0xU8vUsS8S1CwEd6yByNUit08rW+HM11yhlSJCkhIILTEiKPz+JFAqKv6q7bwTxV/E7Wdl6yChD7LPgGouEfAARyKtSCMVfXfCSqk8o1fjzG/yuEzPjWFvir0aQ3LZkSJU7t6uhNXxVCpBrPsYG8VICi5jfrF3Edv4WUn2NoNK0tgD1zPIkd40kQ/yKZNt8KGLm9dgRCozC1JG1VImammt2VSLW8qzerv++cSR31Sm4/CnSZF3G9L5xJRziarM1/vyEKUWelXJzPZWhk5+zSH/BrcX07/Y1qQByAR0h1ZdsopMGkzgCy2V7cCnSaWkeU6VtGPfMCEKhrswRpfiz87oJyJJINZcdxLxnvgYZyOYIam6N40y5RnanDYXarUJ5nFhIz85SfRuPXzfnZADApmAceaxVcnMNGN18zxJ//HtajGz9U66jcHbfCuRabok//7zOZw6kly50JCbfM0Hdmm9Q04FGm9oFqbjyOIZ/5kVb+ou5b5Va7NabImF/uc68QtNMWvHXfJoxvS749XaS4s/tx2Z72LFOPXNZKbmrQom/HYBioeBah1NNB2ytOo5QcHJdIdWXi0ZZCX11gEr1tbXqaMe4mHeYiQnSFVLnFFi2cyWxmLv6ghzxV0qc+hYw6RqpccM5p1bxR6mgqrmUxnC32fTxHsWfq8fENWSxij8u9VJS/FnyjVT8+Q1252wICixKBp7/nKrR556ZCViFhKvtQzZFSckzjsDyKCVrcUb8FQq0ytNG4amuwJb4qzHPzKX6ch2s03HEEs2eZ2YVf5wB1ZJLtx0gVHeBMN6cwpSpZ+maezDXPpCqx6pEqm9NIv4iPxlia9eQXS+RPQ8y1VcgFMKWdgBA2TReNwAEVYGsdWOdfs9sg40ilbKaf3cpJ29wGwCgwhB/ljjka67509rtWKoQxF9NSFkNBMWfr1sokBmkhiBMHYFlAtJJi1xtRPp3Z8Qf/cwDoUZNRmA1XnspCh2JVCHXQz8RY2tocQGdLNWXI5FSB5O4b1mDDHodd/eNSy13Skk/iSSlo1GOTjG3vpMKU0HNk6Vn++sycvObVbtQSqSqI0yZOaLgn58glb5w8zpRz9KYTIVOkW9pQIfr0gqhZIgLyLLNPWyKNFUbMUf8EYq/iutmzBB/bl7nUqT9qb6W5KYCOoM5m4pSBYfCuaU1yQX3hO60FFkr1dK0terYAvSORGKCKnZuJdMfQwyY5HOq3m5dsIJsTGLXFL96jHtmWbYGY3N7VJpBapOVDH2sccEoRvFnfQ2mxh88qZd19Q7JRjaWwIroDtZCyQ94atUB2W+i0tprxjhyq0ARf0IJBzfWWaWkX6XpSl9QdfZSO2AATCBdmFuNkOpr7QiqgU/W0I4mYqrV2AUHqLXcPnOqrE9yTRJhKpQMcbXqiHqWgoo8n5I/vrOxFJW3ORqAwNMkrFiwKkv6dw9Wq+6+FSiBhKR88yj+munEbOcIf31BocYfWzdWaorCBzaaqU+4q0KJvx2AYhRmThqV9uCUa/Tk60gSivhLJ+aq4R9dJY2k1Qg1j6QSiIqFhORhzm+NIyqyAAC1QkLeBdXGc9u0Hc54K7WMSb4bNdKxdsQfpzZMVS1U9NMqm2ITOLKp4drdYk5MznbC5lRzjsCiF3OnXBNq/JERRFf4lX7mxbIlHblUE7+SyI43XypclUurQn5RI8Z67HdOAw/xV40zJ4tT/NmFhVpQa6nkPg7871nEpZZbxR/X1MTTRdqSM5wB1VIqYMAkxw/0N74rTk3HEs18l9a8IUCmXgIYDKzij1AFu/eUIUxFhWk63qi0AwCDQXLtpkJERl2tOvq+FVvHAgBaGOIPsZ+stfeTIrDyDVmK5UaiOcq9uyRBL9w31wCIeU8zNTX9zPqDZG6N+7c0bLMkKtuJuZgcyzlplmhm04zTNYVy0pwCiyG5y63JvF42g6QBmBFY/nRbOdWXTjWxTs7A9m2N5xZU6Pa+UYpkIJ9W5Vci0am+/pRVpyJn1WPWyeJIJKv4Y2q/ehR/pWLRBS8phanknNpU35Arfm/JEGa8Zam+fIo0N0dIqb5Z4ySOMLWKZGJer2XpaNR6WkqJP7YpSs3OEdx9s+p7Ts1jCSxPShhANtio1PxOlqtTLDQd4Mabr5FNvuYtVaImU/wJJRw4tWFK0FNpdvnvpQisoli7VWgaEPrJN5s2Sin+giCr3Vqh6oDWBfqJ+c2txcwzs+OAuW9WJEDVIAUyxR9FmAYlq76nj7WkJTfWY7emcIo/fo6on+uJ5h4Vv93qfC8uNdzTkAXI5r0qGRSJXYdXWmFqlf/+QBhfu5UPnCbXnt4PgviztgWnIq9KpS+crc+p5tJrZ0jubD9/B2tqfrPjgFOwuy7SnDJXaoriGrJQBHuaqsultefXillHNV5byPtYyQ48aWnJY46wzAfmqLr/juYRmhdR80sYZl19uRRr18iGOrftns1le7jUcE7xZ9OUpeYexDNzz5v56l0YSvztACTFqa16jEr1TRUxDPHnVfwJKV0AMBgkC2pMONbO4WWUHcUwu3ayuYexihiu9liidimQTr2tbciooNrGZPsS6Y/OWWBq/LlGEYSTVh1InL6BoMhOMk5CT9UccYQp/bttpJ8isPIqgSLbFIVPG42dIUAvxiVXUJxrtuB3smykhkr1jV3XS574swstqfhzzilzbpsuQjgb1Zzij2pSAeTTjBt/ux3rvOLPn1ruGtmkzn/Dua1qlupOOyh0sA6DJA0YwABBvrn6eWxNSZ74G+jPp14y5FtKhlDvmRgcKPjTsqQ6oFYRZwYoIsav+CukwYEWhsCydRk5VbB1bg2hcNi+PXsOrS2Nc0w5l/7bT3RMt+QOXw5ASvW1zik91gfC5JqogE7NEVj0uW1DFzZFOvYHB2qpmppScg86tSG9JpVbE5VmIYiZtFG/4s861lw6W+RSfelrH3AkN5HWbhWmXJf71Lnlamn6nFMgm3voDtaWwOIUf/75yQVV2LR2vl5cnA+qUKl0uQYbJCEhdRQWare64ABjA7n6qVRau1NpMqUvBBIJgkozTo+nyrRU49jVUyoQNf7qaixRa7mtA8oFdETFn1XEEIq/3PtHrYfZZ7T9EwqBCYlotupWyn6q5OqAUmoeSaXp6hyzae2W+KPfU0t0UHNrSzklQ7jarTWB+HO1WzlVsF9N7avJXfccqdpj6RrLNUfLUi8Zgj3wE6ZZ6iVBxBSt4s8/XlgFVsQHk4BsjqDGWzH3GTXWY4nAcsSf/5mxZRSc3UnMEUJdxqxUClOXUUprt2sKR3J7Un0LQnq2U+9zTQxDXokN5BR/VD3LXHmbqqBuJYN4RSsqoX+3cYo/5trTeY/KDkq/AQC9HmZdfZkO1ukzqzClfTL1PWd/8ao5m6q+p1lGHprPKqSyRaq2hANb5oUf6+W0EWYYGPRXGf/SBaOI8Soo/mwZBb7Gnz2cq/HHp/qaJpqi7KpQ4m8HoK5eHEX8OUKBS/VNowtEtNym+rJFtQFUUwcx9nTs5IiYKMyunXLS7EtO1WkBgLiYOJhRjUghrPjTXNpa253KoL+vUdViSTWWBHKpvsRinDp9nMQdyKVIE4uSfWbcfbNFmqkFtVLLnCzOqQ88ESG3WHCOtT0316TCRW39BBjdndav5gHgbXIhjbfAkyJdrdZQDmyqL6f44wsdWyegxqS12/esgBq5MNnxVijRRLMjkUg1jyVM+ftmC5IP9BPjzdVcYxxEZ8ARyrWcA8E980poiT9C8SfVsyz6I/2hp0EGAFTSOn1BZWvjuYX0oHJbkkbRhn7SSXPEH1eKwONs5Mk8irRsKxVcvbi+7UTaqH1/2Pqp1gBL35PBPqBnhdvuc04BoOpx0mKB5C63JeRbEVUyTccqldk043RNCaqN46UipAe1tGcBnQqhbo09Ri+QzeshQ775nFMAGEgDYYP9jUSzDQ5w5Sds9+2IVfylpCOraknfM49yjVf8JcfyaaN+IgYexd9gLXbKNSoYFYVB0tkRDCEhNLKx45BrdhUK6la73pDkW8U+M0YVXPIHJtz45+5byJ+7Uq05NQ9Z4y+3VtSo99Q59UxAp8lGEXSNv9A1baLGm9QAyKrq2bpnUgkHp/ij1nJ/rWBXp5htAOQPRtmgL0WwA3nlGqHSLGeBPeqZZ3WomMBEk93aqWcGZHYA5StkKatM4yNbI1loJsMFVex7WiXsACDv1BPPzJaPAP2OZ92Q/cRfwKUZx3xwIE8yUOWU7PzEBaxDod6u1K3dvr/VSuMcU8l9ViQbANlamn7ClBvrNWsHCKm+lL7BZgdxa0pNmFsrhWQtDwYbbbfkQF49VkjLtAC0HZAvsUQRh5Zo5tT3aFrxRxNB3nqWrvkQQ/zlGnWRCPmsqOR7eTV1KeAbawBDSnEQ960SJvNbgeme7SsHkC9JtH0b/cx9c4R997nGk5niz9/YbaDCkY78u2L93kMr95HH7soYEfF34YUXYvfdd0dLSwvmz5+Pv/zlLy/3db3mUXXqMUI15wgs2jm16XmUAqsqddMDUI1sKh2xmDvnlDa4C1Horn1oymstVzuswCnXClYhQTUW8afCtZQibEdyT/r7GicZS3Jw9y0jkQhDIDVsBsEogZBrikIRfwKBZbu0UgTWYC12C22RJZF4lUHmLDBOfUr8RYhJp97VruDIM7ugEgaYJZHYtCoIqb41G+3mUun4pij5Jisc2WsXeaqLtI3mcmqeOoUQsaBbp5V7ZlZ1B4IMcTXXPISpdW4HKcWfq7nGEMXpe1akFH85R51TA1mSmyT+Yr+TFZQSY6BsaEPCzhGc2tASfyDUhpJzWm4bm/siShWcElicKtiOdSJqPJCvAUcZEmHWbbSPmJ+Mm98YonlopP9HhwLffx2w/mkAWQOgIjPWbQmHmHhmlnyOGcVfa2tmdFOpVVk5AKYMQmSJP6ITs1W3MnNEa7nFlaagAjpSqq+t/Wqobnm5ToAF1rFOflOVcDbceGPGuiX+uBp/1rikmugk32vVGZRyzU9yZ2SIIef1TPHHEaY8WTtYix1hWmRSECuempKiUx/aEg4cEWMDOlwjG6se42v8seUArFJSqPHHEVgm5Ams/NxK3bf6Lq25324MUB3IEVjMuW3WAqcwtbXDmGe2DcncPNi3uWG7C4RxJLfQtMmt5WxwICWaqRp/OcUf5eSFLt1WUBsKxB/XKCLyBF5bcnNjP1EOoCYp/oRUX1djmWt25UQCxH0b8AdeQ6HEjHGpl/4SDjVKgRX7A9a2bmyZJf78mSr2mQUsWcvft2Kx5GojVonMARccEIIqAaf4s2QvR/y5OntUoD+nbqUUf0U/WesyZ9i5lVeRA7mUVarOXtH6SEytOqHmbaWYEH/RQC+5HR6ytlQqOzugQgTh6tWtxH0T1PculZXNTrKKPz+JRJXgcjX+uFTfqiXo/QEdPk3ZBhAJu3PcTABwQZ2hqFPkE+95JbUDCoRPnj83afO2drrzDvaua9ge5+0vYi2vpuOlHNPntvUayTqcgHuWHPFXsnYZUQO+e8WfAHgCp7swhk38/epXv8JnPvMZnHvuubj//vsxb948LFy4EOvWNQ6KXRk2DaVCGI/WQOCi3S1pVIYm/vy1w4BsMadqaDklEWP0FsLARS2G1ripPvJbdAbJd5YYRwelVFlCKf5cmjFDKAQB+lNiboBwrJ1KoESnXloSiWzusT1xOPtDhngDUEgj+ZX+xnNLNbBKaWSkRBF/1ThL9WWeuSXGKAJLKmzd0pK7H4TxKTlZ9plRC8PAgN9ZADLDjqz7IRCmdjGn7ls+As4dH6ckUoUw/uBSL+l73taSIzmId80SzVS9NyCnbiXqWVrFBackAjLyjermFwgKLLhmDVRalV9dkT83TSL5n1mhnIyXMpNuWxAUf9U01TesEMafUxIxY711jDMea/2NxqcUVLFkbUBEP63ykuvEDAC9QUI8Dm7Z2LDN1vjjVJpFZ/CnY633heS/T/8RxhhneHL3rebqMRFKIks0c0GV1lzDEeL4LK2dU3nywaSKU81xREyUzeuEY+26XhIpNgAQ2fmeUhvmCCwu1deWvqhSqb7W2WYI8lI5LV3BFe73dFkF8kokqn6XDeIxJHd+3qEIDRccYIi/tOxGSMxPg5UaCqmSoMw884yQ4BU1kgJrv55FwJ8vaNiereX+VF8qECbVF7QKRrZDrHNOOaWkfWaUAj6nShFqI1by79n/fhL45hR09C1ProFT89hSKYyTZoN4VNMAANgaJMcPbO1p/G6hcVIkEBKWfObes9hT46+Sr7lGzK1ByZZwYFQpzo7gnpntEEuXWnG1qYmxXs4REgPbG22/LK2dq42YKkwZ8s2nXAP8TVGsbcATf1ZFziiJxM7fNpjUeN/zcytZUzKdlwuIydT0LNWXeWZuLfY3FqHW02IUog9p6QvCXh8QSq1YwlTqAi01u6LnpzyBRTTYEJ6Zq+8pqMhjri6jh6y18y1HhmSEKZPOX0wyLqJKYwAvvahkOzFeClGIPti1mCL+ctdENS+y440JJjnhAdOQxTZHDNc/AVx/NrBtQ/31ecpP2M7fbHMPwQYSFX+eIF4xVUoahKgRdfassryGkPztcTE5PiLs7fSiknNT4y0I0J/W5B4kAqeVOPNtqWdug4+UnwLk3hVO8ZfWGBwYpO/b3FoSNA/LbQ3b2rbmUqMvORo4rxP45hQXaN+VMWzi74ILLsBHP/pRfPjDH8Z+++2HSy65BG1tbfjZz362I67vNYtu9CR/bF3bsM1Gc0stNIFlib+gNgjc8QNg6W1uWyWNAFYYZQeQvWyobAc2LQUevjJLixMIrEKUFRuuDZmkylf/vfubJf5SMqSB+Ft8GY5e8p3kb66+DYD+YAjxZ4yTZlvniyVMrSy5NgD0bQIevgr445eA8zqx//+dAgCoBrzib4/aUgDAAXd8Cti6vn6jQGCV2rsAAGNMX4OUfLBSdU4WZ/zZ76VVc37jrSVXe6xCOPWuBhaXZuwhayuC9B/IjCAqpcy4Iu6c4s/WHiOUa3nFBDNm4tRhqGxrVDjYOm4x49SPacsca6qOlVX8tTDvaWyjnxTxJ6ReAllq1CDRbdQRfxxRbLtHEoSpVehUEbIElg0OxJQq2BqezFhvSdNGyxhoGOvGZHUZSwxhWiskx4dEYMKlhDFGb2u5gC2wzu2mhu1ZOQD63FE61ikVlFXz+FSaW0IP8Ve1xB9HIjGNbGqVunIAXHDAdnKm0rKybu30M2tvKbvILWV0S6mXUarypEhHpxLw3Ld+12CDSu+26YtcXcfknherjdfdX6m5+a2FaThVjfhmVy64wNy3Ugs/PwG5+8asp06J5LlvHKHQNqYzI7n7ehq2uzmCS71MDf4CSfxlThbbkdhDvrnxxpFveUP8pn9p2O66hTLvii1FQKl6K4JK06ZucqUvJALLOl/UerZ9wJ9WVYwCDKa17uq6SD/wC8DUMG/dNXXnaLg0gfjzNWQBgO1B8swHt73YsM0GhLhglCP+GMWfXRe4lPqa7YZMdv72q4KjtHZrG4R0NJb44+vt1mdcEGqeKHSBCaocQEZyM/NTet+o0jhARvBw9lfNk2lSSdckrmSIPTdXdiMW7K9SkM4h/el6tuIvwOXvBTY+i+CWb6AY8CRSlA/AE4EJ40n7BLL1jFO3uhI1VGp4GDjiD2sfAX7yVuCB/wGuPgP42fGopmQgF1SR0totack1RzOuHEDj8dVqLnuESnm1NbnZbu3+hiyxU4/5lZIUyW2zMIpBjQzUZwp4hnQsJ8RfkSX++FrBkrCjTj1JrCvWBuFU5DWnCvaTtXss+hRw90XANZ+s/37XgJGoQWrJfaZJhS0Tw/lJrpQTV+PP8OSZtUHKQcUR2nlY/4ErY2VK1k9hiD+hnqX9XpL4q2UdrKm6/2FRIGuFTsxh6r/0DxXEPHNTQuSlCNrGNxy7/uhvZP9Y83B6wX3AusfIc+1K4C11AoODg1i8eDHOPvts91kYhliwYAHuuusu8piBgYE6B763l5EIj1I8f+33cN2f78WawlQ8WpoHAPhqZTsQ1jezyMOqM2ZXnwVu+CoA4N0Tr0UcRJi45XFcDLBF3AEgTiNp9zz9Amb/YD5aMIAf3fg4bmk9Du/Y2AsUPGqeMHSKv3+6/D5sGLsFM6rPY0swFnlql3MQrXpscPtWnHzxnTi8/w68f+tlmFHLallxhAKQdvw0wCU3PoJn7i7htC3/ib/t+y3O2u0SfNpUgIBX/LWmhET34AvAd/Yg95lde449dx2+tye+NO4CLCntCwA4ZfM2IOKdrPKYCcl/gwpOufgW17kUANZu2ozb7T+ErsDPr92E7158Z922/VeuxluLHsVfa3auD1xyG6qtE+q2XxDXgNBT4y9dUKv9yTMrmEFXT2xG79N4A7I0Qwp2LP75saU4b8WihJQ2BgbAab19QMCTIW1p/a9usxE3fetduLz9g9gUJddf6H8RV9kdOee2nEz+Ty9b2XDf5q1cg+OLWYR0KNpz9+30n9yGrYVxddu/l463lrbGaBIAN9Y3bNyId150B4CsjOzYlU/jmJJf8VcLi0AMXH7nEnztkTvqSLozt/cn440jinOpvidflB07vrYB71h3IeaGCRHDnX0wrftx5Z1P4bzlyX2bWFuDKiIcvGYT3uKZI1rbEyKmgBjvuvDWuudtDHC5rQPKEH/FNLVq1foN+Ochz2zqiudxTAmsEVIuhNic/qqv//f1eKpjc13p3q9UB4AAbEfhYtphtqdnM04ecu6ubUvxU/jrMvZFHUAMXHL9vVj52OS6bX+7MVnbOHK/0JoYzVPiNbj8u5/C+9PPr7n7cVy0+Hb81t435tptbcV7l6zC14aMt/1fWIE3ecZ6WznCAEooYTs+9d93Y11pZd32r1QrQMhfe5SSKS+s34hvDrlv1eUP45qyPzhg6+x97n/uwsCUlDRKL/7kzYlBGjLORtCezAfxtg11z2xSdRXWYDf82jVb4FIQk2u/+86bcdcTz+PW1rfgXzZ9Cb9vfyc+tvmi9AcyxF+rVXIPNIwXADinlsytHBGD9HnctWQ1vjnkmRVWPIqryrwqpa1cQA/GYAJ68cmf3oh1bXvVbf9Abx8Q8co1kwZVVq/fiK/88HZU46QzXzWOUasMYJG7Rqb+V+o0f/nX92P7n+sDCG/YuBILkJGLDdfeVr9G/92PrnekOQD8u6kmaznzzLan+/7ytkfwxHP19312z3K8ER7SMVVItDDP7OPb+5M5gluL07Fw/9J1+PaQ44PtPfh1tmPjsWmKdCsG8cUrF2N9aS0QBLhm6I5c/dR0Tdm46UV37QcP3IvNYReeLeyJC4xJ1lOGJN8etQNV4KrbH8Pih+vnpz17luGvwAcHLCkWVwfr7ltgYrSaPpzatz0Zb1xgIh3rV9/7LL62uv6+rV/+JG4r8zWwOju7ACTE39t/eBuqJkBsklSymjF4/+bNQMCvSTY97/m1L+KbP7odsTGoxUkgqhob/M6mtbMd00sYg+34+m/vw5rWnrpt+29ajTcnJyGPtetcz9a+7L4ZgzFmC7aGHdncyo31VKX5/evux4sP1zuw3VufxCUAamB+d7qmFKtbybH+nhcTgoUj2A/oS8o07b7kMpx88Yn4zdoTAADPPvcM5lSfcftR961jbPY+v/+SRRgo1V/73JUv4C1F/j1FKlBYvbEH/zxkbgSAb9WS+xYyIgNL/HVe94nkg5VZyakDlif+6BTTKLwAsnVudt8jeP9FN2MgtdcjU0UNEc7sT+aIcolL3Uw+X/TEanxtdf21r1u3BnfYHQk7xhHFQ94zi9evXIcFHnvfrvE3PrIC336x/nhjDH7kaXaVL1vzzgtvbQiQzulZhjeCt1vjUjLeNm1cz8ytqf3F1pYuAwb49u8fwNIbBxCbJKU8NgYtlRfxO7sjSZgma0o8uJ0895vW9+BYZOq8oRgIW4FaLiDy9B/ryKOZ9tREuZMwVdLFtSp57vG9z3nvmw0A3vfsanyHOP4T2/pZ/7KUq434rh/dgtb2jrrtXdueS+1WZo4oJ+/p+g0byGtfuLYXxxb4UiuVIHlmP/zTI1h+u22mkWzb3FfBdb7xVs7UgtS5Z6xYjreW+HJMdq269v5luCC1A9639ed497Yr6vfr3q/h2GjuAuD6+s/uLB+NtjFH4yDybLsOhkX8bdiwAbVaDZMmTar7fNKkSXjyySfJY84//3z8y780Rnx3FRwTPoRjtjwEAPhj7TD8pPrXGFtMHJ3xqbEzFBO7JzZ8NnXlH3BN/Ea8PtgKlPnaXQDQ1dEBbAI+XPiT+2yvF/+M7607DO8uJC9p11jaYI/CANvDdsD04D+2/xNAB55Zw3Vc+puODB7GkakRMRTtLTyJFBZKQAX49ravALkAxfc3fsKWaEDXWJowndSRLAwTg8ZodzNY37IHuvuXun9/68XPYH7/j7AW4/HBYhJxGMfct87OTtQQIIJB58pb8ZiZhdiEeAHdaMd22OAkd9/axySTsxncjsXL6q9/XpQYrVSnUQAoFQrYjjJaMYBV6zcgwAYcHj6J39SOhkGIQjl55h3tNGE6flxCeE3GerzvhfPx7sJt+HrlA7gvnovvl88BAFRKXeSxABC0dgL9wBmDl+Lv1l+B/Qf+K9tYrAAR0NVOX/v0Sd3u72P7b0Bn3zK8a/A8AEA3NgMtSVFejhRo7ZwIrANKA5sa7tuhUfLM2lrp310stWBtsBsmmY24bOP78U+DZ+Ca+ChXP7NcTqJzY9qYZ96VGLrtQT/uX95Tt+0tob+ZC5AaGFWg1rsG3992Gv4QH47zq6cm15aOtwkd9FifPSU5dxQY7PHCNegzZZwc/RnHRg84HbePdGwb0wH0A+3ox+Jlm9CCQfym5cMAgJ8ieW/b2+j7NmFcl/v76ZXr0It2dGELtqEVMQKUysm155WoeXSP3w1YBhxSexinrfoazq6cjm1IzjUjTNMPGfVWEASYECQE2/n9Xwf6gVMHz8Y+wXL8KT4c5WJieI7vGEseb699TrCqYbzsE/QCZd4IAQDTMg6oAOOCrbgmPX4a1mNGuB6nlX4PABjTnhHFp75hFr76u0cxf4/x6J481X3+/m0/d39Xt6zDU5Ut7j3lVAbt7e1AD9Df39cw3o6MksmSCyaVohDlIJnM29YuxqNxsS5C3FZKosbjuzrJ48d1JMbmxKCn4b69PlUzs2ocpCmMVeD84Ee4/IVj8Z+1v3HbLi/fBATA2HaaYN+tO7E3DgqfQ//y+/G4mYU3hQ/hotJ38Vg8C2GYulzMmlhtmwj0Ax8vXAdsAT6x5YcAgM9uPt/tc+CmP5HHjhuXkI4Tgl48vGw9Kihgv+B5bEMLlpnJKJbS9XQM/a60tbUBm4DdgzUwK+5FZ7AN5xd/gqtqx+DjpWsB8OR+uRBiQ9AKoBcXb/k03rLhe3jOZGPoQ8Xk3OPH0vetM3XMj4/uxXdWPVF3bBmDuTWJU8WUgUpSq27oMz882gIUgVI7PV6mjO+q+/fpa7+Bv6ucjQ5sQxFVN9bHMmtSubMbWAd8o/hfePfyGbjfJKTnvxZ+iqnBhpTwpN/T3dIxXA4qeGDZxsZ6yMUqEAHjxjIZF6l6vwPbGn53N3qy+8YFo8IiYIDKhufwUJzOQ0OWP25unT5pN+AJYHw63qYEG/GVdA1++8DXsHs5ITI62hgbqjQWqAKmdxWCnruw2MzFRPSgGFRxULgMKCYBHgrdncm1ljCIp5e9gDb0YytacUHxYiyM7sP6MJkDujrHkce3dnYDfcncOPS+zUmbdHGk47iu7DuXvLA+U3OlqBWqQAHoYO7bmPZkja5V+vHwykb1f1GYW6thCxBvxqr1m/CAya59ZrAWJxavA0K+BMOEruS+vBn34X9X/C+ujo/GVwr/jdMLf8R7Br6KQjGxI7rG0HZEtdwJ9AFfKlyBB164F2+MHsW7B8/BSjMR84ItQBlswHjatGkAgCnBJjy4bEODovLkQiW5b8x7tq5tL0zsW4IubHGkH4A60g+gSfJx7WUMooASqli6ehM2YwBtGEBHsA3PmanYN7Vb2xh7vzO1bUqo4u9X/ws6sQ1/V/kSDEK8LbwTe6fBqfGMzV0qFjDS8l2TgyRbYGywHZevewcA4EuV0/Gt4k+SHVJfY9y4burwxLbpA9C3Aff39gAA9g2W4ZjwYfxv7UigJSG5qZptE7q6AABtwQCeXLbK2T4d2IZflr6BvQrJ725j7P3W1lagN7lvQ98zACiUk/tOPfO2XBD72VUbXfaERVfYB5T4ubUzXQ/HBo1+CgA3t3LroSm0AhVg/Yub8NDG5D0toorpwXpsNK2ZvU9kquyWvmd7ByvIc8+PBoEi0FZmMi6iAEyJvjp0dXU0fGbX2NDEded+Y/gIFob3YoPpBIpgbZAx46cAG4AJ6MXiZS+iBQP4eHQtXhcuxbmVDyEqJs9sQkfjfbOldQBg/YaNmLjxGTxuZqGAGIeGT2G9aQHKfBPDrnRunRWsxZJlK7EFrTC5NfFthWR+6mTmp7jQAlSADT09eHBTT922ELHzkwpEuu2k3ZJzt2AQi5e9iABx3blnR/564HG5CxgApm57HK1bV+Cc4n837PPF2hn44vhGu3d8znf6efWtOK96GuL+ED8f0C6/wyL+RoKzzz4bn/nMZ9y/e3t7MWPGjB192lccpjQWwWC9HPqE6F6cEN3r/j12LO2cTp7YSPz9e+ki/Dsucv8e30k7eABweO3+hs8WRvfh+ej97t/Td2uc3CxmhRvlCZJxFmZNmUB+nsecEk/M7V55ht1mMSag00HGtfOEokU8YW82v73r6NOBG75c99k9LfVy8GnEBAMALaUCbMzvktL3+QtgFob9Z00BngLetEc7fvyGQ+q27f7UA8DDwKyJtJMVBEHigG1bh2umX4Hx65PI51lzN2Ly8utc2hBngM3eM1E1Tgp68O5Cklb+1eIv6vaZ1fco+5MOmTsLuCf5uz0YwPMt2ThbN30hsBKYvht97e3t9e/AoeHTuGXezeja+CCePuhs4EY+yg8AB+w1G1gCvK+wCO8rLMLWsXMwZsuzAID+lm6gH5g5kXZUAGC3jrHA5iTN5f+VLsb/w8UN++QX3jwO3nM6cA8wP3yy7jc/u9+ZGGidDCwGJo/j39Pp3V3ACuB7xR8DAD4eXpeQEzl0d9Lnnj0lM0jt8UNRZog3ANh/1mRgA/Cl4i/xpeIv8dQBnwMeSbZ9oP0eYACYPbGLPLatpRUmiBCYGh5u+Sh7Dq5RxMF7TgMeADqCPvxtdBf+Nkqi85smHIYxvUuAQWD65MnksQBQ2e9diB6/0v37f0oJgfNV/I/7bBxDmM7pTj6fEa7HTQffjuf3/nt0r16EPR/9Ptq2JQZ3Z42fnw6Y0gZsAc4r/hznFX9O7jNj68Pu7w/Mn4l50zsxd9JYtDDCh5OjP+Pk6M/u31xQZ/+Zk4AXgE8Vfofj583C83ufjrf+9oC6fWa/bj55bL548r+VLsG/4RJyv47xk8jP95mZjOehYz2PiZUXyM8BYMrMPYHnnsce4Vp8ObwcXy5e3rDPtC7a0dkjN9avK9fPz/uHuTouzHg7ZP99gT//L3ttPowZl92PJS1/x+43tnM38vN5e88BVgJ/E92Dv4nucZ9/uvA79/fkgaXEkckzm45MsXJz+XPkflPH03bEwcXs3nDHJieiB+bE3cYDa1bgG4f2Yener0d5+1pMWf577Pn4jxClNTJnT6XHy6xJ9XPuMdEjdfaHRSszR+0/ewaQlo2+qvw1cp+pzNw6Zkxm2zzT+iFsHn8gujY+iJ4JB+OhN/w/7H/fGGANMImxoebtOxd4Dnh/4Ra8r/hnrJhzCvrbpmCw1IXBlt2A2wETldmC5F1RBagCl5W+TW4HgLmT6TVpTmdinRwYLm0Yb9ekBCDA1/jbb/fJwOMg3y+L1mojMQYAUyd0AQCmBRvxSMvpDdu704BL9270WN+vPbF3/7HwW5xw8B4YLI3DxNU3Y+Kqm7NzMzZIoSV7Fo+3/D02T3g9Ojfcj80T5+P5w76Kedf9AQAwawI91veb0Q08Dbx5Tgd+dsShCIIAURAgRFI7tXRFDTB8GuDkOHnPri6fCwB4bp+PYbC8G/Z5KAsOzOimbZjdp2WE+lAb4sry193fXWNogn7f8gagD9gzXIU9w1UAgNvLZ6FSHIvN4w4A1gHjmGD3hO5p7u9nWz5I7gMAMybQ9n73wDLy8wYQc2sQBCiGARADd7V8qm7bEwd9BcA04EFgJvPMjpg7FXgAOCrKUu+WRh9o2G8ME7id0TIANGaM1qG650LSyZ125PuA++rfT0f65TBhIm2H7D9tHPAicFbhtzir8Nu6bWcXEzVShJgstTJh4hQAQHewGY+1fIS99tnTp9DnntkNrAU+V7wKnysmOTHbxuyO9q3PY9OEQzF+Qw8AoCSkZz/ScjrWT/4rPDXvi+hrn4ExvUswcdUg8DgwjVlTDt17FnA3cHD4DJ4Z81H85U2/QN+YmZiw9nZsb5+OPR/1z63TK88DSGy2FXt9EGvmvAuHXf92AMBA22Sgj1eeTZw8HQBQCGI83/J+DLR0o2f8gZi06iY8u88nMOfJXwEAdu+k5+XdBnn7JI+2KY3qse4JiU++e7iWtX8AYFyFVpi+bp+5wNPA8d0bMf2wsZj5zDWY8dxvAABvjTJ/fXIXcd/CMFlvagO4t+Uf+HPXGsvPAMB+s2cCdwP7hCucvX7DOx5E16YHMXPJL1ArtADLgRkTG9NlAWDKhHHA6udxeelf3Wf3LPg1BoudOGzRBxFuT4m01sbj7XfOCVe7+/bQ/AvQ3zYF28bujkkrlwD3AzOZuXXW9GnA44nNS+GOt16Dj+51CMa3N471ciHCik+vxuOrezEJcLPyflN57mNXwbCIvwkTJiCKIqxdWz+4165di8mMo1Yul70O6GhF8On7ge/t5d+pnY4moUy/BHmEG57izz3rKGDFPex2CcGEvZK6Gd4LYIbOODrFtu7QI/jJC9MOAV5Y7P+C6YfRn+95bP2/3/sLYN+3ARuWJB00AYRn3EEcmKB4xD80EH8N2PoSm9iwnSsTo3DKimsxZcW1wH5vB/72R0BLB7Ax7UTK3XMAUes4YNs6R/oBwPSlv67fqUgbnsF4+Zn5UJx5mCP+hmLiylRJw3VtIq5pj6cSA2z+jScnhzIFcQEgbKk3UCzpBwAt/UmdRq6GDAAUjjgDuP6L7PbkGplmMuNnk5/PefzC7Po8ytxoyyr/eQGgzCxSRBeroQj7eQIrGlKrZO9HvpedciCJhrMKriBwxa+9aKGvPRy/O/n5+A1ZUCRs6+K/9j3/CZx3JbsdANDGBCAmZHPynCcuwpwnLqL3YxAtb0xXGIpgTTZ3BkGAA6d3ZRunHwasvLfxoLqT0M5pND0LCOz12L9jr8f+vXGfvRbw39s1E+hZ7j93K01IvOQ5YsFXgP+40bsP1TEYQHLdzYB516I9jgL+TG6SUWLS/IeihV6zwwl7jvDEw0BfY61LAAiO/DTwl/+Qj2fmN9uRcu4j/4a5j/wbuU/IzWElPuBR/wVMyZHOaeTndYe+wLxHud8TmirGbUwcq3EbFuNN1x6T7cfNT5NfV3f8rGcaVQZcQwIACIiaig37rGMCaRPmiscCALbQqr3iczc1dzyFDvmeAwCIekoAEHZmBBg7Xvo2kJ8PtQ86NyTPrHPdPZh3XaYOxrM3AwvObfzecjLepiy7BlOWNSRWZ/AEEfOY/WTje8OO9d3mNPWd3LnDHpp8K1a2YMK6ZL3hGvig3Nx7FvTRpEBwyhXAL06Wv4AJqnA18vZ9MKuvxTVEsOVKRHDj7bT/BS48DDjg3cDJQ0i7tY8DlT4Uph1CHgvGdmtAiSbAomUjXVDA+31DEDx/G/l5SNSEbd/6PABg/Ib7sg+5xnA5dK+5Fd1rbm08B1d2o7Ur+/rqNhx54zvoL2aeWR4zlvw3ZizJ5tZyXzKnBVyN0SHPrNy/HpNWJfPdnCezQGb42G+Bd/8XGrDHMXX18pOLeAPwkT9ldUc4P6XJeTk4uJG4BoBgbELidr74CI76v7fxX8CMS9964zDnWPLjgPCX33r1QY37DREqWVDNMuff+C5iR2KOIvyXefd8puEzroRW1M6Mo4/cCMw4DEfRWx1mjG/DjPFN2nC7EIbV3KNUKuGQQw7BTTdlxkUcx7jppptwxBFHvOwX95rGmIn1Dst5m4Fzhjji3OLTTkdUm8aCcxMCzQcPmYKP/J/sbHEk1G5z4HTy72k0mPHVjcDchfz3fvRm4GO3AmfcCRz1j8lnc09I7t9ZjwJfXss7Y2EEnLMJ+Mq6ZP990wl2wl7Jv8/b7Df8wjDZx4cjP8Vv2/1o/7Ed0/iFZewQ4vzxa4BvzQD+/SDg5jRq7Lv2ee/znxvgx1sYJSQjwJPOn2pUkTrsf5L826//Ev0504ShHh5p9t5/LR/uM8zf8Ins7yM/DYwhAhgMGYLxs4H2RnVuHdbTJRAAAIzBXwdurHPjqH4nftNx32zicM/ysM/f8NssGEIBU+bJx0rP9VP3A6ffDJz6m8ZtpbHA5AMaPweASfvL5x7vGS+f9TxPi7dfyG87/cZkDuSCFwBP9u77NmAsrQIAAJz8U//v+8eHgamv57cDwBhawYUZhwPTD/cfe8wX+G1TDwY+84T/+O596M9bxyW/TQK3Ju1xDHAQbZA3hY/eIu9Tph1E0hgfOr7efRn/vefQpF4d9jmR/rxrBvAFWk3oMHYqP5fs28Q7zjQ0QNcs+ViAn1vnf3zkzywIgO595f0YshbTDh3ZeS0W/qu8z4vP059Pb/LcXDmCE77T3PEUuGcxFNz8/dc02dc0Tr9Z3mf1g/Tns9/U3Dm4QNyCJsoRcbXqJuwl2wEAb1N/oYm6055APyY2KpQawAVV9lzQ3FrOYX+G+MnjCUZtPevI5s7BEWXdcxN7fSjpBwCT9kveJZ+dZH2yLy7j156OqfTn1DmbRaEEtHTJ+3Fm73HfYDYMQbNEPgVuvEx6Hf35UHB2BOUTNosmiEwAwJu/Qn9+2u+Bc3sS2/Fvvg98dUNC+gHJOPGNlTD0j/WPLQL+8SHgbY3BWAC8D9Ixvf7fkn3G4aBTgQ/+lt7WNh44lFeWOkxibOZ1j4/smgC/LV23HxNYPjRrKIqP35b4aJ+6H5jhsZ8VIgJjjMerbsSvfvUrnHbaafjxj3+Mww8/HN///vdx5ZVX4sknn2yo/Ueht7cXnZ2d2Lx5Mzo6Rrnk8msTsg6ZeUJp/VNA53TXHIDFlrXAfT9LjJpSO/Dg/wBrHgGW3QF86Dpg9zf6jzcG+OWpQO8LjQbTVzc0F/1c+xhw10XAg/Wpn/jK+uYm4u09SSedYlsysXLG9qsJtuBrx3TgM48B2zYCS/4viSx66lhhyxrgj18AVi4GenPF84/5PLD8buBdP0sIYQrbe4BvC87SW78OHPVpepsxiZKobyNwxfuAN/0zMPe4ZPHnztkMHrsaMDHwuiaiwvY67r8MGNwG/Omfs8+P+TzwFmZB7l0NXMAYXkCyIJ1xO799+d3AE78H3vLVxLAPAuDKv0sMzumHAx/+o/+52ed9yq+AvY9Puj7+4XPJu+e77jzWPJL85p8NIbUPOhU4iVGVLb0NuMwT/Zt8APCx2xKjg8O2jcB3GUL3E3cAkwVDbfXDwI8Z0vZLy/n3tdIPLP4vYO7xye/+878BR3wyIXj+8uPEocip61g8cxPwi3cmf885NjnusI+wCoOXBf29wJUfBJ5bRG//8hqetMzjilOAp/7Q+LkUPACyZ9/SBZz4b4lx9ed/A976tSzg4cPt3wduPBf4qy8Cb/5ncXeHWjWZIxadnzy/A94NzD8jWR/GzwbmvFn+jm0bgO+mBt1bvpKovPd7e3PrSXUA+OYU18UOh34E2P5iMk6POotVRANI5pa+TfR4f98VwD5NBAFWPQj89Lik8/tQSM9t01LgBwfR28550f+eDkXvKuCX70+CWm8SFMe1ajK3928G7vwhMP2QpGP9llUJIXoAEX3PozqYrN9/+EJijxx7bqb+3O/tvFNiDPCtmcAA05Bt7JSEFO0gyGhjgH/pSv6edECWQfDBq4H/zjlQ0j1/5saEJJvzFuAHB9dv883NtSpw/nSA6N7t4LOBqoPANwRlju/azxPsnCM+CSxkgi+D24B/ZQgHC9+1b1oK3PfTZKyw18dc+zM3AY//Dlh2F7BxSeP2tgnAF55t/NyibxPwn2/mic2//h5wOF8eAtUB4IZzgXsaS24ASEjy/U+it/3uHxIb2QffM/vtx4CHf8Vvb2Y93bAE+J93Nf7+BecBb/wn/7F9m9imdDjpYuAgJsVwYCtw/jS/ovsfHwLG7e4/P5C8t8Ykc9myOxM14Lsv9Qfr77qw3tYbimIb8OXV/Plqg8C3ZiXvalSun5tt1s7OwLaNwA3nJDZgWEzUlD4fa/MLSYB+zMRkPR6aJSWtScYkPsOF84EBYlx++gG/MnH1Q8CPj6n/bN77gYcuBw7+IPD2H/Hn3fQc8Pt/BJ5nlIun38QHIYwBfvUB4Mlr+Wvzzq0DwDcEn4R7T6uDwKUnJmNk9UP129785cRufMOZfnt/pIjj5LxhIfltm1cm/kZ7d3OB+GduBAa2JAGEK9O0/LMeTQJ0ax9LVIXcPcuvJ6f+Blh+Z2IvfvQWYFqTZGF/L4B0TR+KA94NvPM/6d/xxy8C99ClYQAk1/2OH/PXUasAV38i9SUJ9e/MI4HT/pf/7bVKcs+GY1/tomiWXxs28QcAP/rRj/Dd734Xa9aswUEHHYQf/OAHmD+fri000gsbFbj8vcDT1ycRuX+gux7vNFQHEkKj2dQlCnmS4NyeJlVHr0E88uskVfr4b/kdUR82r0wMp33+pvl7vmVtorIa050sBKseSEi3Z28B2nYDjvt6c4TEqwXGJA7uxmeA2X/F7zewJXHSgEQp8p7LEgO2ZwVwyIeaTmcZMX7zUWDto0nU7qUSTtUBYMPTiUHw7M0JseEjyLeuS9RCUSkba5Xt9f+WYEyiHuyalTnb+/4t8N5hRlfXPAL8+iPAYacnztVLIYyHi/7Nr0xQ4MHLgSevy4zYL61gUwBZ9G9OHJZ7fwLMO6V5xXbPioQ82RFG6qsZxiRkX3ls06l3ddi6PjFEDz4VeOH+RNE33LFaHUze00vSZJF935Y4mc1ce2V7NqdvWAJ0zmhSufwaRVxL5qKe5Ukgqdl5yTor0w4FPppLQe1ZDvzmdOD48+XMBOr7gObI9a3rknV03RPApmcTonCost4Haxpvei6ZW6v9WbBWsn2W3pb876izgN9/Gng0p0w+6qzkWoa7rlUHEqJgXJNqym0bEmdzzrHJeF39EHDNJxO1UrPOIgD88UtJgOOYzyX2TBNpfAAS+6VrVrL/1nWJbdMu14AGADxxLbD8LuDA9yRqrEI5cbybcf7WPpbYXgd/YGT2UlxL7t3YSYmzvGFJcr+atXdrVeDuC5OAfTPq9vxxX0/XjrNfSMZHpR9Y83CiEB+uvV3pT+al6mDzaqmXgkp/ElgIC8m6um19ErA46eLhzc/P3AQsvhQ48YLEFn6tYNNS4MWlSZBiODAmEUdIQhAOA1sTG3vKvJfuk21/Mcn6GQnJYkxiR005KCGzmsGvPpAE7YEk62jMpESw0Ay2bUzmpf1P4hX3r0a8cH8SHAESRX8z62mtkqxD3Xu/9PNvWQNsWZ0E6ZtFrZqMrTBKrmUkdhsw/DVcMSzsUOLvpWCXIv62bUwi7Qe8h46KvxZx5w8TZ1VSGSgUzSKuAV9LnYlmFCw7AsaMDiJ78WWJkuvdlzYX4VdkGC1jQNE8Vj0APPpb4K++8NpyHl4LsEb+zCOBv//jS/++m78J3Jamsr7WnIarPgw89lvg2HOAoz/7Sl+N4tWKDUsSe2iiJwNCoRgt6N+cEH/7/A2Qqx84qrHqAeA/3pT8/Vpbx14qrDp46sGJ0ELxskKJP4VC8drBI79O6uE1k1arUCgUilc3LPG3x18lqTwvFXEMrLo/qWP5WlK+W2hgQaFQKHZtxLWkzEvndOCdTTTfGm3Y/mLz9WQVw0Kz/NoulmOkUChelVAFqUKhUIw+jDQtaCjCsPnmF69GKOmnUCgUuzbCCPgwURt6V4GSfq84tFqiQqFQKBQKheLlB9eBVqFQKBQKhUKx06DEn0KhUCgUCoXi5ceu1rxGoVAoFAqF4lUIJf4UCoVCoVAoFC8futMGBQe+95W9DoVCoVAoFAqF1vhTKBQKhUKhULyMOP3GpEvp1INf6StRKBQKhUKh2OWhxJ9CoVAoFAqF4uVDeSww7fWv9FUoFAqFQqFQKKCpvgqFQqFQKBQKhUKhUCgUCsWohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKIQSfwqFQqFQKBQKhUKhUCgUCsUohBJ/CoVCoVAoFAqFQqFQKBQKxSiEEn8KhUKhUCgUCoVCoVAoFArFKERhZ5/QGAMA6O3t3dmnVigUCoVCoVAoFAqFQqFQKF7zsLya5dk47HTib8uWLQCAGTNm7OxTKxQKhUKhUCgUCoVCoVAoFKMGW7ZsQWdnJ7s9MBI1+DIjjmOsWrUKY8eORRAEO/PUOwW9vb2YMWMGVqxYgY6Ojlf6chQKxWsEOncoFIrhQucNhUIxEujcoVAohgudN16dMMZgy5YtmDp1KsKQr+S30xV/YRhi+vTpO/u0Ox0dHR36QigUimFD5w6FQjFc6LyhUChGAp07FArFcKHzxqsPPqWfhTb3UCgUCoVCoVAoFAqFQqFQKEYhlPhTKBQKhUKhUCgUCoVCoVAoRiGU+HuZUS6Xce6556JcLr/Sl6JQKF5D0LlDoVAMFzpvKBSKkUDnDoVCMVzovPHaxk5v7qFQKBQKhUKhUCgUCoVCoVAodjxU8adQKBQKhUKhUCgUCoVCoVCMQijxp1AoFAqFQqFQKBQKhUKhUIxCKPGnUCgUCoVCoVAoFAqFQqFQjEIo8adQKBQKhUKhUCgUCoVCoVCMQijxp1AoFAqFQqFQKBQKhUKhUIxCKPH3MuLCCy/E7rvvjpaWFsyfPx9/+ctfXulLUigUOwnnnXcegiCo+98+++zjtvf39+PMM8/EbrvthjFjxuDkk0/G2rVr675j+fLlOPHEE9HW1oaJEyfi85//PKrVat0+ixYtwutf/3qUy2XsueeeuPTSS3fGz1MoFC8TbrvtNrztbW/D1KlTEQQBfve739VtN8bgnHPOwZQpU9Da2ooFCxZgyZIldfts2rQJp556Kjo6OtDV1YWPfOQj2Lp1a90+Dz/8MI4++mi0tLRgxowZ+M53vtNwLVdddRX22WcftLS04IADDsAf/vCHl/33KhSKlw5p3vjQhz7UYIMcf/zxdfvovKFQ7Fo4//zzcdhhh2Hs2LGYOHEiTjrpJDz11FN1++xM/0S5klcWSvy9TPjVr36Fz3zmMzj33HNx//33Y968eVi4cCHWrVv3Sl+aQqHYSdh///2xevVq97/bb7/dbfunf/on/P73v8dVV12FW2+9FatWrcI73/lOt71Wq+HEE0/E4OAg7rzzTlx22WW49NJLcc4557h9li5dihNPPBFvfvOb8eCDD+Kss87C6aefjj/96U879XcqFIqRY9u2bZg3bx4uvPBCcvt3vvMd/OAHP8All1yCe+65B+3t7Vi4cCH6+/vdPqeeeioee+wx3HDDDbj22mtx22234WMf+5jb3tvbi+OOOw6zZs3C4sWL8d3vfhfnnXce/uM//sPtc+edd+KUU07BRz7yETzwwAM46aSTcNJJJ+HRRx/dcT9eoVCMCNK8AQDHH398nQ1yxRVX1G3XeUOh2LVw66234swzz8Tdd9+NG264AZVKBccddxy2bdvm9tlZ/olyJa8CGMXLgsMPP9yceeaZ7t+1Ws1MnTrVnH/++a/gVSkUip2Fc88918ybN4/c1tPTY4rFornqqqvcZ0888YQBYO666y5jjDF/+MMfTBiGZs2aNW6fiy++2HR0dJiBgQFjjDFf+MIXzP7771/33e9973vNwoULX+Zfo1AodgYAmKuvvtr9O45jM3nyZPPd737XfdbT02PK5bK54oorjDHGPP744waAuffee90+f/zjH00QBOaFF14wxhhz0UUXmXHjxrm5wxhjvvjFL5q9997b/fs973mPOfHEE+uuZ/78+ebjH//4y/obFQrFy4uh84Yxxpx22mnm7W9/O3uMzhsKhWLdunUGgLn11luNMTvXP1Gu5JWHKv5eBgwODmLx4sVYsGCB+ywMQyxYsAB33XXXK3hlCoViZ2LJkiWYOnUqZs+ejVNPPRXLly8HACxevBiVSqVujthnn30wc+ZMN0fcddddOOCAAzBp0iS3z8KFC9Hb24vHHnvM7ZP/DruPzjMKxejA0qVLsWbNmrr3vLOzE/Pnz6+bK7q6unDooYe6fRYsWIAwDHHPPfe4fY455hiUSiW3z8KFC/HUU0/hxRdfdPvofKJQjB4sWrQIEydOxN57740zzjgDGzdudNt03lAoFJs3bwYAjB8/HsDO80+UK3l1QIm/lwEbNmxArVareyEAYNKkSVizZs0rdFUKhWJnYv78+bj00ktx/fXX4+KLL8bSpUtx9NFHY8uWLVizZg1KpRK6urrqjsnPEWvWrCHnELvNt09vby+2b9++g36ZQqHYWbDvus+eWLNmDSZOnFi3vVAoYPz48S/LfKJ2i0Lx2sPxxx+Pn//857jpppvw7W9/G7feeitOOOEE1Go1ADpvKBS7OuI4xllnnYWjjjoKr3vd6wBgp/knypW8OlB4pS9AoVAoRgNOOOEE9/eBBx6I+fPnY9asWbjyyivR2tr6Cl6ZQqFQKBSK0Yz3ve997u8DDjgABx54IObMmYNFixbh2GOPfQWvTKFQvBpw5pln4tFHH62rP67YtaCKv5cBEyZMQBRFDR1w1q5di8mTJ79CV6VQKF5JdHV1Ye7cuXjmmWcwefJkDA4Ooqenp26f/BwxefJkcg6x23z7dHR0KLmoUIwC2HfdZ09Mnjy5oRh2tVrFpk2bXpb5RO0WheK1j9mzZ2PChAl45plnAOi8oVDsyvjkJz+Ja6+9FrfccgumT5/uPt9Z/olyJa8OKPH3MqBUKuGQQw7BTTfd5D6L4xg33XQTjjjiiFfwyhQKxSuFrVu34tlnn8WUKVNwyCGHoFgs1s0RTz31FJYvX+7miCOOOAKPPPJInWF+ww03oKOjA/vtt5/bJ/8ddh+dZxSK0YE99tgDkydPrnvPe3t7cc8999TNFT09PVi8eLHb5+abb0Ycx5g/f77b57bbbkOlUnH73HDDDdh7770xbtw4t4/OJwrF6MTKlSuxceNGTJkyBYDOGwrFrghjDD75yU/i6quvxs0334w99tijbvvO8k+UK3mV4JXuLjJa8Mtf/tKUy2Vz6aWXmscff9x87GMfM11dXXUdcBQKxejFZz/7WbNo0SKzdOlSc8cdd5gFCxaYCRMmmHXr1hljjPnEJz5hZs6caW6++WZz3333mSOOOMIcccQR7vhqtWpe97rXmeOOO848+OCD5vrrrzfd3d3m7LPPdvs899xzpq2tzXz+8583TzzxhLnwwgtNFEXm+uuv3+m/V6FQjAxbtmwxDzzwgHnggQcMAHPBBReYBx54wCxbtswYY8y3vvUt09XVZa655hrz8MMPm7e//e1mjz32MNu3b3ffcfzxx5uDDz7Y3HPPPeb22283e+21lznllFPc9p6eHjNp0iTzwQ9+0Dz66KPml7/8pWlrazM//vGP3T533HGHKRQK5nvf+5554oknzLnnnmuKxaJ55JFHdt7NUCgUTcE3b2zZssV87nOfM3fddZdZunSpufHGG83rX/96s9dee5n+/n73HTpvKBS7Fs444wzT2dlpFi1aZFavXu3+19fX5/bZWf6JciWvPJT4exnxwx/+0MycOdOUSiVz+OGHm7vvvvuVviSFQrGT8N73vtdMmTLFlEolM23aNPPe977XPPPMM2779u3bzT/8wz+YcePGmba2NvOOd7zDrF69uu47nn/+eXPCCSeY1tZWM2HCBPPZz37WVCqVun1uueUWc9BBB5lSqWRmz55t/uu//mtn/DyFQvEy4ZZbbjEAGv532mmnGWOMiePYfPWrXzWTJk0y5XLZHHvsseapp56q+46NGzeaU045xYwZM8Z0dHSYD3/4w2bLli11+zz00EPmjW98oymXy2batGnmW9/6VsO1XHnllWbu3LmmVCqZ/fff31x33XU77HcrFIqRwzdv9PX1meOOO850d3ebYrFoZs2aZT760Y82ONQ6bygUuxaoOQNAne+wM/0T5UpeWQTGGLOzVYYKhUKhUCgUCoVCoVAoFAqFYsdCa/wpFAqFQqFQKBQKhUKhUCgUoxBK/CkUCoVCoVAoFAqFQqFQKBSjEEr8KRQKhUKhUCgUCoVCoVAoFKMQSvwpFAqFQqFQKBQKhUKhUCgUoxBK/CkUCoVCoVAoFAqFQqFQKBSjEEr8KRQKhUKhUCgUCoVCoVAoFKMQSvwpFAqFQqFQKBQKhUKhUCgUoxBK/CkUCoVCoVAoFAqFQqFQKBSjEEr8KRQKhUKhUCgUCoVCoVAoFKMQSvwpFAqFQqFQKBQKhUKhUCgUoxBK/CkUCoVCoVAoFAqFQqFQKBSjEP8fqfaVEzz7xe8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(16,8))\n", + "plt.plot(true, label='true')\n", + "plt.plot(pre_data, label='pre')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mean_squared_error: 0.04969353670622598\n", + "mean_absolute_error: 0.08076025073121713\n", + "rmse: 0.22292047170734675\n", + "r2 score: 0.9988271323117631\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n", + "# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n", + "from math import sqrt\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.metrics import r2_score\n", + "print('mean_squared_error:', mean_squared_error(pre_data, true)) # mse)\n", + "print(\"mean_absolute_error:\", mean_absolute_error(pre_data, true)) # mae\n", + "print(\"rmse:\", sqrt(mean_squared_error(pre_data, true)))\n", + "print(\"r2 score:\", r2_score(pre_data[5000:10000], true[5000:10000]))#预测50天" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(20831, 1)\n" + ] + } + ], + "source": [ + "# 使用MinMaxScaler进行归一化\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "pre = scaler.fit_transform(pre_data)\n", + "print(pre.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(20831, 1)\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import MinMaxScaler\n", + "scaler = MinMaxScaler(feature_range=(0, 1))\n", + "true_data = scaler.fit_transform(true)\n", + "print(true_data.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mean_squared_error: 0.0026778377010073626\n", + "mean_absolute_error: 0.027468762691519367\n", + "rmse: 0.05174782798347543\n", + "r2 score: 0.9988074259067585\n" + ] + } + ], + "source": [ + "from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标\n", + "# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2\n", + "from math import sqrt\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.metrics import r2_score\n", + "print('mean_squared_error:', mean_squared_error(pre, true_data)) # mse)\n", + "print(\"mean_absolute_error:\", mean_absolute_error(pre, true_data)) # mae\n", + "print(\"rmse:\", sqrt(mean_squared_error(pre, true_data)))\n", + "print(\"r2 score:\", r2_score(pre_data, true))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/iceemdan分解 逐步分解.ipynb b/iceemdan分解 逐步分解.ipynb new file mode 100644 index 0000000..223087f --- /dev/null +++ b/iceemdan分解 逐步分解.ipynb @@ -0,0 +1,418 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from math import sqrt\n", + "from numpy import concatenate\n", + "from matplotlib import pyplot\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.metrics import mean_squared_error\n", + "from tensorflow.keras import Sequential\n", + "\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.layers import LSTM\n", + "from tensorflow.keras.layers import Dropout\n", + "from sklearn.model_selection import train_test_split\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 加载数据\n", + "path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\data6.csv\"#数据所在路径\n", + "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", + "datas1 = pd.DataFrame(pd.read_csv(path1))\n", + "#我只取了data表里的第3、23、16、17、18、19、20、21、27列,如果取全部列的话这一行可以去掉\n", + "# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]\n", + "data1=datas1.interpolate()\n", + "values1 = data1.values\n", + "print(data1.head())\n", + "print(data1.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from PyEMD import EMD\n", + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "def ICEEMDAN(data, num_siftings=18, Nstd=0.2, NR=100):\n", + " \"\"\"\n", + " 改进的完全集合经验模态分解与自适应噪声(ICEEMDAN)。\n", + " \"\"\"\n", + " emd = EMD()\n", + " T = len(data)\n", + " std_data = np.std(data)\n", + " \n", + " # 通过添加白噪声获取数据的 IMFs 集合\n", + " E_IMFs = np.zeros((NR, T, num_siftings))\n", + " for r in range(NR):\n", + " wn = np.random.normal(scale=std_data*Nstd, size=T)\n", + " noisy_data = data + wn\n", + " \n", + " # 分解带噪声的数据\n", + " imfs = emd.emd(noisy_data)\n", + " \n", + " # 仅保留前 `num_siftings` 个 IMFs\n", + " for i in range(min(num_siftings, imfs.shape[0])):\n", + " E_IMFs[r, :, i] = imfs[i]\n", + " \n", + " # 所有实验的 IMFs 平均值\n", + " mean_IMFs = np.mean(E_IMFs, axis=0)\n", + " \n", + " return mean_IMFs\n", + "\n", + "# 假设您有一个名为 'data1' 的 DataFrame,其中包含一个 'Power' 列\n", + "data_power = data1['Power'].values\n", + "\n", + "# 定义分解的数据窗口大小\n", + "window_size = 104256\n", + "\n", + "# 遍历以 'window_size' 为单位的数据块\n", + "for i in range(0, len(data_power), window_size):\n", + " # 提取当前数据块\n", + " current_data = data_power[i:i+window_size]\n", + " \n", + " # 对当前数据块应用 ICEEMDAN 分解\n", + " IMFs = ICEEMDAN(current_data)\n", + " \n", + " # 创建一个新的 DataFrame 来保存 ICEEMDAN 分解结果\n", + " data_ICEEMDAN = pd.DataFrame(IMFs, columns=[f'IMF{i}' for i in range(IMFs.shape[1])])\n", + " \n", + " # 计算 IMFs 的总和\n", + " IMFs_sum = data_ICEEMDAN[[f'IMF{i}' for i in range(IMFs.shape[1])]].sum(axis=1)\n", + " \n", + " # 计算 IMFs 总和与原始信号之间的差值\n", + " residue = current_data - IMFs_sum\n", + " \n", + " # 将残差添加到 DataFrame\n", + " data_ICEEMDAN['Residue'] = residue\n", + " \n", + " # 打印当前数据块的分解结果\n", + " print(f\"数据块 {i+1}-{i+len(current_data)} 的分解结果:\")\n", + " print(data_ICEEMDAN)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 将分解后的 IMFs 与残差相加以恢复原始数据\n", + "reconstructed_signal = IMFs_sum + residue\n", + "\n", + "# 绘制重构的数据与原始数据进行比较\n", + "plt.figure(figsize=(30, 18))\n", + "plt.plot(current_data[0:2900], label='Original Signal', color='blue')\n", + "plt.plot(reconstructed_signal[0:2900], label='Reconstructed Signal', color='red')\n", + "plt.xlabel('Time')\n", + "plt.ylabel('Amplitude')\n", + "plt.title('Comparison between Original and Reconstructed Signal')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# 设置全局字体大小\n", + "plt.rcParams.update({'font.size': 60}) # 设置字体大小为 16\n", + "\n", + "# 在这里放置您的绘图代码\n", + "num_imfs = IMFs.shape[1]\n", + "\n", + "plt.figure(figsize=(64,128))\n", + "\n", + "# 绘制每个 IMF\n", + "for i in range(num_imfs):\n", + " if i <= 19: # 只绘制前 14 个 IMF\n", + " plt.subplot(num_imfs, 1, i + 1)\n", + " plt.plot(data_ICEEMDAN[f'IMF{i}'], label=f'IMF {i}')\n", + " plt.legend()\n", + "plt.legend()\n", + "\n", + "# 绘制残差\n", + "plt.subplot(num_imfs + 1, 1, num_imfs + 1)\n", + "plt.plot(data_ICEEMDAN[f'IMF{17}'], label='Residue', color='red')\n", + "plt.legend()\n", + "\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.signal import welch\n", + "\n", + "def plot_frequency_spectrum(signal, sampling_rate, title):\n", + " \"\"\"\n", + " 绘制信号的频谱图。\n", + " \n", + " 参数:\n", + " - signal: 输入信号\n", + " - sampling_rate: 信号的采样率\n", + " - title: 图表标题\n", + " \"\"\"\n", + " f, Pxx = welch(signal, fs=sampling_rate, nperseg=len(signal))\n", + " plt.figure(figsize=(10, 5))\n", + " plt.semilogy(f, Pxx)\n", + " plt.title(title)\n", + " plt.xlabel('Frequency (Hz)')\n", + " plt.ylabel('Power spectral density')\n", + " plt.grid(True)\n", + " plt.show()\n", + "\n", + "def compute_zero_crossings(signal):\n", + " \"\"\"\n", + " 计算信号的过零率。\n", + " \"\"\"\n", + " zero_crossings = np.where(np.diff(np.sign(signal)))[0]\n", + " zero_crossing_rate = len(zero_crossings) / len(signal)\n", + " return zero_crossing_rate\n", + "\n", + "def classify_frequency_component(imfs, threshold):\n", + " \"\"\"\n", + " 将每个 IMF 分为高频和低频成分。\n", + " \"\"\"\n", + " high_frequency_imfs = []\n", + " low_frequency_imfs = []\n", + " for i in range(imfs.shape[1]):\n", + " imf = imfs[:, i]\n", + " zero_crossing_rate = compute_zero_crossings(imf)\n", + " if zero_crossing_rate > threshold:\n", + " high_frequency_imfs.append(imf)\n", + " else:\n", + " low_frequency_imfs.append(imf)\n", + " return high_frequency_imfs, low_frequency_imfs\n", + "\n", + "# 定义过零率的阈值\n", + "threshold = 0.2 # 可根据具体情况调整阈值\n", + "\n", + "# 根据过零率判断高频和低频成分\n", + "high_freq_imfs, low_freq_imfs = classify_frequency_component(IMFs, threshold)\n", + "sampling_rate = 1000 \n", + "# 可选:绘制高频和低频成分的频谱图\n", + "for i, imf in enumerate(high_freq_imfs):\n", + " plot_frequency_spectrum(imf, sampling_rate, f'High Frequency IMF {i+1}')\n", + "\n", + "for i, imf in enumerate(low_freq_imfs):\n", + " plot_frequency_spectrum(imf, sampling_rate, f'Low Frequency IMF {i+1}')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 打印高频和低频成分的 IMF 列表\n", + "print(\"High Frequency IMFs:\")\n", + "for i, imf in enumerate(high_freq_imfs):\n", + " print(f\"IMF {i+1}: {imf}\")\n", + "\n", + "print(\"\\nLow Frequency IMFs:\")\n", + "for i, imf in enumerate(low_freq_imfs):\n", + " print(f\"IMF {i+1}: {imf}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "# 将高频和低频信号相加\n", + "high_freq_sum = np.sum(high_freq_imfs, axis=0)\n", + "low_freq_sum = np.sum(low_freq_imfs, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "high_freq_sum" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "low_freq_sum" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "residue" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "re_low=residue+low_freq_sum" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "re_high=residue+high_freq_sum\n", + "re_high" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_low = pd.DataFrame(low_freq_sum, columns=['column_name'])\n", + "df_low.to_csv('iceemdan_reconstructed_data_low.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_high = pd.DataFrame(high_freq_sum, columns=['column_name'])\n", + "df_high.to_csv('iceemdan_reconstructed_data_high.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_high = pd.DataFrame(residue, columns=['column_name'])\n", + "df_high.to_csv('iceemdan_reconstructed_data_residue.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_re_low = pd.DataFrame(re_low, columns=['column_name'])\n", + "df_re_low.to_csv('iceemdan_reconstructed_data_re_low.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_re_high = pd.DataFrame(re_high, columns=['column_name'])\n", + "df_re_high.to_csv('iceemdan_reconstructed_data_re_high.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "IMFs_sum" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 指定文件路径和文件名,保存DataFrame到CSV文件中\n", + "df_high = pd.DataFrame(IMFs_sum, columns=['column_name'])\n", + "df_high.to_csv('iceemdan_reconstructed_data_IMFs_sum.csv', index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}