{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\computation\\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed).\n", " from pandas.core.computation.check import NUMEXPR_INSTALLED\n", "C:\\Users\\asus\\AppData\\Roaming\\Python\\Python39\\site-packages\\pandas\\core\\arrays\\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).\n", " from pandas.core import (\n" ] } ], "source": [ "from math import sqrt\n", "from numpy import concatenate\n", "from matplotlib import pyplot\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.preprocessing import LabelEncoder\n", "from sklearn.metrics import mean_squared_error\n", "from tensorflow.keras import Sequential\n", "\n", "from tensorflow.keras.layers import Dense\n", "from tensorflow.keras.layers import LSTM\n", "from tensorflow.keras.layers import Dropout\n", "from sklearn.model_selection import train_test_split\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这段代码是一个函数 time_series_to_supervised,它用于将时间序列数据转换为监督学习问题的数据集。下面是该函数的各个部分的含义:\n", "\n", "data: 输入的时间序列数据,可以是列表或2D NumPy数组。\n", "n_in: 作为输入的滞后观察数,即用多少个时间步的观察值作为输入。默认值为96,表示使用前96个时间步的观察值作为输入。\n", "n_out: 作为输出的观测数量,即预测多少个时间步的观察值。默认值为10,表示预测未来10个时间步的观察值。\n", "dropnan: 布尔值,表示是否删除具有NaN值的行。默认为True,即删除具有NaN值的行。\n", "函数首先检查输入数据的维度,并初始化一些变量。然后,它创建一个新的DataFrame对象 df 来存储输入数据,并保存原始的列名。接着,它创建了两个空列表 cols 和 names,用于存储新的特征列和列名。\n", "\n", "接下来,函数开始构建特征列和对应的列名。首先,它将原始的观察序列添加到 cols 列表中,并将其列名添加到 names 列表中。然后,它依次将滞后的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t-滞后时间)。这样就创建了输入特征的部分。\n", "\n", "接着,函数开始构建输出特征的部分。它依次将未来的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t+未来时间)。\n", "\n", "最后,函数将所有的特征列拼接在一起,构成一个新的DataFrame对象 agg。如果 dropnan 参数为True,则删除具有NaN值的行。最后,函数返回处理后的数据集 agg。" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "def time_series_to_supervised(data, n_in=96, n_out=10,dropnan=True):\n", " \"\"\"\n", " :param data:作为列表或2D NumPy数组的观察序列。需要。\n", " :param n_in:作为输入的滞后观察数(X)。值可以在[1..len(数据)]之间可选。默认为1。\n", " :param n_out:作为输出的观测数量(y)。值可以在[0..len(数据)]之间。可选的。默认为1。\n", " :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。\n", " :return:\n", " \"\"\"\n", " n_vars = 1 if type(data) is list else data.shape[1]\n", " df = pd.DataFrame(data)\n", " origNames = df.columns\n", " cols, names = list(), list()\n", " cols.append(df.shift(0))\n", " names += [('%s' % origNames[j]) for j in range(n_vars)]\n", " n_in = max(0, n_in)\n", " for i in range(n_in, 0, -1):\n", " time = '(t-%d)' % i\n", " cols.append(df.shift(i))\n", " names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]\n", " n_out = max(n_out, 0)\n", " for i in range(1, n_out+1):\n", " time = '(t+%d)' % i\n", " cols.append(df.shift(-i))\n", " names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]\n", " agg = pd.concat(cols, axis=1)\n", " agg.columns = names\n", " if dropnan:\n", " agg.dropna(inplace=True)\n", " return agg" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Temp Humidity GHI DHI Rainfall Power\n", "0 19.779453 40.025826 3.232706 1.690531 0.0 0.0\n", "1 19.714937 39.605961 3.194991 1.576346 0.0 0.0\n", "2 19.549330 39.608631 3.070866 1.576157 0.0 0.0\n", "3 19.405870 39.680702 3.038623 1.482489 0.0 0.0\n", "4 19.387363 39.319881 2.656474 1.134153 0.0 0.0\n", "(104256, 6)\n" ] } ], "source": [ "# 加载数据\n", "path1 = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\data6.csv\"#数据所在路径\n", "#我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", "datas1 = pd.DataFrame(pd.read_csv(path1))\n", "#我只取了data表里的第3、23、16、17、18、19、20、21、27列,如果取全部列的话这一行可以去掉\n", "# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]\n", "data1=datas1.interpolate()\n", "values1 = data1.values\n", "print(data1.head())\n", "print(data1.shape)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# data2= data1.drop(['date'], axis = 1)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# # 获取重构的原始数据\n", "# # 获取重构的原始数据\n", "# # 获取重构的原始数据\n", "path_re = r\"D:\\project\\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\\CEEMAN-PosConv1dbiLSTM-LSTM\\模型代码流程\\完整的模型代码流程\\iceemdan_reconstructed_data_low.csv\"#数据所在路径\n", "# #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。\n", "data_re = pd.DataFrame(pd.read_csv(path_re))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | column_name | \n", "
---|---|
0 | \n", "1.460307 | \n", "
1 | \n", "1.460504 | \n", "
2 | \n", "1.460698 | \n", "
3 | \n", "1.460886 | \n", "
4 | \n", "1.461071 | \n", "
... | \n", "... | \n", "
104251 | \n", "1.663370 | \n", "
104252 | \n", "1.664516 | \n", "
104253 | \n", "1.665650 | \n", "
104254 | \n", "1.666774 | \n", "
104255 | \n", "1.667887 | \n", "
104256 rows × 1 columns
\n", "Model: \"sequential\"\n",
"
\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ lstm (LSTM) │ (None, 128) │ 69,120 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (Dense) │ (None, 1) │ 129 │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ lstm (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m69,120\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m129\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Total params: 69,249 (270.50 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m69,249\u001b[0m (270.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 69,249 (270.50 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m69,249\u001b[0m (270.50 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from keras.layers import GRU, Bidirectional\n", "from keras.models import Model\n", "from keras.layers import Input, Conv1D, MaxPooling1D, LSTM, Dense, Attention, Flatten\n", "import keras\n", "from keras.models import Sequential\n", "from keras.layers import LSTM, Dense\n", "\n", "# 创建模型\n", "model = Sequential()\n", "\n", "# 添加单层 LSTM\n", "model.add(LSTM(units=128, input_shape=(96, 6)))\n", "\n", "# 添加输出层\n", "model.add(Dense(1))\n", "\n", "# 编译模型\n", "model.compile(optimizer='adam', loss='mean_squared_error')\n", "\n", "# 查看模型结构\n", "model.summary()\n" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m45s\u001b[0m 34ms/step - loss: 0.0071 - val_loss: 1.3979e-05\n", "Epoch 2/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m45s\u001b[0m 35ms/step - loss: 1.7388e-05 - val_loss: 2.4750e-05\n", "Epoch 3/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m55s\u001b[0m 42ms/step - loss: 9.4934e-06 - val_loss: 2.6778e-06\n", "Epoch 4/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m77s\u001b[0m 59ms/step - loss: 7.7084e-06 - val_loss: 8.5239e-06\n", "Epoch 5/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m59s\u001b[0m 46ms/step - loss: 1.0285e-05 - val_loss: 7.4017e-06\n", "Epoch 6/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m64s\u001b[0m 49ms/step - loss: 4.5950e-06 - val_loss: 4.3379e-06\n", "Epoch 7/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m73s\u001b[0m 56ms/step - loss: 7.2545e-06 - val_loss: 5.1982e-05\n", "Epoch 8/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m78s\u001b[0m 60ms/step - loss: 8.1455e-06 - val_loss: 5.4236e-06\n", "Epoch 9/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m74s\u001b[0m 57ms/step - loss: 4.0686e-06 - val_loss: 1.6651e-06\n", "Epoch 10/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m69s\u001b[0m 53ms/step - loss: 4.4366e-06 - val_loss: 1.1472e-06\n", "Epoch 11/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m74s\u001b[0m 57ms/step - loss: 5.2050e-06 - val_loss: 1.9424e-07\n", "Epoch 12/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m75s\u001b[0m 58ms/step - loss: 2.9417e-06 - val_loss: 7.2545e-06\n", "Epoch 13/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m46s\u001b[0m 35ms/step - loss: 3.5579e-06 - val_loss: 8.3836e-07\n", "Epoch 14/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m61s\u001b[0m 47ms/step - loss: 2.9325e-06 - val_loss: 1.8872e-06\n", "Epoch 15/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m66s\u001b[0m 50ms/step - loss: 1.1996e-06 - val_loss: 4.9818e-07\n", "Epoch 16/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m40s\u001b[0m 31ms/step - loss: 1.9083e-06 - val_loss: 1.1571e-06\n", "Epoch 17/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 32ms/step - loss: 2.5659e-06 - val_loss: 2.3767e-07\n", "Epoch 18/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 32ms/step - loss: 1.9273e-06 - val_loss: 2.9061e-07\n", "Epoch 19/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 32ms/step - loss: 1.8791e-06 - val_loss: 2.7131e-06\n", "Epoch 20/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 32ms/step - loss: 2.5186e-06 - val_loss: 1.0457e-06\n", "Epoch 21/100\n", "\u001b[1m1302/1302\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m42s\u001b[0m 32ms/step - loss: 1.6832e-06 - val_loss: 3.1923e-06\n", "\u001b[1m326/326\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 9ms/step\n" ] } ], "source": [ "# Compile and train the model\n", "model.compile(optimizer='adam', loss='mean_squared_error')\n", "from keras.callbacks import EarlyStopping, ModelCheckpoint\n", "\n", "# 定义早停机制\n", "early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='min')\n", "\n", "# 拟合模型,并添加早停机制和模型检查点\n", "history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(test_X, test_y), \n", " callbacks=[early_stopping])\n", "# 预测\n", "lstm_pred = model.predict(test_X)\n", "# 将预测结果的形状修改为与原始数据相同的形状" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(10415, 1)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lstm_pred.shape" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(10415,)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_y.shape" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "test_y1=test_y.reshape(10415,1)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.7652725 ],\n", " [0.76545048],\n", " [0.76562896],\n", " ...,\n", " [0.8987423 ],\n", " [0.89938682],\n", " [0.90002507]])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_y1" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "results1 = np.broadcast_to(lstm_pred, (10415, 6))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "test_y2 = np.broadcast_to(test_y1, (10415, 6))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# 反归一化\n", "inv_forecast_y = scaler.inverse_transform(results1)\n", "inv_test_y = scaler.inverse_transform(test_y2)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 33.72769272, 79.19746393, 1078.1022603 , 503.73660832,\n", " 18.21349214, 1.43294754],\n", " [ 33.73672318, 79.21506254, 1078.35293583, 503.85368135,\n", " 18.2177282 , 1.43325785],\n", " [ 33.74577882, 79.23271021, 1078.60431013, 503.97108072,\n", " 18.22197608, 1.43356904],\n", " ...,\n", " [ 40.49954372, 92.3944846 , 1266.08128876, 591.5284767 ,\n", " 21.39007466, 1.66565038],\n", " [ 40.53224485, 92.45821275, 1266.98903575, 591.95242188,\n", " 21.40541432, 1.6667741 ],\n", " [ 40.56462766, 92.52132055, 1267.88794639, 592.37224023,\n", " 21.42060465, 1.66788688]])" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inv_test_y" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Test RMSE: 0.003\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAKTCAYAAAC+UV5jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1dXA4d+dbepdsmxJVnHvFYxptumm9xpISGgfIQkQQkJNgAAJhJIAoYXeuynGuHfjbrnJsi2rW5LVu7TaMt8fIwzGTWV2V7LP+zx6sLUz9x7JaDVz5t5zlK7rOkIIIYQQQgghhBBCiKOeFugAhBBCCCGEEEIIIYQQPYMkC4UQQgghhBBCCCGEEIAkC4UQQgghhBBCCCGEEO0kWSiEEEIIIYQQQgghhAAkWSiEEEIIIYQQQgghhGgnyUIhhBBCCCGEEEIIIQQgyUIhhBBCCCGEEEIIIUQ7a6AD6Aiv10tJSQnh4eEopQIdjhBCCCGEEEIIIYQQvYqu6zQ0NNCvXz807eDrB3tFsrCkpISUlJRAhyGEEEIIIYQQQgghRK9WVFREcnLyQV/vFcnC8PBwwPhiIiIiAhyNEEIIIYQQQgghhBC9S319PSkpKXvzbAfTK5KFP2w9joiIkGShEEIIIYQQQgghhBBddLgSf9LgRAghhBBCCCGEEEIIAUiyUAghhBBCCCGEEEII0U6ShUIIIYQQQgghhBBCCKCX1CwUQgghhBBCCCGEEEcfj8eDy+UKdBi9gs1mw2KxdHscSRYKIYQQQgghhBBCiB5F13XKysqora0NdCi9SlRUFImJiYdtYnIokiwUQgghhBBCCCGEED3KD4nChIQEQkJCupX8Ohrouk5zczPl5eUA9O3bt8tjSbJQCCGEEEIIIYQQQvQYHo9nb6IwNjY20OH0GsHBwQCUl5eTkJDQ5S3J0uBECCGEEEIIIYQQQvQYP9QoDAkJCXAkvc8P37Pu1HmUZKEQQgghhBBCCCGE6HFk63HnmfE9k2ShEEIIIYQQQgghhBACkGShEEIIIYQQQgghhBCinSQLhRBCCCGEEEIIIYQQgCQLhRBCCCGEEEIIIYQwxdSpU7n99tsDHUa3SLJQCCGEEEIIIYQQQgg/0HUdt9sd6DAOSZKFQgghhBBCCCGEEKJH03Wd5jZ3QD50Xe9QjL/61a9YvHgx//73v1FKoZTizTffRCnFrFmzmDBhAg6Hg2XLlvGrX/2KCy+8cJ/zb7/9dqZOnbr3716vl8cff5z09HSCg4MZM2YMn376qYnf1QOz+nwGIYQQQgghhBBCCCG6ocXlYfiDswMyd9bDZxJiP3wK7d///jc7duxg5MiRPPzwwwBs3boVgL/85S/861//IiMjg+jo6A7N+/jjj/Puu+/y0ksvMWjQIJYsWcIvfvEL4uPjmTJlSte/oMOQZKEQQgghhBBCCCGEEN0UGRmJ3W4nJCSExMREALKzswF4+OGHOf300zs8ltPp5LHHHmPevHlMnjwZgIyMDJYtW8bLL78syUIhhBBCCCGEEEIIcfQKtlnIevjMgM3dXRMnTuzU8Tk5OTQ3N++XYGxra2PcuHHdjudQJFkohBBCCCGEEEIIIXo0pVSHtgL3VKGhofv8XdO0/WohulyuvX9ubGwEYObMmSQlJe1znMPh8FGUht77XRZCCCGEEEIIIYQQogex2+14PJ7DHhcfH8+WLVv2+VxmZiY2mw2A4cOH43A4KCws9OmW4wORZKEQQgghhBBCCCGEECZIS0tj1apV5OfnExYWhtfrPeBxp5xyCk8++SRvv/02kydP5t1332XLli17txiHh4dz1113cccdd+D1ejnxxBOpq6tj+fLlRERE8Mtf/tJnX4Pms5GFEEIIIYQQQgghhDiK3HXXXVgsFoYPH058fDyFhYUHPO7MM8/kgQce4O677+aYY46hoaGB6667bp9jHnnkER544AEef/xxhg0bxllnncXMmTNJT0/36deg9J9vkO6B6uvriYyMpK6ujoiIiECHI4QQQgghhBBCCCF8pLW1lby8PNLT0wkKCgp0OL3Kob53Hc2vycpCIYQQQgghhBBCCCEEIDULhRBCCCGEEEII4UdF1c08NWc7mqb405lD6BsZHOiQhBA/IclCIYQQQgghhBBC+EWry8N1r68mr7IJgM3FdXz9uxMJslkCHJkQ4geyDVkIIYQQQgghhBB+8dn6YrSqHTwX9CLPOV5EVWzjw9UHbgAhhAgMWVkohBBCCCGEEEIIv/hs5Q7etT9OX6pBwcn2dfxmaQy/PD4NpVSgwxNCICsLhRBCCCGEEEII4QeldS2MKv+avqoab1A03phBRKpmLmz8kMyi2kCHJ4RoJ8lCIYQQQgghhBBC+Nyi7RVcZVkAgHbKfWjnPQPARZZlzM3MDWRoQoifkGShEEIIIYQQQgghfC4nJ5uhWhFeNBh5CaSdSFNoCqHKiWvbt4EOTwjRTpKFQgghhBBCCCGE8LmwwoUA1MeOhZAYUArL6EsBGN+4mPL61gBGJ4T4gSQLhRBCCCGEEEII4VMNrS6GNa0BwDb0jL2fDxp1AQAnaZtZtbM0ILEJIfYlyUIhhBBCCCGEEEL41LbSBsZqOQCEDpn24wt9x9JoiyFMtVKStSxA0QkROG1tbYEOYT+SLBRCCCGEEEIIIYRPFRUVkqhq8KKgz4gfX1CKxoRjALDuXhOg6IQwz9SpU7ntttu47bbbiIyMJC4ujgceeABd1wFIS0vjkUce4brrriMiIoKbbroJgGXLlnHSSScRHBxMSkoKv//972lqagrI1yDJQiGEEEIIIYQQQvhUc1EmADWOZHCE7/Na6MDjAUht2kxzm9vfoYneQtehrSkwH+2Jvo566623sFqtrF69mn//+988/fTT/O9//9v7+r/+9S/GjBnDhg0beOCBB9i1axdnnXUWl1xyCZs2beKjjz5i2bJl3HbbbWZ/FzvEGpBZhRBCCCGEEEIIcdSwVGwDoCl6KLE/ey180ImwGMZrO9hSXMexGT8/QgjA1QyP9QvM3PeWgD20w4enpKTwzDPPoJRiyJAhbN68mWeeeYYbb7wRgFNOOYU//vGPe4+/4YYbuOaaa7j99tsBGDRoEP/5z3+YMmUKL774IkFBQaZ+OYcjKwuFEEIIIYQQQgjhU0EN+QBY4wft/2LiaFzKRoxqJG/HRv8GJoQPHHfccSil9v598uTJ7Ny5E4/HA8DEiRP3OX7jxo28+eabhIWF7f0488wz8Xq95OXl+TV2kJWFQgghhBBCCCGE8KGWNg/xbcVggYikofsfYLVTGTGCvnWZOPNWAqf4PUbRC9hCjBV+gZrbRKGh+65SbGxs5Oabb+b3v//9fsf279/f1Lk7QpKFQgghhBBCCCGE8JnimmbStTIAwvoOPuAxnsSxUJdJWPUWP0YmehWlOrUVOJBWrVq1z99XrlzJoEGDsFgsBzx+/PjxZGVlMXDgQH+Ed1iyDVkIIYQQQgghhBA+U1JVSz+qjL/EDjjgMeHpRkfk/s6dtLo8/gpNCJ8oLCzkzjvvZPv27XzwwQc899xz/OEPfzjo8X/+859ZsWIFt912G5mZmezcuZMvv/xSGpwIIYQQQgghhBDiyFNfmoOmdFpUCMGh8Qc8JiLDqOE2XBWws7SOUf1j/BmiEKa67rrraGlp4dhjj8VisfCHP/yBm2666aDHjx49msWLF3Pfffdx0kknoes6AwYM4IorrvBj1D+SZKEQQgghhBBCCCF8pq08B4CaoGSCf9L04adU3CBaVRAhtLJ71yZG9Z/qxwiFMJfNZuPZZ5/lxRdf3O+1/Pz8A55zzDHHMGfOHB9H1jGyDVkIIYQQQgghhBA+o9XkAtASnnqIgyyUhw4xjitY54+whBAHIclCIYQQQgghhBBC+Iy9YTcAetQhkoVAa/woABwV0uREiECSbchCCCGEEEIIIYTwmRDnHgAcMSmHPi5pFORBVFMuuq6jDrJlWYiebNGiRYEOodtkZaEQQgghhBBCCCF8wuXxEuWuBCA8of8hj40fMBqAVL2Iikanz2MTQhyYJAuFEEIIIYQQQgjhE5WNThJVNQAR8YfehuxIHAZAkqoiv7jM57GJnk/X9UCH0OuY8T2TZKEQQgghhBBCCCF8ory2iXhqAdCikg59cHA0tZZYAKoKpG7h0cxmswHQ3Nwc4Eh6nx++Zz98D7tCahYKIYQQQgghhBDCJ+ordmNVXjxoWELjD3t8TUgaUQ1VOEuzgHN9H6DokSwWC1FRUZSXlwMQEhIiNSwPQ9d1mpubKS8vJyoqCovF0uWxJFkohBBCCCGEEEIIn2iuKgKg1hJLrHb45IUrZjA0rMNWvcPXoYkeLjExEWBvwlB0TFRU1N7vXVdJslAIIYQQQgghhBA+4arZDUCTI4HYDhzv6DscCoyOyOLoppSib9++JCQk4HK5fD7fjrIGcioaGJMcRVJ0iM/n8wWbzdatFYU/kGShEEIIIYQQQgghfKPeSBa2Bvfp0OExaaNgJfR3F9Lc5ibELmmLo53FYjElAXY4q9bMZvOG1eSMmcrdV5zu8/l6MmlwIoQQQgghhBBCCJ+wNBtbSL2hHdsWGZ48EoAkVUleaaXP4hLi5+LzvuI/9ue5tPnjQIcScJIsFEIIIYQQQgghhE/YWqsA0MITOnZCaBwNKhxN6ZTnSUdk4R9tbi/9mrYCEDbguABHE3iSLBRCCCGEEEIIIYRPBLcZyUJ7VAcbLihFVXAqAM0l23wVlhD7yNpdwwiMOpnxQyYHOJrAk2ShEEIIIYQQQgghTKfrOhHuGgBCozvendUZNRAAVSkdkYV/5GZvIFQ5aVVBqPghgQ4n4CRZKIQQQgghhBBCCNPVt7iJVvUARMT16/B5lgQjWRPaIB2RhX805a0BoCp8GGi+b6bS00myUAghhBBCCCGEEKaraGglnjoAHJEd64YMEJliNDnp01aIx6v7JDYhfiqschMAer9xAY6kZ5BkoRBCCCGEEEIIIUxXV1eNQ7mMv4R2sMEJEJNqJAvTKaW4qsEXoQmxV32ri/S27QBEDZwU4Gh6BkkWCiGEEEIIIYQQwnTN1aUAtKhgsId0+DxLTCpt2HAoFyUFUrdQ+FZWYSXDVCEAYenHBDiankGShUIIIYQQQgghhDCds7YMgAZLVOdO1CxU2FMAqC/aanJUQuyrdOd6HMpFkxYGMRmBDqdHkGShEEIIIYQQQgghTOduKAeg2RbT6XMbw9ONMcq3mxqTED/XVrgWgKqI4aBUgKPpGSRZKIQQQgghhBBCCPM1GslCpyO206fqcYMBCKrdZWpIQvxcWPVmAPR+4wMcSc8hyUIhhBBCCCGEEEKYTjVXAuAOjuv0uSH9hgEQ25JvZkhC7KPJ6SbNadTFjBp4bICj6TkkWSiEEEIIIYQQQgjT2VqrjD+Edj5ZGJc+GoD+ejF1LS4zwxJir227qxiodgMQmT4hwNH0HJIsFEIIIYQQQgghhOlsbbUAWEI7vw05JHEIXhQxqpHCwgKTIxPCULhzMw7lplUFQWT/QIfTY0iyUAghhBBCCCGEEKYLdtUBYI/o/MpC7CFUWhIAqCqQjsjCNxoLjXqFNaEDQZMU2Q/kOyGEEEIIIYQQQgjThXrrAQiKiO/S+bUhaQC0lm4zKyQh9mGtNP7f8sQPC3AkPYskC4UQQgghhBBCCGEql8dLuN4AQGhUQtfGiB4IgLV6h2lxCfEDl8dLfIvRbTs0ZXSAo+lZJFkohBBCCCGEEEIIU9U2u4jGSBaGRXctWWhLNFZ7RTTlmxWWEHvlVjQxmEIAotIkWfhTkiwUQgghhBBCCCGEqWobGghVTgAsoTFdGiOq/3AA+roKcXu8psUmfE/XddrcPfvfbGdxGalaOQCqz8gAR9OzSLJQCCGEEEIIIYQQpqqvNpIwHjRwRHZpjLhUY7VXEpXsLq8yLTbhW+sLazju8fmM/Ots/rsoJ9DhHFR1/iYAGqwxENqFJjxHMEkWCiGEEEIIIYQQwlTNtUaysFGFdbnLrBYWR70KR1M6ZXlbzAxP+EiT081v317J9KYv+Z36kLe/W8HC7PJAh3VAnlKjy3ZDxKAAR9LzWAMdgBBCCCGEEEIIIY4srfXGSsBmayRdW1cIKEWFI5WI1i007t4GTDMrPOEj76ws4PetL3OVbSEAV1oW8sdZYUwdchFKqQBHt6/Q2u0AqD7DAxxJzyMrC4UQQgghhBBCCGEqd6ORLHRau5wqBKA5YgAAeoV0RO7pdF1nw8qFXGU1EoXeoGjiVR0XVL/O+sKaAEe3r0anm35teQBEpI4JcDQ9jyQLhRBCCCGEEEIIYSq92UgWttm7lyxU8cYW0ZD6Xd2OSfjW1pJ6zmz8AgDX8EvRrv0MgPO0FcxZmx3I0PazvayBIVoRAKEp0gn55zqdLFyyZAnnnXce/fr1QynFjBkzDnuO0+nkvvvuIzU1FYfDQVpaGq+//npX4hVCCCGEEEIIIUQPp7UaK8ncjuhujROWPAKAuNaCbsckfGvxhmzO0VYCYDvht5A0gYaoYdiVB33rDHRdD3CEP8ovyCde1eNFQfzQQIfT43Q6WdjU1MSYMWN44YUXOnzO5Zdfzvz583nttdfYvn07H3zwAUOGDOns1EIIIYQQQgghhOgFLO3JQj24e8nChPRRAKTqJdQ2tnQ7LuE77u2zcSg3tRFDIGk8AMETrwLgNPcisssaAhnePhoKjU7ItY5+YA8NcDQ9T6cbnEyfPp3p06d3+PjvvvuOxYsXk5ubS0xMDABpaWmdnVYIIYQQQgghhBC9hK2tFgAVEtOtcUISMnBiw6Fc7MjfQdRIqS/XEzU63QyoXQEW0Iactffz1pEXw7wHmaB28Pa2XIb1HRu4IH+qPAuAlmhZVXggPq9Z+NVXXzFx4kSeeOIJkpKSGDx4MHfddRctLQd/IuB0Oqmvr9/nQwghhBBCCCGEEL1DkKsOAC00tnsDaRb22JIBqCnY0t2whI+s3VXOiZqxWi9i1Nk/vhCVQl1IfyxKpzprcYCi25eu60TUGw1zbH1HBDiansnnycLc3FyWLVvGli1b+OKLL3j22Wf59NNPufXWWw96zuOPP05kZOTej5SUFF+HKYQQQgghhBBCCJOEeIxFP7bwbiYLgbrQdADce3pWkwzxo+Kty4hSTTRrYZA0cZ/XPP1PBCC+YhVeb+DrFpY3OMnwGjUwo9JkpeqB+DxZ6PV6UUrx3nvvceyxx3L22Wfz9NNP89Zbbx10deE999xDXV3d3o+ioiJfhymEEEIIIYQQQgiThHmNZGFQRFy3x/LEGB2RrTU53R5L+IataAUAlQmTwbJvxbvI4acCMFHfws7yRr/H9nPZpXUMUsUA2PuNCnA0PZPPk4V9+/YlKSmJyMgf26UPGzYMXdcpLi4+4DkOh4OIiIh9PoQQQgghhBBCCNHzeb06EbrRzCIoIr7b4wX1HQZAdHNet8cS5tN1nbh6Y4u4LXXSfq9bMqYAMFwrYMuufH+GdkAl+dmEKicuZYOYAYEOp0fyebLwhBNOoKSkhMbGH7PHO3bsQNM0kpOTfT29EEIIIYQQQggh/KjR6SIKIwcQGpXQ7fFiUkcCkOQuwuXxdns8Ya7CqiZG6jsBiBty/P4HhMVT4zDyP9U7V/kztANqLt4MQG1I+n6rIIWh08nCxsZGMjMzyczMBCAvL4/MzEwKCwsBYwvxddddt/f4q6++mtjYWK6//nqysrJYsmQJf/rTn/j1r39NcHCwOV+FEEIIIYQQQggheoT62mqsykjqmbGyMC51OF5dEaMa2b37wDsUReDsyNlBH1WLBw1b8rgDHuNMMGoDWko3+DO0A7JVbgOgLVY6IR9Mp5OFa9euZdy4cYwbZ/wPcOeddzJu3DgefPBBAEpLS/cmDgHCwsKYO3cutbW1TJw4kWuuuYbzzjuP//znPyZ9CUIIIYQQQgghhOgpmuoqAWjFDragbo+nOUIptxgrFCvyNnV7PGGu+pyVAJQHDwB7yAGPCUk/FoDklmxaXR6/xfZzHq9ObNMuAIKTpV7hwXR6veXUqVPR9YN3r3nzzTf3+9zQoUOZO3duZ6cSQgghhBBCCCFEL9PSUANAswqh+6lCQ3VwKolNe2gu2Qaca9KowgyWPUYCtzlu9EGPCc84BpbAKJXLjj0NjE6O8lN0+8qvamIQxgK3yFTphHwwPq9ZKIQQQgghhBBCiKOHs9FIFrZooaaN2Ro5EABVucO0MYU5IhuNlXqOfiMPeozqOwYvGn1VNXl5u/wV2n527q4iQ5UCYEkcEbA4ejpJFgohhBBCCCGEEMI0bU1GsrDVEm7amNY+QwAIbcg1bUzRfTVNbaR5CgCIzTjESj1HGJXBaQA05a32Q2QHVp6/Gavy0qKFQURSwOLo6SRZKIQQQgghhBBCCNO4m2oBcFnDTBszJtWoL5fgLMTrPXhpNOFfO3dXkKrKAQg+xMpCgJb2bcq2PZt9HtfBuEq2AFAXPgiUClgcPZ0kC4UQQgghhBBCCGEab0s9AB67eSsLEzOMZGESFRSVV5k2ruie8vzNaEqnUQuHsIRDHhuUbCQLoxp3BizhG1yzHQA9YVhA5u8tJFkohBBCCCGEEEII0+itRrLQa2Ky0BoeT70KR1M6xTmBW5km9tW6eysA1aEDDrtSLzZjLAAZehG7a1t8Hdp+mtvcJLYa29jD+h+8GYuQZKEQQgghhBBCCCFMpJx1AOhBkSYOqqhqr3lXW7jVvHFFt1grswFwxww5/LGJxjblNFVGbkmlT+M6kJ17GhmiFQEQ3l86IR+KJAuFEEIIIYQQQghhGktbAwCamclCoC1qAAB6Rbap44qui24yVuo5kg5drxCAsAQatQgsSqeyYJOPI9tfblEJSap9C7tsQz4kSRYKIYQQQgghhBDCNFa3kSy0hJibLLT1NRJSkfU7TB1XdE1lo5N0r9EJOS69Ayv1lKImbBAA7vZGI/5UW7ARgHpbPARH+33+3kSShUIIIYQQQgghhDCN3d0IgC0kytRxYwdOBCDdvYsmp9vUsUXn5e4up79WAYCj34gOneOOG2ocX+P/hK++JwuAxqjBfp+7t5FkoRBCCCGEEEIIIUwT7DGShfYwc1dvRaaPByBZVbKrsMjUsUXn1RQYqwPrtSgIjevQOcHJxurQuOZd6Lp/OyKH1RkJSktiB7ZMH+UkWSiEEEIIIYQQQgjThOhNAASZnCwkKJJySyIAFTnrzB1bdFpbmbFSryoko8PnxKSPBWCAXkh5g9MXYR1QVaOTVE8+AFGp0gn5cCRZKIQQQgghhBBCCFM43R7CaAYgONz8unDVEcY2Vldxpuljm21VbhWfrSum8QjdMm2pzgHA2d54piPsfY3tyn1VNXlFu30S14FsL6tniDJWozqSRvlt3t5KkoVCCCGEEEIIIYQwRWOrm4j2ZGFIRIzp43sSjC2kwVVZpo9tpv8tzeWKV1byx082cvF/lx+RCcPQRqO5iS1+YMdPCoqkypoAQE3+Rl+EdUBFBbuIUk140SBuiN/m7a0kWSiEEEIIIYQQQghTNDa3EKzaALAEm9sNGSAyw2hy0rdlB16vf2vedVRRdTOvz1rB67Yn2Oq4njMq3+G/C3MCHZapvF6deJexMjAiaWinzq0NM5KLrlL/dURuKtoMQE1QCtiC/DZvbyXJQiGEEEIIIYQQQpiiuaHmx784IkwfP3HwMQBksJv8PZWmj2+Gt5Zm847175xiySRUObnL9gkbV86lpc0T6NBMU1LbTCqlAMT0H9apc92x7R2Rq/3XEVmrMFaitsZ2LtajlSQLhRBCCCGEEEIIYYqW9mRhC0FgsZo+vjUqiToVgVV5Kcpea/r43dXm9qJteIcBWinOoHj0vmMB+KXnC2ZuLg1scCYqLs4nVDnxoGGJSe/UuUF9jWRhVEuhL0Lbj9erE9O4EwBHkjQ36QhJFgohhBBCCCGEEMIUzsZqAJq1UN9MoBR7woYD0JLf85KFK3OrON27DADbyXegLn4VHcUZlnVs3LAmwNGZp64oG4Bqax+w2jt17g8rEZO8u2nyQy3H3bUtDNKN+opRaWN8Pt+RQJKFQgghhBBCCCGEMIW7qRaAFi3MZ3O4+owFIKh8k8/m6KoVmZs5RjO212ojL4L4wTSkTAOgT+E3tLqOjK3IreVGDcb6kP6dPjc8yUj29qOKgj1VpsZ1INt3VzFAGfUVrX2lE3JHSLJQCCGEEEIIIYQQpnC31AHgtPpoZSEQ3t7kJKllG7res5qc2HO+A6A2bjxE9AMgfPylAExjDWvzaw56bm9irckFwBOV1vmTQ2JpVGFoSqeiYJu5gR1ARf4W7MpDqxYCUZ1Pbh6NJFkohBBCCCGEEEIIU3jbk4Uua7jP5ug7/HgAMvRiinpQk5OyulYGt2QCEDTszL2fV0Om40VjhFbAtm3+6wDsS2FNxrZeW8Kgzp+sFNVBKQA0lWSbGdYBtZW0d0IOGwxK+Xy+I4EkC4UQQgghhBBCCGEKvT1Z6Lb5Llloi0qiSovFonSKslb6bJ7OWpVbySTNWCkXNHDKjy+ExFAVZWx/bctdGojQTOXyeElwGdt6I5OGdGmM5ogMAPTKnabFdTBBVca/iSdhuM/nOlJIslAIIYQQQgghhBCmUM56ALz2CJ/O80OTk9Ye1OQkL3sD8aoel+aApPH7vGZNPwGAuOr1ON29u25hUVUTqWoPAFHJw7o0hoodCEBwfb5ZYR1Qm9tLn1Zjy3Rof2lu0lGSLBRCCCGEEEIIIYQptLYGAPQg3yYLXYljAQiu2OjTeTrDUrAcgPrYcWB17PNa1JCTABjPdraW1Ps9NjOVFOcSopx40NBi0ro0Rmi/oQDEOgt8Wncyt7KRIaoQgKi0sT6b50gjyUIhhBBCCCGEEEKYwuYyEmHK4dtkYUTGJACSW7J6RJOTljYP6U0bAHAMPHm/11X/4wAYpO1mZ16+P0MzXV3xdgCqbIlgsXVpjLjUEQD010upaXaZFtvP5RYW0VdVA6BkG3KHSbJQCCGEEEIIIYQQprC5GgHQgqN8Ok+/EUaTk/7soaS0xKdzdUR2aR2TtCwAQodM3f+AkBgqg9MBaMlZ7sfIzOeqyAGgMSS1y2ME9TEao0SrRgqLC02J60Bq8zIBqLb3BR+vdj2SSLJQCCGEEEIIIYQQprB7jGShJSTSp/M4wmPZrfUDoHDLCp/O1RGFOzcRr+ppU3ZU8sQDHtOSeAwAIeUb/Bma6Wy1Rg1AT3R61wexh1BpiQegpnCbGWEd2J6tADRGDfXdHEcgSRYKIYQQQgghhBDCFEGeJgBsoVE+n6sy0tjK2pq/2udzHY4ndwkApeGj96tX+IOwdCOJmNiyg1ZX721yEt5srAS0Jwzq1ji1wcbKxJay7d2O6WDCarMB0BJH+myOI5EkC4UQQgghhBBCCGGKUN1YWejwQ7KQpAnGnJWbfD/XYcRWGgnLtuTJBz0mKt3okDxM5ZNd2jubnLS5vfRx7QYgMql7q/XaIjMAsFTndDuuA6lpaqO/Ow+AmIyxPpnjSCXJQiGEEEIIIYQQQnSbruuE6s0ABEXE+Hy+uMFG05A0ZzZtAVyp1+byMMy5GYDIYdMOepzqMwIvGvGqnl15u/wVnql21zSRqvYAEJk8pFtjWfsMBiC0Mb+7YR3Qtt01DFHFAIQkj/HJHEcqSRYKIYQQQgghhBCi21rbPIRhJAtDwn2fLOw3dBJuNBJULbtyd/h8voMp3rWZBFWLU7cRP/T4gx9oD6EqqD8ALYWZ/gnOZKVFuQQpF24sqKiuNzgBiEgaBkCftiK8XvM7WhfnZRGs2mhTdojJMH38I5kkC4UQQgghhBBCCNFtDU0NOJQbgOCwKJ/Pp+wh7LYZTTb2bAtch+GGnJUA5NgHo2zBhzy2Ocaos2ir2OzzuHyhfrdRA7DK1hcs1m6NFZtm1BHsTxlltU3dju3nmguN7ek1oQNBs5g+/pFMkoVCCCGEEEIIIYTotub6GgC8KLSgCL/MWRczGgBP0Tq/zHcgbeXGqsa60AGHPdaWZMQb0+C7ph6+5Co36gs2hPTv9li26P44seNQbkoLzP9+WCuzAPDEDzd97COdJAuFEEIIIYQQQgjRbS2NtQA0Ewyaf9INttRjAIitDVyTE1utUX/QE3P4ZGFMxjgAUj2FVDU6fRqXL9jqcgFwR5mwrVfT2GNLAaCuKKv74/1Eq8tDQouR2AztL/UKO0uShUIIIYQQQgghhOi2tqZaAFpUiN/m7DfiJAAGuXdS19jqt3l/KrKpEICgPodv+BHUz9iGnK7K2FlS7dO4fCG8/Wu1Jww0ZbyGsDQAPOXmrizcuaeRIRixRqRKsrCzJFkohBBCCCGEEEKIbnM21QHQqvkvWRiZMoImgglVTnK2rvHbvD/QvR4SPUbH3ejUDmx3jUiiRYVgUx72FJi7ms7X3B4vfdy7AYhIHmrKmJ4YI+lor80xZbwf7CgqIVUrB0D1GWnq2EcDSRYKIYQQQgghhBCi21zN9QA4Lf5LFqJZ2B1idNWt3fm9/+ZtV1tWQDBtuHQLyekdSKApRU2o0ZSlefcWH0dnrtKaJlLYA0CMScnCoL7Gv110c74p4/2gOm8jAA22eAiNNXXso4EkC8URR9d1XliYw9iH53DOf5ayrbQ+0CEJIYQQQgghxBHP3WLce7msYX6dtyVhLAD2Mv83OSnPNxJ+JVoiQQ5Hh85xxQwGwFK5w2dx+UJpUQ4O5aYNK1p09xucAMS1d0RO8hTjdHtMGRNALzVqWDZHH35ruNifJAvFEWdG5m6enJ3N464nmFl9Lq/877/UNrcFOiwhhOgwr1dnZW4VbyzP45O1RVQ09L7i10IIIYQ4+uitRrLQbQv167xhAycD0LdxK7qu+3Xuxt3ZAFQ6Op48c7TXLYxq3OWTmHylfrdRV7DK1g80iyljRqcYKwtjVQNFu3ebMqbXqxNTb2zxtiaPM2XMo4010AEIYSaXx8uzs7aQH3TN3s8943mcR+eczn0XTghgZEKIzvJ6ddbkV5Nd1kB4kJUpg+OJDevY09rebENhDV98/AY51S7WeIfiwkKwzcq9Zw/l2slpgQ5PCCGEEOKgdGcjAF6bf1cWJo88CeZBhl5MXkkZGUl9/Ta3t9Kotdcakdbhc6JSR8FKSPMWUtPURnSo3UfRmctVvhOAhpD+mPUdVo4wyrV4ErwVVORtZmBq91cs5lc1MVTPAwVRGceYEOXRR5KF4oiydGcFL7fetd+a2bx1c6g5fVSveRMW4mi3Ylcl//xyDcdXzWCddxCr9WEE2yzcc/ZQrjuCE2Yz1uVRP+MvPGz5DtrfrnZr/bin9Voe+NKD0+3lhpMyAhukEEIIIcTBOI2Vhbo93K/TOqL6Uq4lkOAtp3DTcjKSLvXb3EH1uQCouEEdP6fvjx2RN5XXMCG9j09iM5ulNg8Ad1SaqePWBKeS0FRBS0k2cE63x9tcUM50VQSAJWlst8c7Gsk2ZHFEWblyGUO1ov0+/2/tGT5dnRuAiIQQnaHrOi9+t4G5bzzE07V38Gfbh3zseISsoN/woP4S//xyLa8s6V3bNTpq3tYyXDN+z3WW7/b5fJK3hLft/+Re63s8/u1W1hVUByhCIYQQQohD01xNxh8c/k0WAlRFjQagJW+lX+eNbTXuP0P7daLhR2QyLSoYm/JQkb/NR5GZL7y5EABbQscTox3RGjnA+INJNRzLcjZgVx6aLREQZU5txaONJAvFEcPt8WLLX/jjJ+7MhsveBCBUOdHWvOzT+RtaXfz5001Mfnw+N7y1lpLaFp/OJ8SRxuvV+ceM1Uxe8Wv+an2bAVrp3tdCaOEq60K+sD/IC7PWsSb/yEqYZZXUs+qjx7nMsgQvGt7L3oY/7YLb1sGxNwNwk3Umd1s+4L4vtuD2eAMcsRBCCCHE/iwuYxuyFoBkoSVlIgAR1Rv9Nqfb2UIfr9EdOCF9ZMdPVIqqYKMjcsvurb4IzXRer04fl1FTMKIzidEOsCYYTUjCGvNMGc+zewMAjTEjQSlTxjzaSLJQHDG2lNTzJ94BwHvCnRDRFwacuvf14xvnkVvR6JO5PV6dG99ey0dri6ioa2Tetj1c+cpK6ppdPplPiCONx6vz109WcfqG2xir5eK2BMGJd8DdeXD7FrjqI/SwRAZru3nQ+jYPzDhyEmblDa188/rfuU97EwD9lPvRRlwAoXEQNxDOfgIufBGAm60zSSufz1cbSwIYsRBCCCHEgdncxv2WJTjC73MnDj8RgMGu7VQ3+qc5XFlBNhal06AH0ycxpVPntkQZq/MsVdt9EZrpymobScZIjMb2NzdZGJFibMtOcBZ2u0GNy+Mlps5obmJPkeYmXSXJQnHEWL29cO+ftZT2IqZBEXDNpwAkqUq+22xOd6Wfe+f7fHbm5vGG4yl2Bv2ShcF/pk/Nev45O9sn8wlxJHF7vPz5w1WcveUOJmo7aLNFYL1hDpz2NwiJgagUGHIW6vK30ZXGJZalpJYvYEZm70+Ytbo8PP3a29zpehUA57G3YTnpzv0PHHs1nHA7APdY3+fVhdl4vf7t9CeEEEIIcTh2TzMAlmD/ryyMyJiIGwvxqo6t2/yzWq+6YAsApdZkNEvn0iuWhMEAhDbkmx2WT5QW7sSuPLRhwxpt7tbehAxjVWYye6ioa+jWWNvLGhiOUYIsUpqbdJkkC8URoyl7PgAttmgYMv3HFzKm4bKEEKGacW78wvR5G51u3py7mq8d9zFNrUOhk64X8Yb9CbasWeSz1YxC9FQer46ng4ksp9vD7z9Yz8nb/sZkSxYuayj2X86AvmP2P7j/JNQJfwDgMdv/+HjRhm4/eQwkr1fn4Q/mc2fNo1iVl8bBF+GY/veDb5U4+U94QxNI1co5vvpzFm4v92/AQgghhBCHEeQ1koXW4Ej/T24Lpix4IABV25f5ZcrWMqPGXl1I55NnEUnG6rz4tqJesWOmfrexArLC1g80c1NJjqgkmgjGqryU5HavhuOWgjKGKWMhkUoab0Z4RyVJFvZy5Q2trC+socpPy6x7Kl3XSalcCkDz4Av2vdm2WHEnTwLgwto3qGsxd2vwx2uK+K37XfqpavTodLjuK0g7iTDVyhPWl3lneY6p8wnRE7W6PLyyZBdnPLOYgfd9y4B7v+WEfyzgDx9u4OuNJdS37v9zV1TdzJUvf8+gbf/lfMv3eJUV2zUfQfKEg0809R48ccOIVQ1Mqp7BspxKH35VvvXvOVu5JOdeElQtzVGDCbvk+UPXVHGEoZ1yP2DUL/xktTk1XYQQQgghzBLsNRqc2EL9vw0ZoDVhLACqJNMv86lqo/FeW9SATp8bkzIMgDRVRnF1s6lx+UJb+U4AGrqQGD0spSi3G9u464q6tyq0eudqbMpDoy1Wmpt0gzXQAYiuySlv4NGvN9OQ8z0jtALqCEWNvJS/XTiayGBboMPzu4KqZkZ4d4AGkSNO3+/14FP/Aq8vJF2VMXt7MWeOTTdlXq9XZ/6ypbxtMRKV6pL/QfJESByF698TGOosomH9ZzROH0mYQ37cxJGpqLqZG99eS3ZZA/HUcoa2g2Stkor6SFZkjuDLzBKsmmJ8ajTHpsUQEWxlx55GlmzczmPqv5xmMwoQa+c8CeknHXoyqwPLyXfC5zdypXUh/1pbwEmD4v3wVZrrw9WFRC57hAnWnbRZwwm59kNwhB3+xDFX4Z73MH1aKrHsmEV5w1gSwoN8H7AQQgjRy9S3uliYbazCnzY0gYigo+8eKRCC9RZQ4AgJwMpCIHLAMVDwEX0at9Hq8hBks/h0vvD2hhxd6Q6sxWbgRRGhmtm4u5C0+OFmh2cqS42xtdcTneGT8RvDMqB6B+493avhaCtdB0BTwnjCpLlJl0n2oheas7WMDz56l4d4if6Oir2ff3lrAVdX/B8f3zyZ0KMsMZVVUMqZqhgA64FWJaVMotkSSYinju1b1pqWLFxbUMOZjV9hsep4Bk3Hkmx04CIkBuukG2DJE1ykz2du1s1cNC7ZlDmF6EkqG5384rVVuKsKeDb4K85TS7B4911FmK0NZE7bSDYUDCKrQCcEJ0mqkm+tM4lT9eiaHXXagzDx1x2bdNj5uB13k+SsoiXrOxpaxxDei24APl9fzIqvXuU/1u8AsF/6CsR28Gm01Y514q9g6b+4RpvDF+uv4+YpnX+SLYQQQhzJVuVW8dp773B12+d84JnGIyEn8tovj2FMSlSgQzuiebw6obQA4AgNTLIwbtAkWADDVR5bimuYmB7n0/kSXMY9aFTysM6fbAum1ppAjHsPNYXZMLZnJwvDmoytvY4+nU+MdoQ3dhBUf4ejbleXx6hrcZHStAUsEJpxnInRHX1kG3IvszK3iu8/eIw3tEfor1XgCYreW9vrZutMZlafy2OffR/gKP2vMmctFqVTb401uiD/nFI4Y4x27K1FG02b96t1eZxvWQGA5bib9p1y/LXoKE6wbGXFmrWmzSlET6HrOnd/uomI6i3MDfozF+rzjURhwggYfgH0HQvAUG8Ov7fO4A37k7xu/xfP25/jHtsHRqIwbgjqpoVw/O86PrEtCMv4awC4jHnM2lLmg6/OfK0uD49/u42lnz7PU5YXANBPuAOGnt25gSb8Ci8ax1uy2LhhlQ8iFUII/ymra+WWd9Yx/MHvmPLkQj5a0/1OmOLotq20nvfefIHn3I8w1bKRl+3P8nfnP7ntzaVUNBzdpZt8raXNRZhqBSAoLDogMaiEYbiUjQjVws7szT6dq6G2ghjqAeg7YGTXxghNBaCtvGd3RG5ze0l0G81Cf9g+bbbgfkYNx5jm/C6PsT6/mvGasV06bODxZoR11JJkYS9SXNPMt+88zV+tbwHgHfdLLHdshpuXwKT/23ucZ+sMVuZWBSrMgNB3G9sYG2JGHfSYkAyjbuG0ltmU17d2e06n20Pzlm+IUk04QxIhfcq+B0T1p6W/8bn0os+pbmrr9pxC9CRfZpawPnsXL9mfJYRWSJoAv54Nt66Ay9+GmxfDH3fABS/AyEshYTj0GwepJ8Lgs2D6k6hblkFi5y+u1ITrAZiqZbIm07wHAGZraHWxdGcFT8/dwRlPfEf4isd5xv4iNuVBH3kZqr0GYadEpeAaeAYAYyq/obDKvzVuKhqcPD1nO5e/9D0X/3c5f/tqKzv2dK9rnRDi6FRa18KFLyxn9tYSotr2UFZVy58/28wz83YGOrSAaWh10ebu+Y0OeiqXx8vz73/BP9VzOJR77+fPsqzhsbZ/8Myc7jVOEIfW0lC3989BAapZiMVGdbiRdGrM9e1D1bJdRifkcmIIj+hacvSHLb2Wmp5di7qwopZkjG390SlDfTJHQrpxL5/sLabpAPXOO2L7jiwSVC0eLMZ9h+iyo2uvai/W0ubh+dff4O/e/4IC9zE3Yz37nz8Wwz/tr7DqRQBO1Tbwz++y+eLWEwIYsf/ouk5MvVEE1db/4I0RHJN+A6ueY7zayZwdBUyfOKRb867YVcV0zyKwgH3slaDtXw8j5LhfQ+EiLtaWsHBbKZdMTO3WnEL0FG1uL0/PzuLfthdIUpUQnQ6/+ByCo/Y9MLwPjPuF8WGmuIE0JZ1A6O7lJBXMoMl5Vo8ov1De0MrynErW5NewvqCG7Xsa0HWd87Xv+dD2Pv2s1caBx/0Wdcbfu9xJzjH+asj5jnMsq/hmcwm3TB1o4ldxcCtyKrn1/fXUNv94Abe+sJa3v8/nhpMyuPvMIVgt8hxSCHF4bo+XW95dT3xDFu+HvEqGtwCX5uCztsk8PP86xqVEMW1oQqDD9JtdFY385bNNrMmvwW7RuGhcEvedO0zq7HXSO0uyubvu7wRrbbSlnYL9uk+haDWedy7mJLYwc/27FE4dTP/YkECHekRqaaoFwKVbsNmCAxdIyiTYupnoyrXouo7yUd26uuIsAMrtKXT13SoocTDkQ0RzgWlx+UJp4U4GKi9O7DjC+/lkjqjkoXjQiFAtbMrPZfTQzt+vt+QauyzrIocSE8j/B48AckXfC+i6zpMffMuf6x/Dqrw0D7l430QhgC0Y/s/4wThVW09Y8RI2FNYEKGL/KqtvZbjX6DgcPXDSwQ+MSafG3g+L0indtrLb867ZvJ2pmrGiSY27+sAHDT6LVks4iaqGvI2Luz2nED3Fx2uLmN7wGVMsm9CtwXDFu/snCn0sZMKVAJyi1rJkR8VhjvatFbsqufa1VRz76Hzu+Ggj768qxLJnM/dY3mN+8L38x/680TE9IhkuexPOfLTLiUIABp6O2xJEsqpkx4Ylpn0dh7KuoJpfv7WG6JZC3gp/kc2x97It+o/MjH6Kq7W5fLhkE79+ay3Nbe7DDyaEOOq9s7IAb/F6PnI8QobXuEm2eZ1caV3Eq7anuO+z9UfN+0lRdTOXv/Q9+fl5nKetYJq+ii/W5nLxf1dQ1SjbZjuqyemmcclzpGrlNAf1wX7F68bD/NTJWE65F4DbrF/w0arcAEd65HI2GSsLm1XwvveqfhYzfBoAYzxZ7Kpo8tk87gpjFXRTWFqXx4hKNlbp9fOUUN/F1XT+UFecDUCVI6l717CHYnVQaU0EoDx3S6dPb3V5iKvOBMCSeoi8gOgQSRb2Aq8uyuayXfcSrRppjBtDyCUvHPjNt89wGHctmtJ52vYi7y3r2XUPzJJbXMYArRQAW/L4Qx7rjDeWNrvbty13la7rBG//HJvyUBczCuIP8tTD6qCl/8kAhBQtxuWRbSWi99N1nfeXZXOT9RsA1PR/dmkrcXepwWehoxit5bF6o29r0hxMq8vDnz/dxNWvriJn53aet/2HFSF/JDv0JmY67uUm60wG6AVgC4Fp96N+txZGXNT9C2h7CJ6BZwIwuGo+u2tbTPhqDq6u2cXv3t/AdM9iZgfdwxTXUsKb8gluKWVEyzr+bnuDuY4/07pzCTe/sw6n2+PTeIQQvVttcxtvzlnDy/anCcEJ6SfD3Xlw7Rfo9jBOsGxlevPXvLkiP9Ch+pyu69z5cSaTWpawJOhOnrM/z8v2Z1gU9CfSKxdxw9tr5T21gz5ZuonrvV8A4DjzIQj+ybbQY27A6YgjWVVSv+ZD3HJN7hOuZiNZ2KICu3LTlm7Uqhuk7WZjdo7v5qk1tg7rMV3vDhzS10gWpqkycst7blkXb3tNxeYwcxqFHkxDqDF+c0lWp8/dVFzHZGXcE0QMnWpmWEclSRb2cIu2lxO64D6GaYW02qMJ++UnYD/Em+85T+EMTyFe1RGa/QmNziP/iWxlvvGGUGeJgbD4Qx4bkWF0K+7TtL1bNQRzKxo4zTkXgKCJh95eGTnSuKE/zpvJ2vyjY7WnOLKt2FXFuJrviFUNeCP7w9hrAhNIWAKN8cYDAtuu2Xi8/i2I3+R086s3VrN53VJ+b/2ceaH3c65lJf28pQR5GkGzGYnBi1+FP2yCKX8yVoGbxDH6YgDO0VaxYNse08Y9kMe+3Ub/hvX8y/4ydr0NMqbCdV/Cb+bCaQ9BTAZ9VA3v2h+nKWcF93y2WRoUCCEO6s0V+dzvfclYcR07EK54D0JiYMApqDMfBeA26wzeXbSJhh680sYM87aVYylcznO25wimFeKGQEgc/SjnVfvTDN39Gc8exTUcO6rN7aV6xVuEqxZqwwdjGXPFvgfYgrFOugGAKe5lrJFrcp9wta8sbNECvM07JIbKkAEA1G733Q6MyJYiAIITB3d9kKj+eNAIVm2UFnW9C7CvhdYZyUJvgm87NutxRqdlS3Xn3/eytm9joFaCFw2VfrLZoR11JFnYg+VVNvHtB89xjWU+XhSOy1416n8ditWBffLNAJzLEub7+AayJ2grNQoV14Ue/ilHSKqRWBivdrK6G01gdq74kmFaES0qGMfYyw95rDbwVADGqF2s3Oq7J1tC+Mu7K3L5jeVbALTJvwVL4GoFhow+D4AT3avYsrvuMEebx+vVueOjTOrz1vOx/RHutH5KqKfO6AB97Qy4bS3cnWtsOR59+WEfZHTJoDNwaQ5StAp2bOp+aYWD2VZaz9x1W3nW9gIWvDD6SuNrzJgKKcfCibfDzUth8FnYlZuX7c+wLnMd76zs2bV3hBCB0dDq4vtlCzjdsg4dDXX5OxD0k0YIY3+BHjeEaNXIL9xf8Mna4sAF6wcvzM/mUetrWJQOoy6HW7+H2zfBsTcB8Ij1DTYt+eqoKS/UVXO2lnK+ew4A4SfdcsBtkpYRFwBwkraFhZt6blKmN3O3GivjnIFOFgKu5OMACCld5ZMHmF6Pl0R3CQCx/buRQLPYqHYkAdBQ3DMb8Oi6TmKrsX0/JGW0T+cKSza+l7FNuZ3+d2vJng9AVcTwfVcWiy6RZGEP1dDq4m9vfMn9+qsAeE/8I2rQ6R06V428FB3FMdoOVqzt3nbb3sDa/tTBE9uBJzr9J+NWNlK0CnK3Z3Z90hzjjaiw71nGk/BDiUymITwDi9Jp2bGw63MK0QPUNbvQd3xHhlaGxx5pfuOSTrIMOxeA47QsVm3zXxe515blsWvbet6zP06Yat8CfO4z8Js5MGAaxA3a9+bXF+whOFNOAiC6eIHPans9OXs791nfI1HVQNxgOPfp/bdRO8LgktegzyjiVR3v2x/lla+Xsl5uboUQP/Px2mKu83wGgD7yEqOMzk9ZrKjTHwLg15ZZfLt8rd9XjvvL1pI6Mkq/ZYBWijcoGs75l1Fjzx4K05+A0VdgVV6etL3IY1+tx3uEfh/MsG7ptwzUSmjTgrGMvuzAByUMozksFYdy0bRtrn8DPEp4WuoBaLOEBjgSiB02FYCR7i0UVZtfrmVPWTFhqgWvrkhM7V7jzOZwYxWkt2KHGaGZrqqhhQzdeHATnzHWp3PFDTwWgKHkUlzd3OHzmtvc9Ks2Hp7bBp/qk9iONpIs7IG8Xp17PlzJfQ1/J0K10JY0Ceu0ezo+QERfmvsZdRriC2ce0XVOdF0nqtlIEAT368ATHXso1XHGVmRb7vwuzdnkdDOgYTUAUaPO6tA5lvbVhWl1q6ht7vr2ZyEC7butpZyvlgJgmXidkSQKpLhB1IWmYVcemrbO8cuUhVXNvDQ3k5dtzxCtGqDfePhLIUz8NVgdfonhB6GjjGTpNLWO5TldXy19MNvLGqjbvpRLLEvRUXDhS8ZN7IE4wuDaz9FjB5Gkqnje+gx3f7iGpqOgHIYQomN0XWfDyoVM19YAoJ10x4EPHHwWnpTJBCkXFzV8wKLt5X6M0n8+XVvI761GjT3txD9AUOSPLyoF5/0bT3gy/VQ1x5e+x+cbdgco0p4tr7KJkXtmAOAafvHBH9YphW3IGQAMbt5AUScSEaJj9FYjWeiyBj5ZaB9wIgDDVQHrduSbPn55fnsnZC0eq6N7ZWZUvLHoJbiuZ654LcjZSrBqoxU7joSBPp3L1ncELqxEqSbyczpet3DVriqOV0ZTlMgRp/kqvKOKJAt7oGfn7eD0XY8xWNuNKyQB+5XvdHqbX8iYCwE4ifVHdJ28ikYnqV7jKUdMascaLAQNM2oIDmpc3aWajms3b2WQ2o0XRcKYMzp0Tsgw47iTtU2s3GX+Db0Q/jJ7wy5O0dpXLI86yJN7P1NDzgagf/Uyv9S2enzWNv6ov8NArQQ9vB9c/fG+N3h+pAYbDyzGqF2s3mz+1pVXl+Zyh/VTY65xv4DkCYc+ISwB9YtP8QZFMVbbxS/rX+bRmZ0vUC2EODJtKSjjLw2Poikd16Czoc+IAx+oFJZTHwDgEssSZq3qfFfMns7j1SnP/I40bQ8uW8Tebcf7sAVjOfNhAG6xfs2bs5bJA5gD+HrlFs7VVgEQOvk3hzzWNnAqAMdrWazsRkkicRBtjQC4e0CykIh+1DiSsSidqm1LTR++ocSo4VftSO72WGFJwwCIcxb1yOY7NfkbAdjjSDNWP/uS1U5psJGQrMlZ1eHTsjeuJF7V0aaCUCnSCdkMkizsYb7bUkrJ4te4wLICr7Jiu/Ldw9cpPAA12EhOTVA7WJ3VM59QmGFXSRWpyqjLaE8c2qFzIoadAsB4tYP1eZWdnrM88zsASkOGog63BfkHaSfgVjaSVSU7so78reHiyFRe30powTyClAtXZDok+rZmSUdFjDBKNEzWtvg8Gb+1pI6dW9dyhcUoKaAufsU39Qg7KqIvDTEj0ZSOd8dsU2vy7KlvpWDjQk60bEVXVphyd8dOjE5Du/gVdBTXWucRvO4lFmQf+fVzj2TLdlZy3eurueTFFby2LK9H3siI3iF/7iskq0qatAhs5z196INTj6clfjRBykWfXR9T043GdD3RhsIapruMrbCWsVccfNX2iIvxpkwmWLVxk/NNXl585F7Xd4Wu63g3foRDuaiLHGqs9j+UtBPQUQzSdpO1vWdu+ezNlNOoWeixBXjnSbvWfkbSKKjE/NrO3kqjFn1rRFq3x4pKMR6cpKvdFNeYv2W6uzylWwFojBzkl/mc8cY9hirJ7PhJeYsAqEs4xu87fY5UkizsQbaXNfDvj2fxkPVNALRT7oX+XcyKR6fREJ6BVXlpyZ5nXpA9THnBNqMWoAqB8L4dOylhBK1aCBGqhbysNZ2aT9d1IkuMJ1PutKkdP9EeSl2csSJHy5O6haJ3mpO1h3Pan9zbRl+8f926QEk5Drey0U9Vs3Xzep9O9dz8HO62fmQUoh96LqSf5NP5OiJ45DkAHNu2mi27600b9/1VhdygvgZAjbkSovp3/OTBZ6LOeASAe63v8+YnX0gJhl7qq40lXPv6Kjbv2EV1YRaPfLOV376/HpckDEUntbo8pO/+EoCycX+AiMNctylF8GRjtd0lahFfbzyytuAuySrk1PaV+tqh6v8qhXb2E+honG/5nsylX1Na1/OSCYGSWVjDWU6jDEnwcb85/LVJcDSNMUZiRhX4rkvu0Uq5mgDw2sMDHIkhqr1u4ZC2LZTUmvtzY683Grmp2Ixuj6XFG0m4fqqa/JKybo9nth86IVsSD7Ia3GRh6ccAEN+Y1aGatbkVjQxrXmecO7xjfR7E4UmysIeobW7jtreX8zTPEKqceNNOghNu79aYlsHGdtsB9aupa/b91rxAcLZ3Qq4JSet44sJipSZmLADu/BWdmm97aQ3HeoxkROKEczt1bvAw441rSNNayhtaO3WuED3B99vymaZlGn8ZcVFAY9mHPYS6uPaVBHmLfTZNSW0LlduWcIZlHbrS4NQHfTZXZ1iHGtuwT9I2syir0JQxPV6dlWtWc7pmXHhxwu87P8jk2/CMuBSL0rnH9Tx//3qTKbEJ/ymta+HBzzdwn+Ud1gXdykLHH5nt+As7sjL597ydgQ5PdEGry8NHawq54Y2VTPvHbCY/Pp+rX13JuysLfF7jesWq7xnJLtxopE/9ZcdOGnERLksIGVoZ21bN9ml8/la7dR7Bqo3m4EToO+bQB/cdDROvB+Ae9SZPfdczO6YGwverljNUK8KlbNjHXdGhc+ztW5GHNGcecStWA83qMlYWBrymdbvggcZD3TFqF2tzSkwdO7q1CIDQft1rbgJASAz1FqN7b3Vhzyrf4vHq9HMaPQKi0sb6Zc6EIUYn6+HksqOs7rDHz9uUx3Ga8X0LHirJQrNIsrAHcHu8/O6DDVxf/zLDtEK8IfFol/yv2/UAQoYY220naduO2I6UP3RCbo3qXKFVR4bRAKZPbWanLo63rVlIlGqiUQvHkXZcp+YMaU8WHq9tZeXOnvfEqLdqaHWxZEcFi3dU+KVe3dGq1eUhOG8uDuXCGZkBfTpWI9RfQocZTYSGNK9jt8lPjn/w4aoC/mT9EAA19hqIN+Hi0Ax9x9DsSCBEOanc3LXGTT+3Ylcl5zTPQFM6ngGnd+1rVQrL2U/gdkQzTCti9OZ/yHbkXubZuTu5z/MSN1hnoWGsJByiinjX/hgzFn3Plt2Hv4AXPYOu63yxoZjzn/iSsi//yqP5V/BVyy/5fdNzeHKXcf+MLZz17FKyy8xbnfxz9avfA6Aw+ni08A6Wb3CE4RlxCQATq78hr7LJV+H5VXFNM0PqjAfWlqHTO/TAW51yP257BMO0Iqyb3pefP4wkBtkzAajte2KH6wc7Bk0DjGvyTfJ9NJW1fWUhjp6xspDoNOpt8diVh7KsZaYN29rmpp+3FICE/sNMGbM+NA2AtrLtpoxnloI9VaTS/rUOGOeXOS19htOigolQLeRsPfxOwIrM7whSLhqCkyDBnH8PIcnCHuGJ2duJ3PU1V1sXoKPQLnkVwhO7P3D/4/CikabtYduO7O6P1wNFNhlPOSwJHatX+IPooScDMEFls6motsPneXYaW7orE07odNMZ+oyi2RJBqHJStPX7zp0r9uP16ryyZBeTH1/Ada+v5pevr+bYR+fzwsKcDi1XF52zKq+aM3Tjxsbek7YgtwsaZDwcmaxlsWKn+Qkpl8fLztWzmKRl49EcMLUTHep9TSnUkPaV5DXL2FPf/ZXLs77P5HLLIgAsJ9zW9YFCY7Ge8wQA11nn8vWnb1MvSf1eobLRyZ6Ns7jMusRYSXv5O/DH7RA3mCRVxVu2f/CPrzeYWidT+EZds4vb315O1Wd38WXbzfzB+jl9VC3hqoWrrAv5yPEIrwY/h6cql4v/u4J1BdWmx7C7ppkJdUZ9vohJ13Tq3KBjrgPgLG01czJzTY8tEFbsrOQUi7EF2TH8nI6dFBKDddpfAPij9SOe+XrNUf/ztyqvihPdRi266HGd2PHQ/zg8WEjRKsjfceQ1zwkkm8dIFmo9JVmoFM2JxwJgKzbv/quwqIBw1YIHRWQ/c+r4uWOMxS/WmhxTxgPYsruOS19cweD7Z3Hec8tYntP5ev1FOzKxKJ16FY52uPIRZrFYqYgyVlw3Zh9611BxTTMjaxcYpw07p8fdo/RmkiwMsNrmNtauX8vjtv8BoE6+CwZMM2fwoAhqI40kmmuXeU9Segq3x0vfNqNWRFhy5+onqORj8GChr6pmW/bWDp1T1+JiYL1Rry1iRMe6IO9D02jsa9SgtBYu7/z5Yi+3x8vvP9zAY99m07ctn5vDl/OH8EVM8GTy5Oxsfv/BBtrcUk/LTCu25jFFMzqhqZ60BfkH/cbhtIQSpZoo2Gp+EetF2ys4t+1b4y9jr4bIJNPn6I7gEUZZhFMt61m4rXvJ0pqmNgbtfJ0g5aI5YQKkT+lecKMvx33s/wHwR9dL/Ourdd0bL0AaWl3MzdrD97uqjooHEp+uK+ZGjPpyHHMDDD/feJB57Qw8oYkM0EoZU/Qe3/u4qZDonrzKJq5/fia37rqZG6yzCFZtePuOhQtegDMfh1GXg9I4Xf+eeY4/c5J7Jde/sYZdFY2mxrFi4UxSVAUtKpi48Rd27uTkY2gMTiJUOana8I2pcQVK3vb19FXVuJQD0jpR+/aYG3FFDSBe1XNi8SvM21buuyB7geXrMhmt5eFFw9rRpCuAI4zKiOEAuAo63m1VHJ79h2RhcESAI/lR5FDjOmZQyybTSkFVFhilACq1BJQtyJQxHYnGirgfFsN01/ayBq56dSXNhRu4Up9FUMkqrn1tFV9mdq7+a21eJgBVoQP9moizZxjvjdGVaw5ZJ3nVgq+4wGIsaAgZf6VfYjtaSLIwwKJsXj6Kfolw1QL9j4cpfzF1fC3tRAD61Kz1eS0afyutbSZdGUuio/t3ckukPYSqSOMioSWnY4nUlVt2MFoZT7RjRp/VufnaRQw1EsFDWjf5bKvkkU7Xde77YgsbN2fynP155jru5h7XC9zheoV37Y+TH3QN9Vtnc98Xm4/6J+5m0XUd97aZOJSbxvB06OOf4sadYrHS1NcoDWAvXGb6v/3idZs5o71+n+XYG0wd2xQZU3BpDpJUFdkbu5csnbV6M1dqxirqkNPvNeXC0Hrq/bSGJZOsKhmy6QmW7qzo9pj+tDynkhP/uZAb317LVa+u5NznllFQdWRshzyYbeuXcIJlK15lRZ3whx9fiEzCctajAPzW+iUfzpcb7Z5qVW4VV78wjwcbH2KIVowrJAGu+QztpkUw7hcw+Va45FW4eSmknoCdNl60P8vJbUv57XvraXWZc93o9epYsz4DoCL5dLCHdG4ApbCMvhSA8fXzyTU5kRkIWqFxY9uYMA46k2iw2rGd9xQA11nm8OnX3xy1zYZ0Xceyw3iIVx8/HkLjOjdAP2PVUnBVxxYNiI4J8jQDYAvuISsLgeBB7TvKtJ2s3WXO7pOWH+rmB6eaMh5AdKpxfd3fW9ztWppuj5c7P87kEtc3fOu4l4dtb/GJ42Ees7zCXz7Z0KkSZXq58bV64/27vTdhpHHfPIEs1uUdeEWk16uTvvU5APJSL4PkCX6L72ggycKA07Elj4WQWLj0tc5vbT2MyPYOUBPZxtYS39WhCYTSwh0EqzbasKLFpHX6fK3/ZACiK9d1aJXInszZaEqnIjijy6uKggYav6wmattNr1uYU97AipxKWtqOrKTwz32wuojQDa8w334X52ntDWrSToKUHzuHv2F7gsXrNvPG8vzABHmEya1s4rgWowu4ffQlPXZ5f8Rwo27hWFcmO/aYdzPZ6vIQt/MTbMpDY8IESOxZ9RoBsAXTktz+BLZ4Xpdv8nVdR1/5MsGqjcqIETDwVHPic4QRdMmLAFxjnc9nH79Do9Ntztg+llvRyM3vrKN/63YeCf2EW4O+o750F1e/uopyE7Z890T5lU1MqvoKANfQCyAyed8DRl6Cs+8xhCgnE4veIOsIu744EszaXMo7rz/P6577GKvl4g2KwfbrWTDotP3fwxNHwnVfwfjr0NB5wv4qrj3ZPDrTnCYaq3aVc6LL2FHR54RruzRG8LjLAZimZTJ3g3nNdepbXVT7ucHF7toWhrQaDZ9CBnVh5faAabiGXYRF6dzS9F9eW2LelsXeZFtpA5OcxsOx0DEXdvr8yHQjqZDm2kVtszQ5MYtDNxZDWIM7Vj/SL+KG0GyJJFi1UZxlzlZkrcr4uXNGDTBlPICg9pWF6aqU3PLu9Rt4b1UhqWVzeND2jvGJxNHoSuNK6yIe117gjg83dOie0eXxEtdo1FCMSD1MIyaTaSkTadbCiFf1bFs564DHrNq8jbEeI+Hf99z7/RneUUGShYFmCza2gvzfCojoZ/rwqj2BMlArYXt+senjB1JDsdHxqMKW3KUka/QwI3E3Rs9mW+mhb3Q8Xp3YkoUAuNK7cfOcMIIWSwRhqpVik7ZKNre5ufW9dZz29BKu/t8qTnpiIavzzK831BNkl9Xz1def86DtHezKAwNOgZuXwK++gd/Mgd8Yq6GsysvqoN/y1Xez2F7WEOCoe79lW3ZxcvsWZPvoSwIczcFZBxp1C4/RtrNih3kd7xZl7+F8FgEQOvnXpo1rtvDR5wEwhXV8n9u1raGbiyo5vdXoOBoy9Q5zE8PpJ+Ma/xsA/tT2PP+e2Tu2I//t6yzOdC3ga8f9XOv5grt5m9lB9zCo/nv++MnGI3IF89ytuzndshYAx4QD1JdTCsfpxkX5xZalfLJCOrP2JO+uLGDmhy/wvPVphmlF6LZQtGs+hrhDNIOzWOHcZyH9ZEJo5UXbs3y6cjtr8rt/PZG59BviVT1Nlsi9jSU6rc8I6kPTcSgXtRu7vxW5yenmjx9vZOxDcxj/yFxueGstdc3+qae6alclkzTjZ8YxoBNbkH/CNv1x2qxhjNNyKJ//vE/qTPZ0yzdt3/t9tI04r9PnB6UYjRpGaPlsP8x9gOi4oPZkoSO052xDRtOo73OM8cdCc+6/QhuN3WbW+MGmjAdAZAotKhi78lCR1/Xfq063h4ULZvOs7QU0dKOUyM1LUFe8i67ZuNCygpPqvuLpuYdvpJJdUs9wZWyLjht0bJdj6hKrg7r0swHok/PxAUtM7Zr/OprSKQodQVB8mn/jOwpIsrCnMKOhyYGExlHnMJKQdbsO30moN/HuMd7g6sLSu3S+JdVYWThEKyZzx6FrQ2QWVHKC17ixTTjmwi7NB4Cm0fRD3cLiFd2+yfR4dW57fwNzNhdznuV7Hgt+l35NWVz/xuojYpvOT3m8Ond/uonb1McA6KOvhGu/gL4/ecqVcgz8dvXev96hPuD2jzKP2i06Zmne9DUO5aYmNKNndxiLH0qzPY5g1caerKWmDbt19TwytDLatGDU8AtNG9dsaohRHmGstotVm7K6NMamBR+ToGqpt0QTMvoCM8MDwHbmw7SGpZCkqui//glWdjGp6S+rcquo2blqb11hBp4GfccSRjNv2p8gNfcDPl13ZD2IAyjfuph4VU+rNQLSTz7wQelTaAlPJ0y1wuZPaG7rHStFj2S6rvPM3B2s/eol/m193vjc4OmoW5Yavx8PR7PAJa9BWCKDtd08ZnuNez7b1K0yNg2tLmLzjeRey4CzwWLr2kBKYR9t1MsdV7+wW9c4TreH699Yw6z1OZyvlvEby0yytm3ltg/W4/VDPdKc7E30UbW4lQ2SJ3ZtkIi+2M58GIA/Wj7kiTc/OeyD7yNN09ZZWJWXmvAhEJ3W+QEShuPGQpRqYnfBDtPjOyp5vQTjBMAR0oOShUDYYON3WVpTZre3+Oq6ToKzCIDwlOHdjm0vTaMyJAOAlt2buzzM5+t38yvne9iVB8/gs2H6E8bD36HnoE5/CID7rO+xaPmyw3ZV37xtKzGqETcWVIKJX2sHJZxyKwBn6stZ9P2+q0LXbC/glDqjxEX4pF/6PbajgSQLjwKt8UYyxbYnM7CBmMxRayz/dkd3sQNVaBzVIWkA1O84dGJhx5q5RKkmGi0RWPsf17X52kUMnQrAcOdGiqq7V7fw7e/zqdu+lEWOO3nO9hxX69/yleMBbvF+cMStePlk0Rpu2fMQJ1q2oisL6pT7Dnxg/BC45lMAplg2cUr527yx3JxCwUejRqebYVVGB0uGX9hjtyADoBRt/Y06rRGlK0xJEre0eUgqMJo8NA44Fxxh3R7TZ8ITqY8xtkh7t8/u9M9/S5uHvnlfANAw+BKw2k0PEUcYQRe/AMC11nm88/FHPbp0wlsr8njY9iZ25Yah58LVn8Bv5sKw8wH4u+0NNnz3pmm13XqCVpeHlDJjlbYz48yDJ3eUwnGcsdL2An0B32wq9VeI4gA8Xp37ZmyhfNFLPG17EYvS0cf+AnXlexDbiW1yYQlw2RvoysJFluUcW/0VLy3qegfimZmFnKaMh3ixk7pXeD5ojLGyfYq2iTnru74V+fFvs6ku2MSsoHt51v5fHrC9x3eOv1CXs4ovN3au8H9XqPYmd41xY4wdRl0dZ8L1uNOmEqqcPO99lPtf+oAvM3cfUdd+B1PR4GRYrdEhtSurCgGwOqj6ITFTuMGs0I5u7hZjJRsQHNZzahbCj8nCY7XtrM7rXt3kitoGkjFqH/bJMLc0TWvUEACsVV1fWbj8++VMtWzEi4blrMeMB0E/mPR/kDGNYNXGM9YXeODzDYcsx1Wxw3j/rgsb0Ln6qiaxJI0jP+ZELErHu/hfe6/tnW4PpZ/dQz9VTbW9L1HHda3EhTg0SRYeBULSjafJSU1ZR9ST/5gWIwFkS+z6SidPkrHKL6RszSGfJtt3GdvyqvtN63ZdSfsA45fVMdp2vu9G3cKyulY+nb2Ad+z/IFlVQmgCpBqJkt9ZZ5BQPIevj5Cbt5Kqeo5f/AvOthi/sNTYqyGq/8FPGHT63mZBd1o/YebcedJQpovWZm5kqpaJF0X0pANsR+xhIoYZZQIm6ZvILKrt9ngLtpXuvdGNnnR1t8fzteCRRlfkCc7VbCvt3Bb8+euyOIn1APSd4sPt1hlTaBtlfC9vb36eVxf2zC2slY1OyJ7JOC0HrzUEznkKNM1Iol78KroyLr7Pds7izRX5gQ3WROsLajgeo55axNhD34RrY67CoyyM1XaxfMUSf4QnDqDV5eF3766h/7p/8rjtNTRlbDtT5z+3701iR6UejzrtbwA8YH2HbxYtJa+yaw19Cpd/TIxqpNkWg2pvutdlP92KnPl1l4bYVdHI7lWf84X9r6RSBmGJEJNBhGrmJfsz/Hf2Rp92O69tbmNAs1HW44c61l2maVivfBtPwkjiVR3vcj+rP/kXFz2/hPdXFVJc03zEJg6XZBVwsma8T4WN6foq+NY4I9ETVLHJlLiOdm3NxnWHV1cEh/SsZCF9RuHUgolQzeRv7d5uu925WViVl2aCcER1rY79wVj6Gqv3ohu6Vos0v7KJYyqM1XaugWdCzM924GkaXPgi3qBoRmr5HFf2Ae+uLDjgWE63B1u5scLRmjSuS/GYIeHcBwA4zbWIVz/5ipY2Dy+99Rbnt80EwH7R851vnCU6RJKFR4HwDKO+wCgt94gpQu716vRzG1u/ovp3vTNr9FCjsPRIzzY2H2QZdmFlExNajGXPMeNM2JbXZyQt1va6hdu63kXytaU5/J3/EqKc6Kknwh8y4fqZcPzvAfiH7X+8Ni/ziLhQnPnRS/RXe2hWwXgveNGoq3Q40+5BH3Y+FqXzoHqVh76UC8GuqN5odBosCh196HpXPYQ2YCoAY9QuVm/L7/Z4O1bPJk7V02KNQKV3rbaUP9mGGbVdTtI2szirsFPnVnxvbFkpDxuKlujbjtf26Y/idMQySNuNWv40RdXNPp2vK2Zs2M01ynhQpB13y77lQmxBqN8ZpSkma1nMWLLuiFldmLl1KwO1ErxoqINtQf5BWDyuAWcCMLr8a3LKpUasvzU53fzm9RVcuvNP3GJtT6CdeCec/S/jprCrjv8detpJBKs2ntWe5a8zNnX6emJbaT1n1BmlQ5j46+438VMK++iLARjfuIgdezr//9uKj5/iZetThKsW4wHr/y2Hm5fijUqln6rmssb3WJBd3r04D2FjUe3eOnvdThYCBEViuf4bvANOJVi18ajtdZ6puJHGr//CE0/+nf975Gluf/lrnvpqDbOXLCerpP6Adb96mz0bviVYtRmllhJHdXkce39jQUVi07Yj4no50FqbagFoxkGIo4slB3zFYqUuvn3bf173Hm7VFRkNNfbY+5u+4yaqvYlIsrugSz+r367dziUWY8ec4/hbDnxQRF+0sx4D4HbrZ3w4ezF7DtCwbXlOJRMwvtaIgZP2e91fQjKOY0/fU7AqL5ds+wMfPnwVNxfeDUDpgCsIG3ZawGI70kmy8GjQbyxeFEmqip27dgU6GlOUV1URo4yLxPiUrheWtWacABiJhWVbDvwEZ9nKFaRpe3BhI2zEGV2eay9NoyXRSODai5Z36eKkvtVF7ZqPGKfl4LaGoi55FeyhxounPognbgjRqpFpNZ+waEf3ltoH2tysPRxT9iEAzRNuRRt3dYdvONRZj+OxhTFB20n6jjeYs9WcDtRer05+ZRMFVU1H9MWlruvElBoXVN4BJnXF9bWo/jSE9MeqvNRvX9ytoZqcbhKKvgOgNeOsrtfa8qfE0TQ7EghRTvZsnNfh0/IrmxhfayTGDtjQwmwhMdjPfRKAm9UM/vf5t76fs5M2Za7lBMtWvGhGouPnYtLxJh2DRen8ru1Vvtjg++2L/uDdtQiAmqgREBx92OODjv0VABdZlvL56q5vVxWd1+R086vXV3FB0ZOcYsnEYwmGS9+A0/7a/RtYpVAXvIBucTBCK+Ds/H/w9cbONY5asnguY7VcXNgIOfH/uhdPu6AxRrJwiraJOes6V2duY/Z2Li1/Hk3p1A6/Fq6bAaFx4AhDO/tfAFxnmcOMFV2vFXY4eTlZJKkqPFggxaRmAcHRaNd8Cmf9A29wLOnaHm6yzuQ/9hd4yfswz5b+gt+tO5MzF5zNRy/cz+iHZnP7hxvYUNi9bquB4nR76Fu6AADXoOnd+n89doCxWipdL2JPvdOU+I5mrU3GvVkTwdgsPS/NEDrUuJYd2LTe2D3QRe5y472nKbxrdfMPJTrNSBb2Zw+FZZWdOlfXdVj/FmGqlbrwgZB+iG7rY65CT5+KQ7n4vfcdHv56/1rXc9ZtZ4IyvlY1MLAJuT7XvkZjSDJ9VC3XW2cTpFw0RQyk7+VPBTSuI13P+ykW5nOEUxNivJk15a0+zMG9w56C9uYmhGMNPfzNzEFFp1EbPhib8uDccuDuei1bjCf1FfHHgsOcJfXhw4xugGNcmeR2YWvPxyvz+J3+AQDaSXfs20nbYsMy7V4AfmOZxceLN3Y/4ABpafPwyYzPGavtwq1sxE09yBOyg4lMxnL2PwG4zTqDZ778niZn17fit7R5eG7+To59bB5T/7WIKU8u4vh/LODjtUV+TRq2ujy8sDCHa19cwMvP/5MFW4p8Mk/W7iomeI2bpn4Tz/XJHL6gMoyLoz5Vq2ho7Xp3ywXbyvZuQY6aeKkpsfmcUmhDjUYnA2qWdrgJwPwlixmj5eLGQuSx/tlurUZeTGPqqdiVh9MKnmHxdt+t5umsigYnI/fMAKAt4zSISjngcdq5T+FVVs6xrGbtgi/80hzBl9rcXvrXGiveLe3dxQ9rwKm0BiUQoxqpWv+lNJTykza3l9+8tYZji9/kcutidKVhueJtGHmxeZNEp6Im3QTAldZFLP76LepaOvae2uryEJv9PgDVqdONpJwZ+oygIczYily/8asO/+7VdZ2Cr/5BsGqjMHgYUZc9t+8DoEGn44wfRZBykZL/WbcbIByMO8+oV1gVOeLHh7xm0DQ47v/Qbt8E5z8Px96MN3EMHptRZ9eujJXPD9ne4kH9ZRZm7uCi/67g9g83dPjftKdYmVPOVIyV3TETuvf/uz3R2PLZT1Wzq/jIKN0TSM5mYwdbq/J/bbuO+CFZOEnb1q1SUPZaY/GNHmtiJ+R2KrwPdSoSTemU5HTuHm5T/h4udhp1toNO+t2hE+lKoab/A11ZmG5ZQ+WWBSz8yXVYRYOTxOx3sCovLVGDITq1S1+PaUJiCLtpFu6JN9I0/Eq8x/2W0JtmmXZvLg6s08nCJUuWcN5559GvXz+UUsyYMaPD5y5fvhyr1crYsWM7O63oprYE4ymFo7z3Jo5+qq7UWAVYbe9+F2nbqAsBGF2/aL+6djv2NDC2eQUAUWPN6wxqG2ysUJykbWP19s4lelweL1XLXqO/VkGrPRpt8m/3P2jY+bTFjSBctZBa+Bmldb2zXt/zC3ZwUYtRd4ORlxiF1ztrzNV4+4wmXLVwefMHPDO3ax3vKhudXPHK96yb/zE3t77OW/YneMv+BA111Tz56RIe+mqrXxKGFQ1OLnxhOe/PXsbjZTdyc+VjlHz4B/75Xbbp829fPZ9w1UK9FoUjOXC1SjorrL1u4WS1hdV51V0eJ3v1fPqoWpyWUFTGVJOi872g9mLvZ1rW8nXm4bciuzxebFs+AqCq7xTzbuoPRynCLnwat7JxkmULc758z6e1wjpjwbYyztKMRHHQxEMUze47Bve46wA4pekb5vtw+6I/ZJXUMVltASByRAdXEVis2Cb8AoCzXXNZvL13r2bvDXRd574vNpOY/xV/shnbfNX0J2CwCbsffu7EO/f+cVrbYp6as71Dp329Zidn6csAiJtyk3nxKIV97OUAHN+8kK0dLK+zZEMWpzcZD4XDznxg/5topXBMvhmAK7X5zNlqfuJI13Xiq4xaad7UE0wfHzCacI2/Fs5+Au2WJVjuKYTrZ8ENC2DKX9BRXG1dyMqQO7nNOoPvMvO44Pll5HexJmUg5K6dQ7RqpNESiZY6uXuDBUfRoEUCUF2UbUJ0RzdXi7GysFV1vXGPT/UZSZM1ijDVStGmQze3PJToFqPGX0i/oWZFto/KEKMpVUNR50oo7Z7/EomqhhprPI7xVx3+hIRhqAm/AuB+2zv85ZPMvWVh3py9ghu19sTjqX/uVBw+E9Uf67n/IvTyl41t1F25LxSd0ulkYVNTE2PGjOGFF17o1Hm1tbVcd911nHpqL9nKdoQJTTe2OqS0Zh8RdZXaKo3mJs0hyd0eK3Ss0V3vZG0T336/79aT7xYtYYK2Ey8aIaO62G3tQOIGUefoh0O5qd26oFOnrp/zHn92vwSA9dgbDlzQVdOwTzYuzi/QlvP5+t63PW5XRSN7lr3NdItxYW09/gBJ0Y7QNLQzHgbgF5Z5LF6xjC0HqU95MIVVzfzphfe5a89feNP+BDdav2WKlskULZMtQTewJuhW4tY8wYuLfbvNv9Xl4drXVlFdVsjyoD8YjW2AX1jn8+qi7aY3WdBz5gNQlXhC92pf+VvayXhRDNOKyNzWteRwo9NNYrFROLkl/UywOsyM0LcypuK0R5Ogailb9+1hk8izNu/mDI+xZTvmhF/5IcCfiE7DM+EGAK5tfI2vOpDc9IdtG1fSX6vArTlg4KGvW+zHGluUT9fW8eni3t1Rc1f2RuJVHS5sqJSO1yeyTDASqidpm5m3ap2vwhPt3l1ZQOmGWfzLZlwLMPk2OPZG30wWEgM3GL8LTtXW883KzWw8TPMor1enYPHbhKlWakNSsaR3s7HJzzjGXQHAidpm5q/bctjj3R4ve757gmDVRknoCGLGnH3gA0dejEsLIk3bw5Z15jfsKa5pYazHqP8VM3ya6eMfkGaB1OMheQJMuwd13ZfQZyTB3kbusn7M7OD7Ca7exlWvruyRtWN/Ttd1QvOMkhl1/U/vWgOfn6kLMRrmte7peodtYfghWejUeubKQjSNxn7HA2AvWtqlh+yNrS76e426+fHp5nZC/oEr1uiIbKnYf2vwQc9pbWJS8esAlI/5bcevW6feg+4IZ5SWz7ktX3Lxiyu48+NMBm18glDlpD5uHGrkJZ3+GsSRodN3f9OnT+fvf/87F110UafOu+WWW7j66quZPLmbT4BEl4QPMJKFo9Uudpb1/gLkWp3xRMcTeYiOuB2VMJTqqJHYlQfn+vf3biOrb3URnfUOADXJp+y71be7lKI11bhQjClb0qltNKHrXgSgNigF64m/P/jBwy/Ao9kYphWybvWyXlVbz+vV+ccnS7nP8jYA+pQ/Q9/RXR9wwDQYcjY25eHv1te4//PMDq9g2lJUxbrnr+WNlts52dKeTB54OvTf973sNuuXLJ4zg3UFvqsB9NDXWSSWL2F+0J/2e+03llk8/m12lwq+H0hNUxtDGo3tiFGjppsypt+ExtIQaXRJd+1c2KUhFm4p5AJlPHWO7AVdoPdhtaPGXAnAyU3fsWX3oVfeZC74jERVQ4s1Elv7FmZ/cpxyN63WcIZqRWR/93LAi++7PF5ii4x6j80pJx9+q2DiKNr6jMOuPKQXf9GrG4k1564EoCJiWOcS5DEZNPebjKZ0+uz6nKpu1IISh7aropF/f7uOJ20vY1VeGH0FnP6IbyftNx6iUglWbbxne4yHPl+D+xDbzednl3Nai1HvNWjSr0xvAEDsAGqjR2FVXjybDr/9/5sVmZznNOqiRk4/wKrCH9hDcWacDkBKyexulS05kJ3Zm0jVynFjwZ5+vKljd1jGFLh5KVz8PwjvS6q+m88dDzGoYRU3vLXW9K/ZbDvKGjjebVybxE00Z8u9K7K97lz1kVHXPZDcLUbpkzZLz+1MGzXcWDU/qi2Twi4kyAsL84hUzXhRRPQbYnZ4AAQlGUnIqE50RM5e9iWx1FFGLBln3trxycLiUVPvAeAB27tc1vwR/TY+z4WWFXjRiLjoKfPfw0Wv4ZelIm+88Qa5ubn89a9/7dDxTqeT+vr6fT5E96g+I3FjIUY1UpDbsS0kPVlIk7FSzh5nTmHZsOOuB+AM5xy+22JsPXltwVbOp321zZRO1srrgJixxpPt4zzr2dHBBG5m5lpGurfi0RX6r2ZCUMTBDw6ORh9oXPQe0zCPjcWdW00XSG+syOe80n8TrRppixuJOnn/5FinnfkYXlsok7RsTi57m/8uPPwv4BU7K8j6301cpP+kUcSxN8HVH8Ovv4P79sBPYvutZQZ3fZzpk9W7K3IqyV4zn1dtTxNO+8XNqX+FafcBcLftI65iFg9+utqUxPDKTVmM1PIBiB7l/wRSd9kHG8n49IZ1lDfs3+HtcIpXfUGEaqbe3gc1oIO123oQ+0Rja+xp2nq+XJF50OM2FNZwbE17vdbRVwRmBWVIDJYpxs/R9c73+ez7wG4F21RcxySMkh1hI8/p0Dn2Sb8B4BrLfN5c1vGL+54mrMJYGaknHdPpc0MmGb9HL9EWMeMIafbS03i9On/6ZCN36W/TV1Wjx2TAuc/6fuW3psGV7+ENiWeYVsgZFW/xytIDN7Nxe7zMnfkRY7VdeJSVoAmH2MbfDaETjS12p7QtYGnOwZsAtLR5cC58kmDVRnnEKEJHHPr3WegYYzHEVLWelblV5gUMOLPnAlAYNjqwdbY0DUZfBrcsh4ypBNPK6/Z/kVExj7s/63zXa3/KXLOYZFVJqwrCMdic383W+IEAhDT2jJXtvZnHadzPuC09dBsy7P3/Zrzayarsztf8rs43tgbvsfQFm2++zvj2xjup3kJqmztWP7Vps1FjvyB+GjZ7J6/ljrvVWKEO3G37mLtsnwCgjv8dJE3o3FjiiOLzZOHOnTv5y1/+wrvvvovV2rEOpo8//jiRkZF7P1JSDlxYXHSCLYjK4AwAmvLXBjiY7tF1ndg2oyNfRN8BpoxpH3sZLi2Iwdpuvvv6Y77M3I3z+1eIVM00h6agfNAJ1jZgKm6spGrlbNm8vkPnlCx6DYCciOOITjx8oVnrGGOrzvmWFcza5J+bt0anmw9XF/KnTzby2/fW89DXW/l2c2mHE2hZJfWsmv0+51u+x4uG/eLnzelCG5OOdu4zAPzB+hmL5n9zyBuBrzN3k/X27Vyu5uFF0XzhG/C3Ojj7yR9vzGxBcMr9exOGJ1s2s7DpQl5fbG5C3u3x8tRXq3nO/hw25YGh58L95XDSncbcA0/DgpeHbG9xx557mbW5+7WWqjcaW3BLQ4dDWHy3x/O34CHGxeCJls2s2Nm5bnL1rS4GlRmrUFwjLu1dW7B/0Gc4jbGjsSkPli2fHPRi8905KzlVM95/gtuTPYFgm3wLjcH9SFQ1NCz6T0BXF67Jzme8MrajaQM7uFVw5CW4HVGkaBU0b/q6W10WA6W8oZVBLiNRGzOkC/XUhp2HyxJCf62CLavm9eiEQ2/11cYSQouXcKV1ETpGt+IDliLxhcRRaBc8B8BvLN/y1Zx5LN25f33KD1fnc33DKwC4x13vs98ftjGX4VY2xmq7WLFo1kGP+2jeCi70zAEg6rxHDrtCRg2YhheNwdpuMreY2xU5tNx4r21J8lG9ws4KjYWrP4FRl2HFw9O2F8nZvIovMzvX9dqftO3GtcmehBNNS9REJhl15xJcxUdEqaZA0luNlYUui4nNe8wWk06dox825aFia+d3n7TuNkoJ1ISacw96IKHJowDoq6rZnn/4hGZjSytDao3dMLETu7BlWCk44+9w5uOQOBpST4DTH0Gd+kDnxxJHFJ/eAXk8Hq6++moeeughBg/ueLege+65h7q6ur0fRUW+6fR5tGmJN7Zx2so7Vyy1p6lrbqMfRhH52GSTulAFRaKPNQq0/5/zNT7++B3u0Iyi4cHT7vJNssARRlmU8eSoJeu7wx6eU1bDhFrjuKjjf9WxOQafhcsaRpKqYvfG+T6/eftuSylTnljIXz7fzFfrclm6OYc3l+dy63vrOebv83hgxhZ2HmKbbEWDkzvfWsRfNSMpqib/FvqZ2FhjzBXooy7HonQes/6PO99Ztt+2XV3XeWFhDjs+eZAbLMaKK8/ZzxAy9hDbXdqX7/9g65LP2VPf+dVsB/P1wqXcW/sgyaoST1QaXPjfH1eAKQUXvWJsEwMmadnM+fbTbnUkdXu89ClbBIA+yAcF8/2h/2Q8ykqSqiI7K7NTpy7csJ2TlbHCKua4XrYF+SdCj/sVABezkPdXFez3+rqCaibkv4JNeWjtNwn6DPdzhD9hdeA48yEArnZ/wezVgfs91Zi9EKvyUh+SCtFpHTvJHoLlGKN24dXqO95b2ftWqGzOK2WoMuIOTj+u8wPYQ9CHGl3Tx9bOOez2d9E5LW0eXpm1kn/YXgVATbrZqEXnT0Omow89B5vy8JD1DW57dy1r839sIpVdVs/OWS8wTCvCaY3Acdq9voslLIHmIcYqwFFF71FSu38jt/L6VsJWPYVDuamIm4R9UAeS/yEx1MeOBUDfOe/Qx3aC2+MlqcVIxkcP7Hg9UJ+z2uGil2HAKQSrNl60PcuTX66m3MRrGLNUNToZ0WA0HYw0selgeD/jXiJNlXVpW6r4kd5mJAs91h6cLATa+p8EQETJssOWMfg5S5WxIMAT55styAAERVBpNZp4VuccfpHP+qUziVYN1BHOgImnd21OpWDyrXDLUrj+Wzjh9+Ys1hC9mk+ThQ0NDaxdu5bbbrsNq9WK1Wrl4YcfZuPGjVitVhYsOHBjB4fDQURExD4fovsc/Y1kQp+mbb36if/ukmJClbFqwxGbZtq49il34g6OY5hWyHv2x3EoF+6BZ6Im/NK0OX4uaJixHSalegUNra5DHrti1gckqhrqtSj6HNPBOi22INQI44Lq+OYFPr15e/v7fG55dx2pzVt4PfQFtgX9hk1BN7Ir6JcsDP4zd3peY+GqtZz+zBKufOV7vt1cuk9CK6+yiYf/+zovtNxNkqrCE5WGmmb+jYY66x/owbEM0Yp53XMff3zpC2ZuKsXt8ZJVUs/1b6ymdd7j/NH2KQDeMx7DduxhVlxpFvjt6r1/fUF7kne+PHwCuCNaXR5Slt9jNNpRViyXvQ5BkfseFBoLNy3ENc6Ic3rTl3zVjZUB63PLOE43kjV9Jl7Y5XECyh5KQ7zxnqflL+7Ue171mk+wKw8VoYNQfUb4KkKfUyMvwaM5GKIVs37xV/usLvR4dV6dMY/LLYsACGpP1AWSbfSllIcPJ0y14l70ZKcv4M3Q6vKQWPU9AHonO2Crib9GR+N4SxZLv1+O0927VqhU7VyNVXmps8ZBZFKXxrCPM2plXmRZxlerpbOomd5bVcAdLS+QpKrwRmfAqQ8GJA511j/RbSFM0rL5p/cpfvXqEh75JouXF+/i5pfn8jtlPGi1nXaf0RzFhyKm/gGAs7TVvD9n+X6vv/blPC5sLycTe/7fOzxu8IgzARjdspqCKnO6BOcUlZGOseo/cWgXkvG+pFng4v+hRyaToZVxt+cVHv12W6Cj2s+KjVkM1wrwoogafZAmNV2gYo0VYvGqnoKSMtPGPSq1GT8vur9WPHdR9EgjoTbBu5nNnWx6GNNk1LYMTfZNc5MfVEca15+e4sM3DXNuMroWF/WZhpIEnzCRT5OFERERbN68mczMzL0ft9xyC0OGDCEzM5NJk3rQk7WjQNwgo8nJUD33gE9ge4ua3cb2sGot1tgGapbIJKzXffFjImbIOVgvfsmnRV3jxhn1sCapLJZuO/gK2spGJyl5xgV407DLjCfBHfTDVuRzLKv4buP+q4vMMGdrGY9+uYFXbU/zueNvnOJZjoZxo6zhIV0v4nrrbBYG3cWfrB+xMzePW99bz4n/XMBfPtvE/727jlue/ZDHmh9igFaKxxGN5Yp3fLO9KjQWdc0neEPjGaoV8bb3Hj758HXG3vcZ9z73Bjfm3bE3UcjUe9E62oU5fohR/6fd0B0vkVfZ/ZuMeQvmMFE3tjx4rnj/kLVDbMf/HwCnaev4dMGKLidbdq2dQ5hqpd4Sg6XfmC6N0ROEDjdu+I51riK3g/8W1U1tjKg0Er3a6Mt9FptfBEehJhi1C2/0fsxjM3/sqvfiohzOrHwTq/LiTDsVUntA8zFNI+xsI2l5qnMBC7b4f3Xe+oIaJmNsPYwY0cmn81Ep6IONB0DnOL/lm42dLwdQ1+xifWFNYH5Hl2QCUBvdjRugjGk0RQwgQrVg3/SebOkzSZvby87FH3C6ZR1eZUG76v3DN97xlagU1EUvo1vsnGVZw5uWR1m5fAE7Zr/Cs57HiFP1eGIGoR3zG9/HkjiSusTjsSovUZtf3yext2BbGRN2PI1VealNORWt/7EdHtYx1Pjdcby2ldU55iSPiratRFM6lZYEtPAEU8Y0VWgs6tI30ZWFCywrcG36fJ9Voz1B9Sbjd3N56BAIjTNv4KAIGizRANQUy0OO7lCu9mShrWevLLQOmArAcK2AFRs7nhivbnSS5jWuTRIHmrjz6QAsycYD7/CqQ++0KK9vZmSDsQU5/pjLfBqTOPp0OlnY2Ni4N/EHkJeXR2ZmJoWFxg/OPffcw3XXGTcnmqYxcuTIfT4SEhIICgpi5MiRhIb27DeSI42932jcWIhVDeTm9N4mJ83lRlHtWoeJ3Yl/0Hc03LHVWCV21fs+fypO/FDq7H0IUi4K1s456GEz5i1misoEIHHazZ2bI+1EWoMSiFTN1G6cafqq0qLqZv74cSaPWN/gdMs6dIsdxv3C6LZ33x64fQtc8R6kn4xNd/Fb65esDbqVpUF38nTLgySs/zfnbL+HTyz3Ea5aaOt7DJbbN3Sv+/HhJE9Au3kp3n7jiVaNvGl/gi1BNzDD8SAnWLaia3ajaPzUP3du3MSRMNjoHDxS5fLcvB3dCrPN7cWyyuh+nZc4HVv7DcxBxQ/BnXoyFqVzUt3XzN7atZucoDxj61VN8rTeWa+vnW3EeQAcr21h9ba8Dp2zZM06jtWy8aKIPe5qX4bnF9qJd+C1OJikZROd+RKPzszi6bk72D3/RS6yGMltxxk9pyZNyJDTqLcnEKGa2bDgY7/Pn5WdZTywQEOln9zp87VJNwJwhWURny3d0OH327pmF/d8vpmJj87l4v+u4Ph/LOCGt9ZS13zoFedmiqw1Hkqo7pR+0DSCT/49AFfpM5m/VRqdmGHGhmJua3sDAO9xt0LCsMAGNPx81LUz0IMimajtYKbjPp6yv8Q4LQfdForl8jf9tn0t8pQ7ALhcW8ADHyyl1eVha0kd3370ImdY1uFRFqLO7fiqQgASx9BkiyFMtVKxdbEpcToLjK2E1ZEBLPdwOCnHoE76I2B0Rf3HV2sDssL7QNrcXmLLlhl/GWh+HfGG0P4AOPfsNH3so4nWniwM2MOMjgqLpybCqFXZkVJQP8jJ3UWkasaDRkjfob6KDoA+Q40yEwPcO6lpOniTk9WLvqGvqqZJhdBn7GHuE4TopE7fBa5du5Zx48YxbpxxMXnnnXcybtw4HnzQ2A5RWlq6N3EoehhbEGUOo3twfe6aAAfTdd7qfACcYcm+mcARbqwS8welaEszGjHEF8+myene75CGVhdhma+iKZ3yvtNQcYM6N4dmQRtjrJA6oWUBWaXmbUXWdZ2/frWV892zudy6GF1pqKs/ggteMJJ9tiCISoFh58J1X8GV70O/cSh0UijjBMtW7rR9yrmWVUSoFvSYDOxXvwfB0abFeFARfdGu/xbG/gJdGW+Fuj0chp2H+t0amNjFZg+X/A+ANG0PJ269n5zyxi6HOHPFBk71GBfH/abf1aFzrJONzt1XWRbw2oLOdzUsrGxifOsqAOLGm1cTKCDih1AdkoZdeWjccvAC+D/VvO4jAEqjJkCkj95j/CkyCe2sxwG4x/YBlcvfZuvCD/m79XUA9Em3mFsXtLs0DcuoSwEYUjWf7DI/173bZZRHqYoatf92/47ImIY7cSwhyslJlR+xOu/wK3Nyyhv55X9mcM6Gm/nacjfLg27nFdtT5GWv57rXV/lldV59q4sMl9HFOXZg5zsh/5Q25gqardEkq0ryln5kRnhHNV3XWbxkISlaBS4tCKsPynN0SdoJqF/PgdhBoDRImggn3oG6cYHx4MxfBp5GW+wwIlQL5+95gZP/uYB7//s+f9NfAkA/4c7O12PVNJqSjJpmQbtXmPKQNbTKWLHcrWS8P5z0RzyRqfRV1ZxW/jZf9JDO5qtzK5nc3qU+Yax5W5B/4I4y7o+sNR17sCgOzOI2aj4qR1iAIzk8x8jzARjdsLjDq/kr8zKN/9r6mru77QDC0ifiRZGsKtmyM+egxzm2fAhASdL0H+uZC2GSTicLp06diq7r+328+eabALz55pssWrTooOf/7W9/27sqUfhfY4xxAWct61j33Z7I1tC+XTfq8N2Ae4O4ycbqpTP5nu/W79rv9S8WreEi3ejWFXfaHV2awz7W2Ip8qraehZnmPTWdvXUPbTvm87DVWPGgTv0rDDjlwAcrBUPPgZsWGas3r/sKTnkAxlwN0+6Dqz5E3bwUwvuYFt9h2YLhwhdQ91fAvSWoe4rginc73tTgQBxhEGk8ob7Ysoz/zt3SpWFcHi8NS17ArjyURY3DkTqxYycOPgtP9ACiVSMTyr9gSSc7AX+/5ntStXJc2Agdav7Te39zDTK2+qeWzz9s05f8yibG1xmrKkMnXuXz2Pxm4q/hWGNF8jP2F3nN/hQWpaOPuRJ11j8CHNz+QscZnfxO0Tbw4Yrurc7tDK9XJ7l6pfGXjA52Qf45pbBOMxoeXWeZw0eLMw95+LqCan7z4mz+2fw3TrRsZahWRBLlnGFZx7eOe4kvWcCz83y/0mVHYRkDlFHnNDStg+81B2MLpm288bDlxIoPKK42p+bb0WrL7nrSq40tZmRM9V/3445IGAq3rTF2Edw4H077m/E5f9I07Bc8C8ClliU813Y/71n+ZtQ+7X8i1ql3d2nYyGFTARjh2kxxTffKAjQ53aQ5jfey+ME9rF7hz9mCsJz9BAC/tnzLZ3MXd6thmlmy1i0hVjXQqoWg9Te/jJUtfiAAEc2y4KU7rO3JQs0RHuBIDi9kjNEg6SRtM4u3dCxJ3FZirMBvCO/kwo2uCIqgwp4CQEX29wc8ZFtBKcc7jUUFiVP8UPpBHHV67/4y0SVaqnGRkljXezsih7cYTzkdCb5rWe9PKvVE6oKSCFctFK/YdxVGTVMbQSufwqFcVMRMQMvo/LY4ABJHUR+WgUO5adj0tQlRG8msZ2eu4x+2V7EoHcZcBSf8oWMnRyZDxhQ4+S646EWYcjcMmW4k2gLBYjW2TJhVn/LqD/f+sTXr2y6tjvpm7U4ucBmr4aJP7USSWLNgmfInAG60zuS1+Z1LVrZuMTpAV8RODNy/h4niJhqJpxP0DazYVnzIYxcuXsBQrQgXNqImXOqP8PxDKTjrcZh8G2hWUBYYfx3qvOd8WpO1y5Im4AzpS5hqpSZz5mGbP5ll5556jm2vVxgzuhtbeQafSWvcKEKVk8G73mDbQVZzL95RwZ//9xX/8fydIVox3tAEOPtfcNVHMOBUHLh43vYfli5b4vMahuU716IpnRpLrCkPbKJOvpU2bIzVdvHNzC9MiPDo9eGaQk6xGN3ZbUPPCnA0B6BUp+oo+0T/42D6k+goJmnZhKlW9H7jsV71XpdjcwwwrrfGql2s2tn1hmEA23ILSdeMsiBRAzteOzFghpyFZ8Bp2JWHXzW9xqfrDv2709d0XYfc+QDUJU72yRb38H7GjqI+nhJa2qTWalfZPe3JwqBecP2YMIya4FQcyk1tZsfujUKqjGtqre8oX0a2V3O8UTfcXXTgJic7Fr5LqHKyx5ZM+MDj/RKTOLpIsvAoEz/QaI6Q5CmiuW3/La89ncvjJcGzB4CofgMDHI1JNA3LhGsBOKHua5bn/LgS7LWv5+9dVRhz3iNdv7FXCsdo4wna+KZl7NzT0L2YgRkbdnNhw/skq0q8YX2MZERPTDwEQp8RcKKR4LtGm8ezszvXVdDj1SmZ/7JRZzI4FceIczs3/6jLcEemEqfqGVT8CesKajp0WnF1E5MajJV1YeMv6dycPZQleTx1tgRClZOdKw9+Mej2eLFtNWrkVfWbCsFR/gnQXzQLnPko/LkA/pwP5z8X+Bv8g1EK+1ijdMI5+mK/bYPL3byCGNVIswrBmtKNrbhKEdReB/J6y3f86+N5tLn3XZnz9cYSPnj7RWZpdzJGy0UPjkH75ddw7I0w5Cy4+mMYcCpBysWjlpd4ZfH+q87N5Co2klHVESbVwguLp27wxQCk73yTXRVdL8dwNGtp87A6cxPjtfYtaIOlHtVBTboJ9X8r4Nxn4LK3UNfP6t77eOwAGm0xOJSLPVn7d1rujD3bjVVB5dZ+vq+FbRLLWY/hVRbOsKxjydwZAW1WlFPeyBinsSMqapRvEuahfQcDkKbKKK5p9skcRwO713iwZQvq+SsLjR1PRm3r1D3zD1kXEIzawmltxkr/+CH+WSEcNchoPpfckEldy74PTltdHpLzPwegYejlcg8mfEKShUeZ6BTjRiBO1bOzwDdPCotrmnlhYQ7rP3gY72c3gce8pGRpdRP9qACOoGQhEHbc9XiUlYnaDj78YgbNbW6+2ljCkP9n777D5LoLe/+/z5Sd2d60WnWr2ZYsN7kJ24AN2BhjDM4FQigxcSiXXN+ExGmQUEIKJjdAuElIHBIISe6PDqHZYBuDMcYCV7lKsmVZXbtq28vs7sz8/jhrEWFZ3jIzZ2b2/XoePV7vnnO+H4FX2vnMtzz+KZJBlp5FlxBfcfGsxkidcQ0Al8Qe5vaHZ7cny0Q2x3fu+BHviIcz32Kv/fvS7DNYSc56C/lYgovjj3PhU3/DI3t6p3zrzZt2ck3mmwCkL3lvWPRMRzxB4pJwj8P/mbiZf/3h41O67ecb72JNbDdjJGk6p0pOVAsCRleHh860777teV/w3Probl6ZvSu87uLfKFW60ks1QLop6hQvKDg73J7hZbFN3HrvoyUZM7ctfGNmb8u5s5+5cvIrGVtyEalgnLcf+iS/+8UH6Bse58DAKB/45qN878v/xN/Fwz/fc4vOJbj2W8cu34wn4Jp/JJuo4+zY0+x/6JaivlivPxL+GZFbULiDpTouuwGAK2L38aUv/FvZHJRQSX6yeTefyP8NAPllF0FTEQ52qyadp4XbLqy7Zvb7iQUBwwvDQiC592ezelR2clZQb1tpZiMVRMep5NaHB1a+ZfTLfPm+3ZFFueux7ZwThCVN6tRpnlI/RUF7uFppXtDP3q7uoowxF6Qmy8JEXQWUhUDr5OqTS2KbuPUFXhs9smPf0e06GlfMcruOKWo9PXyD6LxgCxuf2HHM1354z884lyfIEuOkl/9mSfJo7rEsnGtSjRyJtwOwf3vhX4Bt7Rrg1f/3J3z61oc5Z+sniD36ZbJP3lqw53ftfYaaIMs4CWLNiwv23Mg1LmB8bTjz720D/8Ll/+c2fvaVj3N1/GfkiNF69V/MfowFZzBYt4R0ME7PwzfP6lHfemgv7xn8J5JBlomTX+Vsh+PpOIXgf3wGgLfFf8Bnb5nazIRcLs+jt/8ni4PDDCfbSJ/71pmNf+avMd64hPlBLx3bvsLWrheeTRp7dHKT5M5Lq2pmXcfkD4OXcj+3P/Lc/Yjy+TxP3v455ge9DCXbSJ76ylJH1C+bv4aJheeQDLKcc+CbU/rvd7baDk/u5bv8xbN/WBBQ87pPkY3X8tL4o7zqyQ/yP//yU1zwVz8gdd8/8Q/Jv6cmyJJf+zpi77j1+Ke/Ny4gdu7bAfj17Df5/mMzO938hUxkcywaDWeuNa84t3APnr+GgTPDPZTedeTj/L8fVu5eyVHp3vglzow9w0i8ieA1fxt1nDmnec0lAKzNPDKr2WYtPeHP28nZzFiOQOKlN5ALErwk/hh33/n9yPYuPPzo7SSDLP11y6BtRXEGSTXSFw/f9O7fu6U4Y8wB6XxYFqZqK6MsZNF6BlILqA8y7LrvxK+N9m25l3iQpy/RDo0LSpOvfRVHUoupCbLsve/bRz+dz+fpueffAdjbuoFk69LS5NGcY1k4B/XXLwdgaO/0lka+kIlsjt/5woO8cvwOnkj/4h2OnzxauOVTffvDFzRHEvOnP9uqzKUv+xOyiTo2xLbwnfF38dHkZ8MvvOQPYOFZsx8gCEisC0+3Pb3/LnYcmtmm8xPZHBtv/yoXxZ9gIpYiMbkRto7j9NczuvhC4kGelbu+OqWTUb//eBeXDYX7BsYveMfMZ0ckaki+NFwK/a74Lfzzj078w+9juw9z8cidALRfdO3MxixTseUXM1Azn9ZgkC13fvE5J1v+ZGsXvzLwRQCCi367fJfnzjGJi64H4DcSt/LtB57/JMBC6BkcZc1E+Hdi57pLC/PQjlOJX/1JAF4b38iXav6SH9XcwAeT/x+xIA/nv5Pgjf92wlmMwYX/izwBL44/zs8fPP6eRbP1THcPqwlnDc1bXdjZEo1X/xW99SuZH/TS+eM/4s4tztiZqtHxLG37w9nOvWf8RukPDtHRfQvPjT3Fvdtm9t/u4YFR1mTDw03mr72wYNlKomUZuTPCLSHeOPIVvrVpdns3zkTP0BjLDocHOMROvqyoY/XXhofTjR8s/qFSVSmfp5ZRAGrqyn8FAwBBQHBaeCryyYd+wN4T7A+cfSZ807+/rXAz8F9QEJBdew0AK/d9hyOTS6VveWgHl42Gk3GqejWMImdZOAfl2ydPcDpU2Bdf39q0j9cc+RwfT/7zMZ8ffOK2gu2PmDkYThEfrK2iWYXPaltJ/K1fIZ+soy2Y3N/ppX9IbPJkzUJIn3kNEJ4yeutxZlhNxbcf3scbR8KDWPLnXget1XEqdbGkL3w3AG+N38H//f6jzymq/rtsLs/3v/9dNsS2kCNOasMslxWc/VYm0m0sjR1k4vFvs/vI88+MePDObzI/6GUw1kTjujLcRH824omj+4K+uPc7x5S2E9kc9377JpbHuhlKtFB38f+MKqV+2WnXMFy3mPZggMyDXyZbxGWsW594kNZgkFFqaCrk7Lqz3wK/+h+w+jLyQYwVse7wgJkrPhoeZvJCb3q1LGNocTjTcdHObxZlr+E9T22iJsgyFNQTK/Sf58lamt/2eSaCBFfE7+fnX/yr5z3wRce6+8mDnMVWADrXzfB0bs1OxxpGEk3UBRn2bT7+aaQvZOtTW5kf9JIlRv2ycwocsPgSL72BPAGvjD/AzT/8ccm3E7hzaxeviIWzkhvOvLqoY2Waw1mL8Z4dRR2nao2PECP876O2oTniMFPXcE5YiL8qdh/f3Hj8iTRDmQlO6rsPgLpTX16ybAAdL74OgJcED/Oft/+cnqEx9t78MTqDXgZqOqk/+3+UNI/mFsvCOahhUfjudOPQMwX7Sz+fz/OdO+7kf8W/FX5i9S/e/Vud28F3Hi7Mu5FB704AxpuqdLr1ipcQXHcLXPA/wxMxX/4BiBXw23TxeQyn5tMYjNC96XvTvj2by3Pn7d9mQ2wL2SBB8sW/U7hs1Wrta5loXMy8oJ+le77Nt0/wvfD1+7bzOwPhTKSJda+f/f5UyVoSLwrLr9+KfZO//8HxZxf2j47Tti3cJLl/1dVVObOu7kW/SY4YF8af4Cv/9XUmJpdT/esPH+PNQ/8JQOzi3w5PxVZ5iCeomSzMLxn7yTGHPxVa75Zw5sreurWFP2nztNfB275O8I4fwGV/Bu+5Gy68fsqbkddfEBbdr+Ye7nryYGGzAYM7NwFwoO7komyQHiw8C17+IQD+OPh3fvovN7D3SPGXlVe6hx5+gCXBIbJBgthJG6KOMzfFYgx2hv/bJ3bPrCw8/GR43/70SqipK1i0kpl3MhMnh/v+vqb/C9z2RGlnB2976C46gj4y8Xo4qQBbRJxAfF64b2H90M6ijlOtcqPhn+u5fEBtXQWchvysJecx0LiK2mCMnvu+TGbiufsD37tlF+cG4Zs37WeUeKuaeSfTO+8cEkGOeQ/8LR/4xN9z3cRXAah51Ueq8md2lQ/Lwjmobdk6AJbn97LrBDONpuPBXT28YeA/iAf58IeKt30dfjV8Ab4mtptbNm4qyDjpofBQlnjb8oI8rywtWg+v/j/hiZiFFosRrA1P1j31yI+nvQfPdx/aye8M/T0AuTPfDNW0b2SxxBMkLvxfALwv8UU+850f0zc8/pzL+kfH2XXrP7A6to+RZCs1V/11Yca/4N1M1DSxNraLxMP/77gHrXzpJ0/wcsJ3TBe85DcKM265aV7C2Om/BsCv993E733pAT5x21biP/4Yi4PDDNUuovbi/xVxSP2yxBnhO+YXxR7n9vundlDPTKS7wv/+RxcUcU+xJeeGp6R3njat24JTX0U2iLMqtp9Nmwq/71/iwGMAjM1bV/BnHx3jxb/D6IbwzaV35r7K3Tf9Nr3DJz55ci7L5/PEtocH7vR3nOebGBFqPDVcinzK6CN09Y1O+/7YvvCk8eF5BdhOJiLJl/0RAL8S+ynf/cEdJ1whUUhjEzladt0OwPCylxW9FKlfeCoAHWN7SvZ7rCaZkXDW+DAp6tMFftOtmIKAug3h/sCvmbiN7z68/zmX7L3vm6SDcQ6llkLHqaVOSPNVHwHCVUqfzv15uIfn6mtIrf+1kmfR3GJZOAfF558CwElBN0/s6ynIM2+75wFeHbsXgMRlHww/ueAXp7596NAfsWuGe+T9dy2ZcFZWfeeqWT9rrqo9KzxI5fL4/dz6yNRPxM7m8jxz2z+yOraP4WQbycs/VKyI1eeCd5NbdA4twRB/MvYP/Ok3Hn7OD6Kf/K+7eXc23DcvcdkHoa6tMGPXtZF4+Z8C8AeJL/N/vvFTxiZ+sUl5z9AYo/fcRF2QYaBhJbEK24B9OtJXfJiJydNlr9ryfprv+jDvSoQbWtdf88nKnPVR7dpWMtR+BvEgT/LJ7xzz326hZHN5lg6FRWTzKRcV/Pmzlm6mf/4F4YfP3F7wF7HzhsL91NJLi1hmBAHpV/05fS/9cwD+R+bbfPBz3yrqCc+V7OmDQ5yZmVx6eZoHLkUpvTosC8+LbeXn2w9M6958Pk9Hf1jGp5dX8N+ti9aTOfk1xII8rzn8b9zz9OGSDPuz7Yd5af5+AJrPfl3Rx2tdGq68WsZ+Dg5kij5etRkZfLYsTJNOVNa+8vGz30I2SHB2bDu33H7rMT9rjIxl6dx9CwBjp15dlBn4LyRY8VLyL/vA0X8fP+Vqmt70z5Fk0dxiWTgXNS9lPKghFUyw/5nZH3Iykc3RuPUrxII8/Z0boHNydkLzkqPXrIrt58DNfz6rcfqGx1mUD5c/tC1ePatnzWnLLmI02UpbMMieh26f8m233r+Zt42GZVbsZe+DhvnFSlh9EjXEXv+vZBO1XBx/nNbN/8nHb9t69EX/f27cwYYn/oqmYISh9tNJnv8bhR3//HcwPm8tbcEgrz/4aT56y2by+Tz5fJ4bv3kfb8uFJ6zVveKPqvsHj8YFJK75NHkCXhW/j3cmwqX4+Yt+B069MuJwej61698IwCuyG7nn6cIvRd62ez8rCN+IWnhacZe5zVT9GeGM8PPH7mV7Ad54e9aB/hFOzoV7AXeeckHBnntcQUDzy9/L4LKXkwyy/NaBv+Bv/v3rRd2LslLdvXUfF8bCAjt5yisiTjPHLTiDTKyOpmCEXY/fO61b9xwZYm0+PORvwdqLi5GuZFKXf5Dc5N+d3739ByUZ84FND3BqbA9Z4sROubzo4yUnlyG3BYPs3f/c2WU6sbHhsCwcIU0sVmE/SzZ0kF8T7ol5xeC3+Pd7dhz90nc2PswlhG/eLLzoLVGkAyC45A/hXT+Ca79F8tf+Y+YHIErTYFk4F8Xi9DWGZdvY3kdm/biHd/fwuly4XKbhwut+8YVf2vfpvGdugszgjMfZc6iHTsKZkOkOZxbOWDxB7tSrAFh9+I4pLUWeyObo/sHfMS/o53DdStIXXPeC9+iXtK8ifnlYmL8/8UV+cOePeNtnf85v/b8HOPjdv+DK+H1kgwT1v/J3hT/pO54k+SufJk+MX4n/lP0/+wrXf+FB/vcXH+LszR+nLRhktGkF8TPfWNhxy9Hp/4PgN2+Fc94OZ7wR/se/Elw+uzcyVFyx08If4DfENvPjh7YW/Pm7nvgZsSDP4fg84k2dBX9+IdSsCbelOC+2lZ9t3V2w525/+klagiEmiJNeNL3l0TPVcPVfM17TzGmxndyw+3/zje/dWpJxK0nX4z+hIRhlJNkCC0p48qaeKxanf354Snhs9z3TuvXpzQ/RGIwwSoqaBaX5/iqa+WsYPXnyTYt9/8mje/qKOlw+nye29fsA9M0/H2pbizoeAKkGemLhqo6evU8Wf7wqMzYS7lk4GtRGnGRmEhddD8A18bv5xm0/5KFdPRwazND943+lJshyqGkdwX9bNReJxefAyksLu5+9dAL+lzZH5TrDP+zqDs9+D6hn7r+NpbGDjMTqiZ32S8sE/ttBJwD9+5+a8TiH9mwjFuQZJQX182b8HEHd+tcD8OrYz/nGz1/4VOzvPLSLV2fCWVj1l73PzXRn6vx3wspLqQsyfLvmg1y780+5auufcEPyawDEXvPJcF+zYlh8LsHk3on/XPMpfmXLH3DeEx/jLYkfkicgfc2nIJ4oztjlZtkGeO3fwev/Fc58Y3XPpqwGbSsZajmVRJAju/V7Rw+nKZTRnQ8AcKSpjF/Mt69iINVJKpjgwGN3FeyxPU+Hv/eumpMgkSrYc0+o4xSS12/kQNu51AcZNtz72+zcXbgCtNKNTeQ4a3+4ef3Yskt8UVgGGk69BIDVww9zYGDq+xb2P/0zALrqT62Kv1/rXvb7ALw2dg9f+cFPizrWE/v7uWDs5wA0lmAJ8rP60+HBcsMHninZmNVi/NmyMFaZZSFLzye/+nJqgiyfiX2MP/7MN7juk1/lN7Phz+jNL31PxAGl0vMnkDmqcUVYSCwb2zbrTcbbtn0dgL2LX/XcPb/e9nX4cO/Rf31y6xMzHmegK1zK0VOz0Bf3s7XiEoZrF9IaDNJ3/1dOuAxsIpvj3tu/TGfQy0iylfSZv1LCoFUmFoPXfw6WXEAqGOeK+P28Jh6+mODi9xKc+/bijv+KD8H6t5En4PL4g1yXCGf0BC/5/fCdSqlM1Z55DQAvmdjIz585UtBn1x9+FIBg8TkFfW5BBQHjy14CQGPXPQVbupvfH64uGGxdW5DnTVnzYjre8RUOxDtZFhyg54vvLu34ZezxfX2syW8HoGnycA1Fq3Zy38LzY1u4b/vU9+tLdG0CYKxzfTFild6i9QwtfgmJIMfqp/+NZwq4JcIv+8nDT3F+bAsAybWvLto4vyzTEB7clzuyo2RjVouJkXD12FilloVAcM0/kmtZwdLYQW6O/yHfyV1PfZBhZNGFJM95W9TxpJKzLJyjapeGP7isi+3kif39M37OQH8PG0bCWQ6NL3qeoiMI2NwSviu7b+fMp/VPHA7f5RuuXzrjZ2hSLE7Ni94FwJvHvs6dm59/b5b//NlOrhgOD4FIrH+zswpnq74d3nEbvPvH8JI/gA3vgd+8DUqxFDaRgtd9muB/3w8XvBtOfwP86n/Ayz/wwvdKEYqdHr5J8dLYI9yxaeYz1H/ZwOg4J2XCv5fmnfKigj23GJrXhnvXnZd7lK1dAwV5ZmNfuG9xfFHpT2oN6ucx+vr/AODs4Xt4Ysvs91CuBo89tZ0VsXB/5uCMN0ScRgAsPJuxWJq2YJBnNj8wpVtGx7NHD05qO/nCYqYrqfpX/AEAb4r9iC/ccV/Rxhl6/BYSQY7expOhdXnRxvllweRYyYGpHwCoUHY0fD05Hq/gw+Ia5hN7523kV1xCMggP4MrXtlH7hn9ylrfmJP+rn6s615EjYH7Qy44dM59qv/MnX6I+yLA7WETnac//DnjD/BUADHY/M+OTHFN9Yc6J1pUzul/HSmx4FyPxRlbH9vHIbZ8/7v8vhwczbLz9a1waf5hckCC54Z0RJK1CQQCLzoZXfBCu/OtwWWwpzVsNr/4beMNn4bTXOVNX5W/+WoaaVpEKJpjYfDO5As2se/zpXayKhW+WtKwq79NK46vCN93OCLbz8Lads37e6HiWk8bDGfvtq4q0/cELWHbai3im9nQA7rvti5FkKDc928Kll721y6C2JdowCiVq6G8P32TP75ja8tvHntnP2iD8Pm1fW54HJ83IiksYmncW6WCcRY/9M939U1+WPVV7eoY5te9uAGrWXV3w559Iel74eqVpdG9Jx60G2dFwZuFEooLLQoCG+QRv/zb8z7vgVX9N8M4fQNuKqFNJkbAsnKtq6umtPQmAoR0PzvgxdZvDfXW2LnjNCQuHzmUnA9A01sXOwy98oMbxNI2EexrVeLhJYaSbyG4I97C7quf/sfHpg8d8OZ/P81ffeog/yP1b+IkL3gnt/m8vKRrps8K9Vl8ydg8P7e4pyDO7N4cHFhxMLir/vXCbF9OXXkw8yHNk6+z3C3tq5x6WBeGf+60ro1uC3XJWeGjCooN3F3VZYyXI5/PUdoUz1yYWRVPg6vjqTgnfEF8xtIkjQy+8fc+ex39CIshxJNFB0FJFK2KCgPpXfRiAt8Ru5ys//HnBh7j14V1cEgu3SKibPAm+VJoXhQdAdmS7GR3PlnTsijcW/vld8WXhsxaeBS96j699NKdZFs5hmXnhu/nJg4/N7AHjoywZfBj4xYu451PTHhaTS4KD3DuD/abGJnJ0ToTv8jUvXjPt+3V8DS/5X4zEGzgltpcffuNfGZv4xcEBX71/D2ds/iSnxPYynm4jdun7Ikwqaa6Lr3stAC+OPcoPHt5RkGfm99wPQH9bZZw4m1kULpWu2//zGc/Sf9aBbWEpdSg+n6CubdbZZqr1rKuA8P/Xr/zkkchylIMdh4c5IxsuXW0+5SURp9F/V3dyWBZeENvCvVPYtzC3c3KGaHsZ74U6U6teTm/HeaSCcdof+jR9w+MFffzuh26jMRhhONUBC0u732PjgnD10pLgEHt7Zja5Ya7Kj4UzC3PVUhZKsiycy2qXhX8Bdw5vPaYkmqrurRupYYKD+WbOOusFfhjqXAfAumAnjzy9a9pj7T48wFIOANC61LKwYGpbYMNvAfCGwS/wJ19/mNHxLF//+VME377+6AEYydf/C9S2RhhU0pzXeTrDdYupDcboe+zWWZdl+Xye9t6wnKo56YJCJCy6ljVhYXHaxBPs6RmZ1bNGd4dv9h1pPHXWuWZlwRkMtKyhNhgj/ch/zOjnkWrxwPYDnBWES8OTKy0Ly8ri85gIkswPenlq80MnvDSXy9PRuwmA1Irq2a/wqCCg+coPAfA/+CFf+8mmgj1695FhTjn8w3CYNa8u+T5xQfNScgTUBRm69nlK+3QEkzML8zUNESeRVCiWhXNY88pwictadvD0wcFp37//0TsBeDp9Oo21L3DoRdtKhhpXkgyyxJ/50bTH6tq9jVQwwTgJguYl075fz6/2JdczkWxgTWw3ax79a176wS+S+u7/5o3xHwOQX38tnHxZxCklzXlBQHJy/6pzRu5h8/7ZHfKx58gwa/PbAJh/2sWzjlcKNSvDvc/ODp7mgae7ZvWs2iPhDLZs5+mzzjUrQUD9Je8F4E257/HTrXN3r7DdT22iNhgjE6uD9tVRx9F/l0zTOy98Yzx4+o4TXrq1q48z81sB6FxXnSdaByteSk/LGaSDcXI/u6lgS3a/9/BuXhkPZz3XnvkrBXnmtCRq6I2HW1L0dz1d+vErWGw8nImZr6mPOImkQrEsnMOCheHph8tj3Ty1a/o/nMf2hEssxhZNbVP4xNorAThzeCMHprkhcv+e8IeuQzWLIRaf1r16AbWtJF7zCQDemfge96av5zXxn5EN4uQu/wuCq/9vxAElKfRsWfiK2IPc+tjsTqvcsuUx5gX9jJMgtfjsAqQrgfZVDCZaSQXjdG25Z8aPyeXyLBgOi9LG5aVd5nc8sTPewGCilQVBD09uvDnqOJHJ7w1nrA22n+7Jm2Wo4YxwyfxZwz9jxwn219zy4N00B8OMBLUkFlXGFgfTFgQ0veL3AXhj7nv818+2FuSxzzz0A+YF/YwmW2B5NAfDDNQuBiBzcOYHQM5F8YmwLAycWShVDX8Smcvq2uhNdgLQs33TtG7NZnMsHQr3Opy/7pIp3ZM67dUAvCy2iXufOfgCVx9r4uCTAAzWnzSt+zRFZ/0aXPNP5BO15IMYuY61xN/8JWIX/44vWCSVj6UvIpNspjUYZP/D05+l/t/1bdsIwIG6kyGZLkS64gsCBjvDJdOJPTM/WGD3oT5WES6x6zy5DE6BTtQwsjr8GaF59w/m5FLk0fEs8weeAKBmaRXuc1cF0uvCwzY2xDbzk8e2P+91Y0+FMw8PtF8A8WRJskUhvu619NctoyUYoufH/8REdnbft1u6+llzZPLP9VNfHdn/duON4QqmfO/sT52fSxITYYEeS1kWStXCFmCOG2kJl7mMdW+e1n1PPvEgrQwwSpLVZ140tZuWvoiReCNtwSBdj/1kWuMl+sJ397KtnkhVNGe/heCPnyF4/15i1/8MTnll1Ikk6VjxBMGprwJgTd9dszo9t6YrnMWV6Yx+Zt10NJ4SzrZZMfwoPVM4lfV4dj+5iVQwwVBQR7J9RSHjzVj72ZMH2PAQ9+944QMkqs2WrgHWBeHPOg0ryqDA1XO1r6K37iRqgixHHvn+cS8ZHc+yrCcs8mvXvKKU6UovFqf25X8EwK+Nf4PvPfDUrB739Xt38Or4vQCko1iCPCnWGk5MSA/Obvb6XJPMhjML42nLQqlaWBbOcTWd4WEhqZ5t5HJT3yx+3yPhO3+70mtJ1ExxRkY8wZFF4SzEpl0n3u/ll7UMh4eipBecPK37NE3JWqjxFDNJ5atm8lTky2MPcOtj+2f0jNHxLEuGwj37mlZX1gEE9avDsvC82NYZl2r9O8KitLv2ZAiCgmWbjdjKlzIe1LAkOMRjD98XdZySe2z3IU4LwplMwaLKKrDnlFPCNyuWHrqLvpHnngJ8/1N7OScIl+R2nPWqkkaLQnL9m+mpPYm2YJD9t39qxrOCxyZyHN70HTqCPjLpebDqZQVOOnW188MTkZszM/v7Za5K5sJDtywLpephWTjHtSwLTylekts7rUNOEnt+Bkx9v8JnNZwRLjNaN3LfcX/IOp7R8SwLs+Geii1LT5vWeJKkKrPq5UzE0iyNHWTrwxtn9IhHnuni9CBcRti+Jpp9sWZswZlkYrU0B8Ps2PzAjB4RPxBuI5KZV0Z/p9bU0TN/AwD5J2+LOEzpHXr6EVLBOKPxBmhbGXUcPY+Ws8J9Uy8JHuL7jzx35tmT991GKpigNzmfYN4ppY5XevEEda/8EwDeNPZNvnr3YzN6zB2bu7lq/HYAkue8NdLl2y2LwlVXC3Ld9I9O7bWKIDVZFiZqmyJOIqlQLAvnuPi8cFnvSUE3m3b3TumewdExThsO3/XvOHN675o2nxKeCndKsIdNT0/tHbtdB3tZyoHw/sVrpjWeJKnK1NQxseJSAJYd+BFdfdM7MAtgz2N3UxNk6Y23E7SVxzLcKYsn6G0LDyjL7pzZISdtA+HMp/SSswoWqxAaTw/fUDxj+Ofs6x2JOE2J7Q9new61nV42sz11HMtexGiimfZggCd/dssxX5rI5mjccSsAo8sunTP/P6bOeiO9DatoDoYZ+vHfMTCDgu1bd93HpbFNAMTOfXuBE05PbUf4d8Li4BC7D099IsVcl54sC1N1jREnkVQoloVzXVtYFq6K7afryakt+3n8wZ/SEfQxQorO06d2uMlRzUsYiLeSDLLs2jy1zdm7d24lHuQZDmoJGhdMbzxJUtVJnx7O7nll/H5uf6Jr2vdnd4YzEnvmnVORL+hTK8Kl0wv6HmZ0PDutew8PjLIqF+6N13lKee2NV3vaFQCcH9vKg9vmzn5ho+NZOp493GSZh5uUtXiS7GmvA2Dtoe8fsyrn7if38/Jc+GdLx4Y3RRIvErE4jVd8AIC35b7Nf3x/em9iPLqnj5P3fYt4kGdsyUXQHvH+5E2LyRIjFUxwYN+uaLNUinyeNOEbdzV1ziyUqoVl4VzXtJjR9HwAXrb941O6pf+x8F3TnY3nQiI1vfGCgIH2MwDI7Lp/SrcM7tsCwJGaxRX5ok6SVGCnvIocMdbFdvLgww9O69ZsLs/C3nAWV2plhS1BntR8ajhL/1y28vAUVwU8a9v2J2kLBskSo27x6UVINwttK+lLzicZZOl+4u6o05RMeLhJuCzew03KX/15bwPg6thG/r8f3Hv08/f/6Ju0BwMMJVqIr7o0onTRiJ/+K/TOO4e6IMMpD/45m/f1Tfnef/nxk7wpcScANef/RnECTkc8QW8yfG002PV0xGEqxMQoccL9KtPOLJSqhmXhXBeLMXTl3wOwZnwzo0Mv/Jf7vO7wB/jcqpfPaMi65ecB0N73+JRmROS6w7JwsMmTkCVJQP08MkvDou+kPd+d1qnAm/f2cCbhMtzO0y8tRrqiC5aeT44YS2MH2fzklmnde2RbWK521ZwEySkeUFYqQcDQggsAqNn7s4jDlM7juw+xNghnMHm4SQVYegGDHetJBeMseOKzPLa3jwd2HuGU/d8BILf2dRBPRByyxIKAljf+A1niXB67n2996Z/JTuHgxMf29jHx+LdZEhxiIt0Gp722BGFf2GDtYgAyh56JOEmFGBs6+mFtgzMLpWphWSjazryCbtpJBDl2PHripQP7Dxxi3US4VGbp+a+Z0XjNq8INzE9n+5T2SUz3bQMg1nHqjMaTJFWf2vPeCsA1sbu5Y3P3lO97+vGf0xSMMBLUEV94RrHiFVeqkSON4d+Jw9t+Oq1bs/sfAWCwpTz3AG5aE25vsmr4kWmVwJXs8PZNpIIJRuJN0Lo86jh6IUFAw2XvA+Dtse/z55/7Ojf+x7d5dSzcXqfxondEmS46nesYueC3AXhH39/zmVtOXPjn83k+dstm3pUI935MbHgXJGuLHnMqJpqWARDr3RlxksowPjIAwHA+RX0qusNpJBWWZaEIgoB9deGLhsNP3XvCa5+89/vUBFm6Y500LprZC41g8bkArAr2sempE/8lnMvl6RgNr2lcWmbLpSRJ0VnzGsZjaZbHunnygR9O+bbhp8LZ8QdazoJYvFjpim/ZiwBoOfTAlGbwPKu5N3zDL77ozKLEmq2Gk8Ml1utj23jomamXwJUs1vUwAIPtHm5SMU65grGVl5MKJvj4+Ef55PhfkghyjK26AhaW18FBpdRw+fvpbzqZjqCfU3/+Pu544vkPM/zaA3sY234362PbyMdTcP47S5j0xBJtJwFQNzx39k6djdHhsCwcIkVdzRybVStVMctCAZBbeDYAscnT+J7PxFPhC7KD8y+a+Q+0DR301y4lFuTpf2rjCS/d2zPMCvYC0LGiQmeASJIKL9XA0KqrAFi+9zsMZSZe8JbxbI4Fh8K/d2pWVeZ+hc9qXROWamflNvNk98CU7hkZy7JqPFyC3XbKhUXLNisdpzIYb6Y2GOPgk1M7CK2S5XJ5OvofByCx2CXIFSMIqLnm78g1LmJZ7CDLYgfJNS2h5rWfjDpZtJJpmt7674wHNbw8vonuL/02P33q4HMue3RPH3/2rUf50+T/B0Cw/q3QML/UaZ9XfWe49VHr2H7y+am/GTNXZYb7ARghTU3CekGqFn43C4D5a8IZCguHtjA2kTvuNePZHMt6w5mHjaddPqvx8kvDPYkaDj7ARPb44wHs3LGNxmCELDES81bPakxJUnVp3hAeNHBlsJEfPPrCp1Y+vH0/FxIuw+0893VFzVZs8ZPCsm9NsIuHt03txM4tTz3FouAIWWK0rSrTgzSCgMPt4QqE+O7q37dw15Fh1hIebtK0skz/P9HxNS0i9u474dL3w0t+n9i7fgjNS6JOFb3OdQSv/XtyBLwldjv7/+Md3HTrQwyMjpPN5fnuI/t4y7/+jPfkv8xZse3kaxrD/w3LSMvi8DXHYg5wcDATcZryl5mcWTgalNk+uJJmxbJQACxeexEAy4P9PL79+C86Htm8lZOD3eQIWHrOq2Y1XuPJLwHgvPxjPL6v/3mv69n5GACHahZDomZWY0qSqkuw8hIGazpoDQbZ9tNvvOD1ex64hXQwzuHkAmILKnxri6aF9KUWEw/yHNl64v2Gn3VgS3hdV/IkSDUUM92sxJecA0B979aIkxTf1r2HWTN5uMmzv29VkMZOuPR98IoPhR8LgMT6XyN75cfJEeMN8R/z9nteyVf+6lou+PB/8b+/8CCvGv8B1ye+BUBw9afKalYhQKJtBQALOczuQ8//OkWh8ZFBADKWhVJVsSwUALGGeRxKLADgmUePvzR434PfA2BP+hRiDe2zG2/1ywA4J3iKh06wb2G2K1yaM9jorEJJ0i+JxeGMNwCw7tD3eebQ0Akvr33mNgAOL35FVewNl1kczkRL7z/xfsPPyu0NT0Luby/vbT06VoZ7vr08t5GDXdW9Z9jhZx6iJsgyFG+ClmVRx5EKJrnhnQRv/xYD9cupDcZ4R/wWvhB8kO+l/5S/SX6GGPlwn8LJP8PLSkMnYyTDN2P2bY86TdkbHwkL1bFYeRxQI6kwLAt11NC88MXDyPbnzlDI5/Mkd90FQGbZS2c/WOtyemuXkQhyDG/90fNe1tATloX5BeW5EbskKVoNF/w6AC+PPci3Nj72vNftOjjAOaPhstbO83+lJNmKrfnU8O/jdeOPsrd35AWvb+t9FICak8p7uWvq1FeyP5hPKhjn4APfijpOUeX3hntF9zSvq4oCW/rvghUvpfEPNsGbv0Q+nubU2B7WsgNqGuClfwSv+uuoIx5fLEZvzUIABrssC19IdjScWTgWr4s4iaRCsizUUa3rwn0ITx34GV19o8d87bE9fZw9vgmApedeWZDxxpaHsws7uu8md5yTHIfHJliWeQqA9pPL+4WNJCkinevob15DTZBl8MGvPu9BJw9svJ2OoJ+hoJ7mNZeWNmORpFZfCsD64Cnuf3L3Ca892D/KKdltACxYW6aHmzwrmWZ7c7iX8kDXtojDFFdLT1hw5+bwCbqqckEAp15J8NYvw9rXwiXvg999FF7+pxAv35Nzh+vD/ScnDj8TcZLylx0NZ/VPxF2GLFUTy0Id1XRmeKrk+uAp7nxo8zFf23jvPSwIehgLakivvLgg47WdGe57uCG3icf29j7n65t3dbMq2AdAa7luxC5JilzDBW8F4FXZH/PFe5+7724+n2fs8ZsBONj5EognS5qvaNpW0lezkJogy/5HfnjCS7dueZTWYJAxktQvKf9iqqY9XJKb6zlxCVrJRsayLBsL3xRt9nATVbuVl8Kb/hNe9n6oa4s6zQvKNS8FINFfvX8GFUpuLJxZmI3XR5xEUiFZFuoXmpdwuOEU4kGerge/e/TTmYks8ce+CkBf54sgWZh3jRIrX8oECZbFDvLQpgef8/W9W+8nHuTpi7dC44KCjClJqj6xM3+VHDHOiz3JD358J4O/NLvwvmeOcO5IuMXG/POqYwkyAEFAZll4YFj93uPP0n/W4clDUPbXnlwRB4Y1da4CoHZ4f8RJiueprh5OCfYC0LzCw02kcpKcFx5yUj+yN+Ik5S+fCWcWZpPuWShVE8tCHSN9WrjE+IyeO9i0uxeA7zy4k6ty4b6CbRdfV7jBUg0cblsPQGbr7c/58ujOsEDsaVpbuDElSdWncQH5ta8B4NcyX+Xv7njqmC/fdetXWR3bx1iQom7dq6JIWDRtZ7wSgHOyj/D4vhOc2jl5uMn4gvWliDVr85eGZWF7tpvR8WzEaYpj79OPkwrGGQ3S0LI86jiS/pvGBeGfQfPG9zORzUWcpsyNhWVhPuHMQqmaWBbqGPUb3k6OGK+IP8RXb/4+Q5kJHr/98ywIehhOthFfe1VBx6s7LXyRs7Lv5xwezBz9fD6fp/bgwwDEF59d0DElSdUn/pLfB+C1sY1s+un3+PGTBwG47fEuXrTvPwAYOeNtUNsSVcSiSKy6FIB1sZ3c+/iTx71mYHScZcPh3njzTnlRqaLNSsvClQAs4AjbuvoiTlMcg7sfAeBw7UqI+SO5VE6aFqwGYElwkP2/tJe7jhWMDwOQr7EslKqJP5noWO2rGF4dFoIX7P13XvaxW3lz5msAJC/6LUikCjpc47orALgw9jh3PPqLfaa2HRjkzGx4EnLn6ZcWdExJUhVadDasfxuxIM//id/En/37LfzvLzzIF7/077w4/jg54jS//HejTll4DR0caVwDwMhj3z3uJZu2bOOs4GkAWtZdVrJosxE0LWKCOMkgy+5d1XkaaeLgEwBk2tdEnETSL4u1LQdgftDL3gNHog1T5uIT4czCwLJQqiqWhXqOhlf8EQCvi9/DF7O/zymxvYyn2khueGfhB+s8g4HUAuqDDDt//q2jn77/0cc5KXaAHDFqlpf5qY2SpPLwyr8i37iQ5bFubk38Hldv/kP+b+xvAcif/5vQsizigMVRc+Y1AJzR+0P29o485+uHNt1MLMizN30yNC0qcboZisXpr+kE4ODe6jwRuXUgnAmaWnxmxEkkPUdtKyNBHQBH9lXnn0GFEpsI/94JUpaFUjWxLNRzLTwTTn8DAKti+8kl60i+6d+Kc3JZLEbs9HCz+TWHb2fHofCdqYMP3wYQzpZINxV+XElS9altIbjuFvIrXkpNkOWK+P00BSPkl11E/LI/izpd0TSsfyMAF8Ue5/b7nzjma/l8nubddwAwuuLykmebjUzDEgDGu4+/vLqSHewfZV0+/H3NO/mCiNNIeo4goC8VvrkyfODpiMOUt8REuAw5lmqIOImkQkpEHUBl6nX/AAvPgtw4sbPeXNSZCPXn/Co88E+8IvYQf3nHo/zGpes4ufcuiEPtadW1Eb0kqcjaVhK8/Tuw4254/Jswfy3B+l+viBOAZ2zeao40nkrbwFZ6H/wm+VecQxAEAGzee4TzJh6CABZfcE20Oadr4Vlw5F7m9T4SdZKC2/nkJs4L+hkjSeqk86KOI+k4RhuWwOg28kd2Rh2lrCWzYVkYtyyUqoozC3V8yVq4+HfgJb9f/CVLi9aTaVxGXZBh5JFv8fv/+j1eEQtPbaw/+1eKO7YkqTotfzFc9XE4/x3VXRROSp/9egAuHvw+9+/sOfr5h+7+Hk3BCP2xFtInnR9VvBlpPOWlAKwbf5yB0fGI0xTWyLa7AdiRPq3g+0FLKox8y0kAJAf3RJykvCVz4QEwydrGiJNIKiTLQkUvCEiddy0Af5D4Mn8y+rfUBFlGFr0oXBItSZJOqO78a8kS5/zYk9x8660AjI5nSWz5NgCDJ72i4k7cbVh9MQCrY/vYse9gxGkK7EC4XHyg/fSIg0h6PqmOFQA0juyNOEl5S+XCPQsTte5ZKFWTyvqpUdVrw7vJNy1mcXCYC+NPkA/i1L7qz6NOJUlSZWhayPDqqwA4a89/8v3HuvinH23lFfmNAHRe+JYo081MfTtDQfjis3t3de1b2DgQHphQs+C0iJNIej7NC1cDMD/bxchYNuI05SuVD2cW1tS6z7xUTSwLVR7SzQTvvAMufi+seQ3Bm78EyzZEnUqSpIrR+PIbAHhd7B7++f/7Esm7Psa8oJ9MTSvxVZdEnG5mnj1gILP30YiTFM5ENseisV0AtK84K+I0kp5PfecqAJYGB9nTMxxxmjKVz1NLWBam6tyzUKomHnCi8tG0EC53NqEkSTOyaD3Zda8n/vjX+a/Uh49+uualvwvxZHS5ZqGv7UwW7XuK5MHHoo5SMLv27mNlEO4ruWCV261IZatlWfiPYIiHu7s5udM9+Z5jYpQ4OQDS9c0Rh5FUSM4slCRJqhLxKz9GvmMNANl0G1z2ZwQX/XbEqWYu6AyX6TYNbo84SeF0Pf0wAAdjHcRqfXEtla1UAwOx8Hu0b9+2iMOUp/zY0NGP65xZKFUVZxZKkiRVi4b5BO/5Kez+OfH5a6GuLepEs9K0dB08BAvGdpHL5YnFgqgjzdrQ7kcAOFK3ko6Is0g6sYHaRTQO9TF6sHresCikseEBUsBIvoa6Wk92l6qJMwslSZKqSTwByy+u+KIQoGNluEx3Kd3sP9IbbZgCiR/aDECmfU3ESSS9kLHGpeEHPTujDVKmRob6ARgiTW0yHnEaSYVkWShJkqSylGxeRG/QRDzIc3DbQ1HHKYi2wXA5Y+3i0yNOIumFBK3LAUgP7Yk2SJnKDA8AMEqKeBXM/Jb0C5aFkiRJKk9BwOGaxQD0dO2INksBDI2Oc1I2nKHUseqciNNIeiG181cC0DS6j3w+H3Ga8pMZDmcWjga1ESeRVGiWhZIkSSpb43ULABg5tCviJLO3fcfTtAaDZInRssyZhVK5a1m0GoCF+QP0jYxHnKb8jI8OAjAaS0ecRFKhWRZKkiSpbAXN4czCXN/eiJPM3uGnw6XU3YlFkPTFtVTuauaFMwuXBgfZfXg44jTlZ2I4LAvHY84slKqNZaEkSZLKVu28ZQCkhvdHnGT2MvseA6C38eSIk0iakuYl5AioCzJ0d7lv4S+byIRl4ZhloVR1LAslSZJUtloWLAegefwgo+PZaMPMUvrIVgByHadFnETSlCRS9CXmATCwf1vEYcpPNhMecJJNWBZK1cayUJIkSWWrcf5JACzgMLuPVO4ywHw+z/yRpwFoXHpmxGkkTdVQ7SIAMoeeiThJ+cmPDgEwkaiLOImkQrMslCRJUtkKmsI9CxcFh9lxcCDiNDN3sH+YFfndACw4xZOQpUox0RRuhRDrq/xDlgotPxaWhdlEfcRJJBWaZaEkSZLKV+NCRmJ1JIIcE9t+GHWaGdu17XHSwTij1JDqWBV1HElTFG9fDkDdkHsWPsdkWZhPOrNQqjaWhZIkSSpf8QS7Wy4AoHb/vRGHmbmeZzYB0J1aDrF4pFkkTV3d/LDcbx3bTy6XjzhNeQkmJreGqHFmoVRtLAslSZJU1oYWbACgvv/piJPMXK77CQAGm0+JOImk6WhetBqAJXRzYCATcZryEhsPZxbizEKp6lgWSpIkqazVdYYv1hsz+yNOMnMNfeFJyPEF6yJOImk6Eh0nA7AkOMieQz0RpykvicmZhbFUQ8RJJBWaZaEkSZLK2rwl4TLAedmDjE3kIk4zfdlcnoWZHQC0LD8r2jCSpqehk+GgjniQp2f31qjTlJV4dgSAWNqyUKo2loWSJEkqa20LVwAwL+hn36EjEaeZvp3dhziJcFZkxypPQpYqShBwOH0SAKNdWyIOU15qJsvChDMLpapjWShJkqSyFtS2MkoKgO49z0ScZvr2PfUw8SBPf9BEvGlB1HEkTdNwY/iGRexI5e6bWgzJ3GRZWGtZKFUby0JJkiSVtyCgN9kBQE/XjmizzMDArkcAOFi7EoIg4jSSpivXHu6bWj+wPeIk5SU1WRYm040RJ5FUaJaFkiRJKnsjteGMvOFDuyJOMgMHwpOQx9rXRBxE0kykFoTfu/NGd0acpLyk86MA1NRZFkrVxrJQkiRJZS/XuCj8Z++eiJNMX8vAUwDULjkj4iSSZqJl6WkALM3tJTM+EXGaMpHPkyYsC1N1TRGHkVRoloWSJEkqezWtSwBIDO2POMn0HBzIsDwXzobsXO3hJlIlal1yKjkCmoNhdu/ZHXWc8jCRIUF4On3amYVS1bEslCRJUtlrmB+eRtqQOUA2l484zdRt3bGLhUF4gnPt4tMjTiNpJoKaOg7G5gPQvf3RiNOUh2xm6OjHdQ3OLJSqjWWhJEmSyl5T50oAltLN/r6RiNNM3YFtDwFwJNEJaV9QS5Wqt245AMP7NkcbpEyMDPUBMJpPUpeuiTiNpEKbdll41113cfXVV7No0SKCIOCb3/zmCa//xje+weWXX05HRwdNTU1ceOGF3HrrrTPNK0mSpDkoviDcM2xlsJ9dB3oiTjN1Y/seA2Cg+eSIk0iajfHWVeEHh56KNkiZGB3qB2CINKmEc5CkajPt7+qhoSHOOussPv3pT0/p+rvuuovLL7+cW265hQceeICXvexlXH311Tz00EPTDitJkqQ5qmkxQ7EGkkGWnl2PR51mymp7tgIQ61wXcRJJs5FecCoADYM7og1SJjLDAwCMkCYIgojTSCq0xHRvuPLKK7nyyiunfP2nPvWpY/79ox/9KN/61rf4zne+w/r166c7vCRJkuaiIOBg3WrqBzeR3f8Y8MqoE72ggdFxThp7CmLQusKfe6VK1nbSOrgPFk7sJjORJZWIRx0pUmOTZWEmlo44iaRiKPl84Vwux8DAAG1tbc97TSaTob+//5hfkiRJmttGWtcAkDpcGXuGbdnVzbpgBwANqy+KNoykWWldFs4OXsIBnumunK0QimV8dBCATFAbcRJJxVDysvDjH/84g4OD/Oqv/urzXnPjjTfS3Nx89NfSpUtLmFCSJEnlKLYgfLHePrQt4iRT07X5nnDZdHwetCyLOo6kWQgaFzIS1JIIcuzbXhlvWBTT+Eg4s3DcmYVSVSppWfiFL3yBj3zkI3zlK19h/vz5z3vd+9//fvr6+o7+2r17dwlTSpIkqRw1LjsLgKXjz5DP5yNO88JyO38GwOH29eCeXlJlCwIOp8PSv3fXYxGHiV52cmbhWLwu4iSSimHaexbO1Je+9CXe+c538tWvfpXLLrvshNemUilSqVSJkkmSJKkSzFt+BgCdQQ/dR3robH/+bW3KQVvPwwAkl22IOImkQsi0nwZ7thLrejjqKJHLZoYAmLAslKpSSWYWfvGLX+S6667ji1/8IldddVUphpQkSVKVqWloZYhwf6yuXeW9FHl/7zBrck8C0HnaiyNOI6kQapefB0DHwBMVMbu5mPKZcGZhNumehVI1mnZZODg4yKZNm9i0aRMAzzzzDJs2bWLXrl1AuIT42muvPXr9F77wBa699lo+8YlPsGHDBrq6uujq6qKvr68wvwNJkiTNDUFATyLcyqZ3//aIw5zY1i2P0xH0M06C9FJPQpaqQcea8KCi0/JPs/PQUMRpopUfC3//uUR9xEkkFcO0y8L777+f9evXs359+EPPDTfcwPr16/nQhz4EwP79+48WhwCf+cxnmJiY4Prrr2fhwoVHf733ve8t0G9BkiRJc8VQ3SIAhg/tjDjJifU+tRGA7tqTIekBAFI1SC44nXEStAaDbHtybu9bGIyHZWE+6TJkqRpNe8/CSy+99IRTrj//+c8f8+933nnndIeQJEmSjivXuAT6Id+z64UvjlBy788BGF1wTsRJJBVMoobuulNYMvwEg9s2wsUvijpRZIKxZ8tCZxZK1aikpyFLkiRJs1HTHp5GmhzcF3GS5zeYmWD1cHgAQuu6l0ecRlIhDS8MDyyq278x4iTRik+MABCkGiJOIqkYLAslSZJUMRo6VwDQOravbA8Y2LRlG6fGdgPQvvZlEaeRVEjtp4dvAJwy8jADo+MRp4lOfGIYgFjKZchSNbIslCRJUsVoX7oGgCV0092fiTjN8XU98kMA9qdWQn17xGkkFVL72kvIEmN50MUjTzwRdZzIJLLhzMJ4qjHiJJKKwbJQkiRJFSMxbxUAC4Iedu4/GHGa46vZcw8AI4vm7n5mUtVKN7Ov9hQADj12R8RhopPMhjML42n3LJSqkWWhJEmSKkddG4OxcCbLkT1bIg7zXF19o5w8Eu5X+OxyRUnVZXTxhQDU7v5JxEmiU5MbBSCZdmahVI0sCyVJklRRetNLARjueiriJM/104ceZW1sFzkCmk+9NOo4kopg4bmvBeC8sXvZcaAv4jTRSOXDZciJWstCqRpZFkqSJKmiZJpOCj848nS0QY6j/+HvAHCg6XRo6Ig4jaRiaDjlpQwGDbQFgzy68dao40QiPVkWpuosC6VqZFkoSZKkihKftxqA2oFdESc51oH+UVYc/jEAydOuijiNpKKJJ+haMHnS+ZbvRpslCvk8acIDplL1loVSNbIslCRJUkVpWBgeLtA+tptcLh9xml/43sZNvDh4BID2c18fcRpJxTTvgjcC8KLhH7Ft/5GI05RWfiJDkiwAtXVNEaeRVAyWhZIkSaooLUvXALCc/ezvH404TWh0PMvQvf9BIshxqPVs6Dgl6kiSiqjlzFfTF2+lI+hn0x1fijpOSY2NDh79uLbBmYVSNbIslCRJUkVJdJwMQGfQy+793UUbZ2wix82P7Ocvv/sEn/z2z/mvB3fRNzx+3Gs//8NH+NWJcL/C5he/s2iZJJWJeJIjq98AwIJtX2V0PBtxoNIZGewHYDSfpC6VijiNpGKwLJQkSVJlqW2lP9YCwJFdm4syxI6uQ2y98cVc9Y01rPjZB7jhwVeS/a/rOe+vbued/34/Nz+y/2g5cPMj+0nc/TfMC/oZqF9O8uxfK0omSeVl6Sv+JwAX5R/itrt+EnGa0hkdCk+AHiFNIm6lIFWjRNQBJEmSpOnqrTuJpsFeMl1bgCsL+uwD/aMc/MyvcH7ucQDemrgDgDfE7+LkYA+3PXkev7v5NSRrUrSkE7xq6Jt8KHkzAA1X3wjxZEHzSCpPifkns7PjUk46eCfxjX9P9mWXEI8FUccqusxIuAx5JEjTGnEWScVhWShJkqSKk2leCYMPE+95uqDPzefz/PnXf84/5B457tfPim3nrNh23lLzY7ZMLGL5aBerkvsByF30u8TWvLqgeSSVt84r3wf/cSeXjd/JD+97mMs3nB11pKIbGw6XIWeCdMRJJBWLc4YlSZJUcZ7dt7BhcEdBn/vDLQeIPXXrc7/wig/DW78Gr/xLqO9gcb6bV8QfYlVsP/lELVxxI7HL/6ygWSSVv/TKC9nTtJ5UMMHAjz5FPl8+J7QXy8TIEACZWG3ESSQVizMLJUmSVHEaFq+FTdA5vptsLl+QpX/5fJ6/+8GTvD/xw/ATL/kDePkH4MAT0LEGYnE4+XJY/zZ48laYyEBdO8GS86Gxc9bjS6pMzZf/EXz9zVw5cjMbH9nCRWetjTpSUY2PDgAwZlkoVS1nFkqSJKnitJ20DoDl7Gdfz3BBnvnTbYe54cCf8KLY5KEpZ7wBggA614VF4bNqW+GsX4Nz3w5rX2NRKM1xjadfyZ76ddQGYxy57a+jjlN02dFwz8LxuGWhVK0sCyVJklRx4m0ryBKjPsiwd/f2gjzz/ju+yiXxyb0Kz/0NmF/ds4MkFUgQUHvFBwG4bPC7PLx5S8SBiiuXCZchT8TrIk4iqVgsCyVJklR5EjUcSiwEoHf3E7N+3IGBUc7f9/9+8YnLPjLrZ0qaO9rPeBXP1J1BOhin63t/E3WcospnwpmFuYQzC6VqZVkoSZKkijTQuAKAsa7Ns37Wd+/dwgXB5HOuvxdqW2b9TElzSBCQftkfAvCivlt4Zt+BiAMVT34s3Pohm6yPOImkYrEslCRJUkXKzVsDQPrIk7N6Tj6fZ8d93yMZZBmoPwk6Ti1EPElzzMJzr6Y7sYjmYJgnb/9s1HGKJhgPZxbmky5DlqqVZaEkSZIqUt2SMwCYN/I0+Xx+xs/Z2j3AS4ZuAyB16uUFySZpDorFOHza2wFYueMLZLO5iAMVRzAe7llIjTMLpWplWShJkqSK1LFqPQCr8rs4PJiZ8XMeuOeHXB5/kBwBNee8uVDxJM1Bq175bjIkOTm/i4ceuCfqOEURmxgBILAslKqWZaEkSZIqUqrzVCaI0RwMs3PH0zN+TvOWLwKwd/GrYMl5hYonaQ5KNbTxdNMGAPof+GrEaYojMRHuWRhLNUScRFKxWBZKkiSpMiXTHEwuAeDIjodn9IhtBwY4c/QBANouvLZg0STNYaddA8DK7tvIVeFS5EQ2nFkYT1sWStXKslCSJEkVq69xNQAT+5+Y0f0/uW8Ty2IHyRKjfvWLCxlN0hy16iVvYDwfZzn72Lp5U9RxCi75bFnozEKpalkWSpIkqWLl5q0FIN2zdUb39z4eHmzS27IO0k0FyyVp7krVt7K9LjyA6cCDN0ecpvBSuXAZcrLWslCqVpaFkiRJqlh1S08HYP7I9mnfu+NAPy8f/G74nNOvKmguSXPb0JJLAGjad1fESQovlR8FIFnbGHESScViWShJkqSKNX/yROQV+d0cHhiZ1r2P3P1dzoptZzRIU3v+rxcjnqQ5qv3sVwNw6sjDZEaHI05TWOnJsjBVZ1koVSvLQkmSJFWsus6TGSNJXZDh6aemt29h7slbAdi76FXQvKQY8STNUcvWns8hWqgLMjzz0I+ijlNQtZNlYbrOrRukamVZKEmSpMoVT3AgtQyAQ9s3Tfm2PUcGOW/kbgDmnfvaYiSTNIcFsTg7Gs4BoHfrTyNOUzi58QzJIAtAusGyUKpWloWSJEmqaMMtpwAwsf/xKd/z0E9vZUlwiOGgjuYz3K9QUuFNLDwbgNTBh6MNUkAjQ/1HP66rtyyUqpVloSRJkipazcLwkJP63ienftMT3wZg/4KXQzJdjFiS5rimlRcAsHBoS8RJCufZsjCTT5JO1UScRlKxWBZKkiSporWvPheA5ePb6B8df8Hr9/cOs344XILcfv4bippN0ty1bN2LyOUDFnCIQ127o45TEJmhAQBGSBEEQcRpJBWLZaEkSZIqWuPKDQCsiu1ny/YXfkF+38Y7WRIcYpQULWe8qtjxJM1RDU2t7I6HhyftfWJjxGkKY3QknFk4EjgjW6pmloWSJEmqbHVtHEgsAqB7yz0vePnY498BYH/HxZCsLWo0SXPbkfrVAPTtmvqequVsfHgQgNHAPzulamZZKEmSpIrX334mAOO77jvhdQf6Rzi7/04AmtdfU+RUkua6fHtYFsaOPBVxksIYHw2XIY/FnFkoVTPLQkmSJFW82hXhUuT23kfI5fLPe909P/kBq2P7yFBD2znXlCidpLkqvfBUAJqGdkQbpEAmRsKZhePxuoiTSComy0JJkiRVvM7TXgzA2fktbN3f+/wXPvxlYPIU5HRzCZJJmsvmLT8DgEUTuxnP5iJOM3vZzGRZGHMZslTNLAslSZJU8RKLz2EkqKM5GOapR45/kMDjew7x4syPAZh38a+XMp6kOarjpNMAmBf0s3vfvojTzF5usiycSFgWStXMslCSJEmVL57gQNu5AAxt+eFxL9n0o28wL+hnIN5Cw2lXlDKdpDkqSDdxONYOwP7tj0WcZvbymSEAcgmXIUvVzLJQkiRJVaFh7SsAWNhzH/2j48d8rX90nLZt/wVA3+prIJ4sdTxJc9SR2pMAGNyzOeIkBTA2WRYmLQulamZZKEmSpKrQfvplAJwfbObOx3Yd87Xv/OQBXsHPAVh8yW+UOpqkOWyseRUAweEqOBF5fBiAXLIh4iCSismyUJIkSdVh/jr6UwuoDzJs/cnXj366f3Sc3D3/QE2Q5WDrOQSL1kcYUtJcE+s4GYCGwWciTjJ7sfFwZmFQ48xCqZpZFkqSJKk6xGLEz3g9AGcf+R4bnz4MwL996zbelLsFgNYr/jiyeJLmprpFawCYP7Y74iSzF5sIZxYGNc4slKqZZaEkSZKqRv2Gt5Mj4PL4g3zmS1/nI//1EBc//mfUBFkOL3oZiTWvijqipDlm3vIzAFia30/f0GjEaWYnMVkWxlL1ESeRVEyWhZIkSaoeHacycVo4u/BDmY9z4YO/z3mxJxmNN9D+xk9Fm03SnFTfsZxRakgFE3Tt3Bp1nFlJZkcAiKedWShVM8tCSZIkVZWaV3+MbMMiVsS6eWX8AfIEpN/4L9C6POpokuaiWIyu+CIA+vY8EXGY2UnmwrIwYVkoVTXLQkmSJFWXhg7iv/EdWHYRdJ5B8JYvw5pXR51K0hzWV7cMgNEDT0ecZHZqJsvCZG1jxEkkFVMi6gCSJElSwc1bDb/5vahTSBIAE41LYADyvXuijjIrqVy456JloVTdnFkoSZIkSVIRJVuXAFAztC/iJLNTSzizMFXnMmSpmlkWSpIkSZJURKn2kwBozHRFnGR2avPhzMJUXVPESSQVk2WhJEmSJElF1NS5HID27EHy+Xy0YWZoLDNKTZAFoLa+OeI0korJslCSJEmSpCJqW7wSgPn00DMwHHGamRkZGjj6cW29exZK1cyyUJIkSZKkIko1LWCMBPEgz8F9O6KOMyMjQ/0AjOUT1KRSEaeRVEyWhZIkSZIkFVMsxuHYPAD6u3dEm2WGMsNhWTgSWBRK1c6yUJIkSZKkIuuv6QRg9NDOiJPMTGZyGfIItREnkVRsloWSJEmSJBXZaN1CACZ690ScZGbGRsOyMBOzLJSqnWWhJEmSJElFlm1cDEBiYG/ESWZmYiQsC8di6YiTSCo2y0JJkiRJkoos3roUgLqR/REnmZmJ0SEAxpxZKFU9y0JJkiRJkoqsdt5JADSNdUecZGayo4MATMQtC6VqZ1koSZIkSVKRNXUuB6Ajd5B8Ph9tmBnIZSbLwkRdxEkkFZtloSRJkiRJRdayYEX4z2CI/v7+iNNMX34sXIacsyyUqp5loSRJkiRJRZZuaCFDEoCegxV4yMmzZWGyPuIgkorNslCSJEmSpGILAvqCZgD6D1XeISfBeFgW5pPOLJSqnWWhJEmSJEklMJhoBWC4p/LKwtj4MABBjTMLpWpnWShJkiRJUgmM1LQDMNZXeScixyfCsjCWsiyUqp1loSRJkiRJJTBRG5aF2YEDESeZvvjECABBqjHiJJKKzbJQkiRJkqQSyNd1ABAbPhhxkulLZsOZhYm0MwulamdZKEmSJElSCcQb5wOQGD0ccZLpS+bCmYWJtDMLpWpnWShJkiRJUgmkmjsBqB07EnGS6UtNloXJ2oaIk0gqNstCSZIkSZJKoL5tIQCN2Z6Ik0xfOj8KQKrOmYVStbMslCRJkiSpBJrmLQKgJd/H6Hg24jTT84uysCniJJKKbdpl4V133cXVV1/NokWLCIKAb37zmy94z5133sk555xDKpVi9erVfP7zn59BVEmSJEmSKldDezizsI0BDvUPR5xm6rK5PLWEZWHamYVS1Zt2WTg0NMRZZ53Fpz/96Sld/8wzz3DVVVfxspe9jE2bNvG7v/u7vPOd7+TWW2+ddlhJkiRJkipVUDePHAHxIM+RQ11Rx5mykdFRUsEEALUNzRGnkVRsienecOWVV3LllVdO+fqbbrqJFStW8IlPfAKAtWvXcvfdd/O3f/u3XHHFFdMdXpIkSZKkyhRPMBA00pzvp//QPjj15KgTTcnwYD/PHmuSqvOAE6naFX3Pwo0bN3LZZZcd87krrriCjRs3Pu89mUyG/v7+Y35JkiRJklTpBhOtAGR6uyNOMnUjQ30AjOfjBIlUxGkkFVvRy8Kuri46OzuP+VxnZyf9/f2MjIwc954bb7yR5ubmo7+WLl1a7JiSJEmSJBXdaE0bANmByikLM8ODAAwHtREnkVQKZXka8vvf/376+vqO/tq9e3fUkSRJkiRJmrWxdDsAucGDESeZusxwuNovEzirUJoLpr1n4XQtWLCA7u5j3zHp7u6mqamJ2trjvyuRSqVIpfxDSJIkSZJUXXK18wCIDR+KOMnUjY+EMwszMWcWSnNB0WcWXnjhhdxxxx3HfO7222/nwgsvLPbQkiRJkiSVl4b5ANSMVk5ZODE6AMCYZaE0J0y7LBwcHGTTpk1s2rQJgGeeeYZNmzaxa9cuIFxCfO211x69/j3veQ/bt2/nj/7oj9iyZQv/+I//yFe+8hV+7/d+rzC/A0mSJEmSKkSiKSwL02NHIk4ydROTMwvHLQulOWHaZeH999/P+vXrWb9+PQA33HAD69ev50Mf+hAA+/fvP1ocAqxYsYKbb76Z22+/nbPOOotPfOIT/Ou//itXXHFFgX4LkiRJkiRVhnTzAgAasz0RJ5m6bCYsCycSdREnkVQK096z8NJLLyWfzz/v1z//+c8f956HHnpoukNJkiRJklRV6tsXAtCc6yWfzxMEQcSJXlh+sizMxi0LpbmgLE9DliRJkiSpGjVOloXz6KN/eDziNFOTGxsO/5m0LJTmAstCSZIkSZJKJDW5DDkdjHO4tzL2LQzGhgDIWxZKc4JloSRJkiRJpVJTzwgpAAYP7484zNQE42FZSE19tEEklYRloSRJkiRJJdQXawVg+Mi+iJNMTWwiXIZMqiHaIJJKwrJQkiRJkqQSGkqGZWGm/0DESaYmPlkWxpxZKM0JloWSJEmSJJVQpqYNgGx/d8RJpiYxMQJA3JmF0pxgWShJkiRJUgmN184DIBg6GHGSqUnmwrIwkbYslOYCy0JJkiRJkkooX9sOQDDSE3GSqUnnwmXIibrGiJNIKgXLQkmSJEmSSijeEM4sTGaORJxkap4tC5O1TREnkVQKloWSJEmSJJVQsrEDgPR4hcwszI8CkKqzLJTmAstCSZIkSZJKqLYlLAvrJ/oiTvLCcrk8dYR7FqYamiNOI6kULAslSZIkSSqh+tZOAJry/eTz+YjTnNjw2AT1hDMLa+stC6W5wLJQkiRJkqQSamxbAEArAwxkJiJOc2LDQ/3Eg7DQTNe7DFmaCywLJUmSJEkqoVRTuAy5Nhijr7e8lyKPDvYDkMsHBDX1EaeRVAqWhZIkSZIklVJNA2MkABjo6Y44zImNDoVl4UiQhiCIOI2kUrAslCRJkiSplIKA/iBc0jvceyDiMCc2NvxsWVgbcRJJpWJZKEmSJElSiQ0lWgDI9Jf3zMKxkXCZ9EhQF3ESSaViWShJkiRJUomNJFsAGO8/FG2QFzAxObMwE3dmoTRXWBZKkiRJklRiYzWtAOSHDkec5MSyowMAjMecWSjNFZaFkiRJkiSVWDbdBkAwUu5l4SAAEwlPQpbmCstCSZIkSZJKLF8bloXx0Z6Ik7yAMctCaa6xLJQkSZIkqcRiDfMAqBkr87IwEy5DziYtC6W5wrJQkiRJkqQSSzZ2AJAe7402yAsIxoYAyCcbIk4iqVQsCyVJkiRJKrFUc1gWNmZ7ow3yAoLxybIw5cxCaa6wLJQkSZIkqcTqmucD0JjrjzjJiSUmwrIwqHFmoTRXWBZKkiRJklRiDW0LAGhlgNGxiYjTPL+jZWGqMeIkkkrFslCSJEmSpBJrbA1nFiaCHH09hyNO8/xqssMAJGotC6W5wrJQkiRJkqQSC5JpBqkFYKCnK+I0z+/ZsjBe2xRxEkmlYlkoSZIkSVIEBoKwgBvuPRBxkueXyo0AkKx1z0JprrAslCRJkiQpAkOJZgAyfeVbFqbz4czCmrrmiJNIKhXLQkmSJEmSIjCSaAFgfOBQtEFOoC4fzixM1bsMWZorLAslSZIkSYrAWKoVgPxQeZaFuWyOOkYBSNU7s1CaKywLJUmSJEmKwES6DYBguDxPQx4ZHiAe5AGoa3BmoTRXWBZKkiRJkhSBoDacWRjL9EYb5HkMD/YBkMsH1NZZFkpzhWWhJEmSJEkRiNWHMwsTY30RJzm+Z8vC4SBNELM+kOYKv9slSZIkSYpAsqEdgNR4f8RJji8zFJaFI9RGnERSKVkWSpIkSZIUgVRjWBbWZsuzLBwbCnONxCwLpbnEslCSJEmSpAjUNc8DoCE3EHGS4xsbCXONWRZKc4ploSRJkiRJEahv6QCgKT9INpePOM1zTYyGMwvH4vURJ5FUSpaFkiRJkiRFoKk1LAvrggwDg+U3uzA7ObNwPF4XcRJJpWRZKEmSJElSBJJ1LUzkw5flAz2HIk7zXLnRsCzMJpxZKM0lloWSJEmSJEUhCBgIGgAY6iu/spDMIAC5pGWhNJdYFkqSJEmSFJGhWFgWjvQfjjjJcYwNAZCrsSyU5hLLQkmSJEmSIjISbwJgbKD8ZhYG4+HMQlKN0QaRVFKWhZIkSZIkRSSTDMvCiaEjESd5rvh4OLMwSDVEnERSKVkWSpIkSZIUkfGaZgByZVgWJibCsjDmzEJpTrEslCRJkiQpItlUS/jBaG+UMY4rmR0GIFFrWSjNJZaFkiRJkiRFJJ9uBSBWhmVhTS4sC5O1TREnkVRKloWSJEmSJEUkqGsDIDnWG22Q40g/WxbWWRZKc4lloSRJkiRJEUk0hGVharwv4iTPVZsfASBd3xxxEkmlZFkoSZIkSVJEaibLwtqJgYiTHCufz1N3tCx0ZqE0l1gWSpIkSZIUkVRjOwD1uf6IkxwrM56ljlEAahssC6W5xLJQkiRJkqSI1LfMA6AhP0Q+n484zS8MDA4QD8I8dQ0t0YaRVFKWhZIkSZIkRaShdT4AzcEQo5nxiNP8wshguIdiLh8QSzVEnEZSKVkWSpIkSZIUkfqm9qMf9/ceijDJsUYny8LhIA1BEHEaSaVkWShJkiRJUkSCeJJB6gAY7D0YcZpfGB0Ky8LRIB1xEkmlZlkoSZIkSVKEBoJwme9IX/nMLBwfCQ9cGY3VRZxEUqlZFkqSJEmSFKHheHjacGagfMrCseGwLByzLJTmHMtCSZIkSZIiNJoIy8LxwSMRJ/mF7OggAGNxy0JprrEslCRJkiQpQmPJZgCyQ+VTFuZGwj0LxxOehCzNNZaFkiRJkiRFKJsKy0JGeqIN8t/kMwMAZJOWhdJcY1koSZIkSVKEcukWAILR8ikLA8tCac6yLJQkSZIkKUJBbSsA8UxfxEl+IRgLy8J8qiniJJJKzbJQkiRJkqQIxerbAKgZ7484yS8kxsOykFRjtEEklZxloSRJkiRJEUo2hGVheqJ8ZhYmJoYACNLOLJTmGstCSZIkSZIilGqcB0BddiDiJL9QMzEIQKLWslCaaywLJUmSJEmKUG1TWBY25suoLMwOAxC3LJTmHMtCSZIkSZIi1NDaAUBTfpBsNhdxmlBtLlyGnKxrjjiJpFKzLJQkSZIkKUKNLeHMwkSQo7+vJ+I0obp8WBamGlojTiKp1CwLJUmSJEmKUDJdz2g+CcBQ78GI04Tq8iMApBtaog0iqeQsCyVJkiRJithA0AjAUF/0ZWFmbIyGYBSAOstCac6xLJQkSZIkKWJDsbAsHO0/FHESGB7sP/pxXWNLdEEkRcKyUJIkSZKkiI0kwlOHxwaPRJwERgbCfRPH8gkSqdqI00gqtRmVhZ/+9KdZvnw56XSaDRs2cO+9957w+k996lOceuqp1NbWsnTpUn7v936P0dHRGQWWJEmSJKnaZJJhWTgxFH1ZODoYloVDQV3ESSRFYdpl4Ze//GVuuOEGPvzhD/Pggw9y1llnccUVV3DgwIHjXv+FL3yB973vfXz4wx9m8+bNfPazn+XLX/4yf/InfzLr8JIkSZIkVYPxmhYA8sPRn4acGeoDLAuluWraZeEnP/lJ3vWud3Hddddx2mmncdNNN1FXV8fnPve5415/zz33cPHFF/OWt7yF5cuX88pXvpI3v/nNLzgbUZIkSZKkuSKbbgk/GIm+LBybLAtHY/URJ5EUhWmVhWNjYzzwwANcdtllv3hALMZll13Gxo0bj3vPRRddxAMPPHC0HNy+fTu33HILr371q593nEwmQ39//zG/JEmSJEmqWulWAOKZ3mhzAOPDYVmYiTuzUJqLEtO5+NChQ2SzWTo7O4/5fGdnJ1u2bDnuPW95y1s4dOgQL37xi8nn80xMTPCe97znhMuQb7zxRj7ykY9MJ5okSZIkSRUrXheWhcmxvoiTQHY0nLAznmiIOImkKBT9NOQ777yTj370o/zjP/4jDz74IN/4xje4+eab+Yu/+Ivnvef9738/fX19R3/t3r272DElSZIkSYpMvKENgPR49GVhbiTMMGFZKM1J05pZOG/ePOLxON3d3cd8vru7mwULFhz3ng9+8IP8+q//Ou985zsBOOOMMxgaGuLd7343f/qnf0os9ty+MpVKkUqlphNNkiRJkqSKlWpoB6A2OxBxEmA0zJBNWhZKc9G0ZhbW1NRw7rnncscddxz9XC6X44477uDCCy887j3Dw8PPKQTj8TgA+Xx+unklSZIkSao66eawLKzPlUFZOBZmyKcaIw4iKQrTmlkIcMMNN/D2t7+d8847jwsuuIBPfepTDA0Ncd111wFw7bXXsnjxYm688UYArr76aj75yU+yfv16NmzYwLZt2/jgBz/I1VdffbQ0lCRJkiRpLqtr7gCgKT9APp8nCILIssQmy0JSTZFlkBSdaZeFb3rTmzh48CAf+tCH6Orq4uyzz+b73//+0UNPdu3adcxMwg984AMEQcAHPvAB9u7dS0dHB1dffTV/9Vd/VbjfhSRJkiRJFayxNSwL08E4w8OD1NVHN6svMT4IQJC2LJTmoiBfAWuB+/v7aW5upq+vj6Ym/7CSJEmSJFWXfC5H9iPtJIIc3e/aROfiFZFleeTGl3Nm5gEeOOdjnPva34osh6TCmmq/VvTTkCVJkiRJ0okFsRj9QXigyFDfwUiz1GTDmYXJOifrSHORZaEkSZIkSWVgMBYuPR7pOxxpjnR2CIBkXUukOSRFw7JQkiRJkqQyMDJZFmb6oy0La/PDAKQbmiPNISkaloWSJEmSJJWB0WS47Dc7FG1ZWJ8fASDd2BppDknRsCyUJEmSJKkMjCfDmXzZ4SORZciMj9MQhGVhfYNloTQXWRZKkiRJklQGJlItAOSHeyLLMNTfe/Tj+mbLQmkusiyUJEmSJKkM5GvDci6e6Y0sw1B/WFSO5+PEk+nIckiKjmWhJEmSJEllIDhaFvZFlmF0sBeAoaAOgiCyHJKiY1koSZIkSVIZSNSHZWHNeHRl4chQb/jPoC6yDJKiZVkoSZIkSVIZSDa0A1A70R9ZhvGhsKgciddHlkFStCwLJUmSJEkqA6nGsCysyw1GlmF8OCwLxywLpTnLslCSJEmSpDJQ1xyWhQ35gcgyZCfLwvFEQ2QZJEXLslCSJEmSpDLQ0NIBQBPDZCfGI8mQz4RLoCcsC6U5y7JQkiRJkqQy0NjacfTjgZ5D0YQYDWc15mosC6W5yrJQkiRJkqQykEzWMJivBWCgL5qyMBgLZxbmUs2RjC8pepaFkiRJkiSViYEgnNE33HswkvETk2UhactCaa6yLJQkSZIkqUwMxZsAyAwcjmT85Hi4DDmotSyU5irLQkmSJEmSysRoohGAscEjkYxfMxGWhYm6lkjGlxQ9y0JJkiRJksrEWDKcWZgdiqYsrM0OApCoa41kfEnRsyyUJEmSJKlMjNe0AJAf7olk/LpcWBamGiwLpbnKslCSJEmSpDKRS7WEH4z2RjJ+PUMApBstC6W5yrJQkiRJkqQyEdS2ABDP9JZ87Fw2S0N+BIB0U1vJx5dUHiwLJUmSJEkqE0F9WNLVjPWVfOyhgV5iQR6Axub2ko8vqTxYFkqSJEmSVCaSk2VhaqK/5GOPDBwGYDSfJJWuK/n4ksqDZaEkSZIkSWWipjEsC2uzAyUfe7g/PFRlIKgnCIKSjy+pPFgWSpIkSZJUJtJN8wBoyJW+LMwMhjMLh4OGko8tqXxYFkqSJEmSVCYaWjoAaMwPkM/lSjr22GAvAMOx+pKOK6m8WBZKkiRJklQmGlvCmYU1QZaR4dLOLpwY6gUgk3BmoTSXWRZKkiRJklQm6uqbGMvHARjoPVjSsXMjvQCMJRpLOq6k8mJZKEmSJElSmQhiMfqDsKwb6j1U0rGfLQsnappKOq6k8mJZKEmSJElSGRmKhcuAR/oOl3bg0T4AcpaF0pxmWShJkiRJUhkZiYczC8cGS1sWxjL94Qfp5pKOK6m8WBZKkiRJklRGRhNhWTdR4rIwMR6WhUFtS0nHlVReLAslSZIkSSoj4zVhWZgdOlLScZPj4enL8bqWko4rqbxYFkqSJEmSVEayqcllwKO9JR03nQ3LwmR9S0nHlVReLAslSZIkSSoj+XQLALESl4W12UEA0g1tJR1XUnmxLJQkSZIkqYwEtWFZlxjrK+m49fkhANKNloXSXGZZKEmSJElSGUnUtwJQM166sjCfy9KQHwagrrm9ZONKKj+WhZIkSZIklZFkQ1jWpScGSjZmZqifWJAHoLHFslCayywLJUmSJEkqI6mmsKyrz/WXbMzBvkMAZPJJ6uvqSzaupPJjWShJkiRJUhmpn1wG3JAbLNmYw/1HABgI6giCoGTjSio/loWSJEmSJJWR+uYOABqDESbGMiUZc2QgLAuHgoaSjCepfFkWSpIkSZJURppa5x39eKDvcEnGzAz2AjAStyyU5jrLQkmSJEmSykgiWUN/vg6Awd6DJRlzYqgHgIxloTTnWRZKkiRJklRmBmNhaTc8efBIsU0Mh2XheLKpJONJKl+WhZIkSZIklZnhWCMAowOlWYacH+kDYMKyUJrzLAslSZIkSSozI4mwtBsvUVnIaFgW5tKWhdJcZ1koSZIkSVKZGZuc4ZedXB5cbPGx/vCDVHNJxpNUviwLJUmSJEkqMxM1LQDkh46UZLxny8JYnWWhNNdZFkqSJEmSVGay6VYAgtHSzCysmRgAIF7bWpLxJJUvy0JJkiRJkspNbRsAiUxvSYZLTwwCUNNgWSjNdZaFkiRJkiSVmVh9WBbWjPWWZLzaXFgWpiwLpTnPslCSJEmSpDKTbAjLwtqJvpKMV58Py8J0Y1tJxpNUviwLJUmSJEkqMzWN8wCoz/YXfax8LktDfhiAhibLQmmusyyUJEmSJKnM1DbPB6AxP1D0sYYG+4gHeQAaWtqLPp6k8mZZKEmSJElSmWlo7Qj/yTD5ibGijjXYexiAsXyCVLquqGNJKn+WhZIkSZIklZnGlg5y+QCAkf5DRR1ruP8IAANBPUHMmkCa6/xTQJIkSZKkMlOXrqGfcJbfYM+Boo41OhCWhcNBfVHHkVQZLAslSZIkSSozQRDQHzQCMNRX3JmFmcGwLByJNxR1HEmVwbJQkiRJkqQyNBhrAiBT5GXI44M9AIwmmoo6jqTKYFkoSZIkSVIZGkk0AzA+UNyyMDsUziwcr2ku6jiSKoNloSRJkiRJZSiTDMu77NDhoo6THwnLwmyqpajjSKoMloWSJEmSJJWh8VQrAPnhI0UdJzbaB0DOslASloWSJEmSJJWlXLoFgNhoT1HHiY/1AhDUtRZ1HEmVwbJQkiRJkqRyVNsGQLzIZWHNWDizMFHfVtRxJFUGy0JJkiRJkspQbLK8S433FnWc9EQ/AMlGy0JJloWSJEmSJJWlZEM7AOnxvqKOU5cbDMdpnFfUcSRVBstCSZIkSZLKULq5A4C67EBRx2nMhc+vmxxP0txmWShJkiRJUhmqb5kPQGO+H/L5oowxPjFBE0PhOK3OLJRkWShJkiRJUllqbAvLwhomyI8NFmWMvp7DxIKwiGxocWahJMtCSZIkSZLKUmtTC5l8EoDhvkNFGWOw92D4fFLEk6mijCGpslgWSpIkSZJUhmpTCXppAGDgSHdRxhjuC8vCgaCxKM+XVHksCyVJkiRJKlMDsSYAhiZnABZaZrIsHIw1F+X5kirPjMrCT3/60yxfvpx0Os2GDRu49957T3h9b28v119/PQsXLiSVSnHKKadwyy23zCiwJEmSJElzxVA8LAtH+4tTFo4NhMubR5KWhZJCiene8OUvf5kbbriBm266iQ0bNvCpT32KK664gq1btzJ//vznXD82Nsbll1/O/Pnz+drXvsbixYvZuXMnLS0thcgvSZIkSVLVyiSbYQLGB4qzZ2Fu6HA4Tk1rUZ4vqfJMuyz85Cc/ybve9S6uu+46AG666SZuvvlmPve5z/G+973vOdd/7nOf48iRI9xzzz0kk+HGrMuXL59dakmSJEmS5oDxmhYYgezQkeIMMByWheMpy0JJoWktQx4bG+OBBx7gsssu+8UDYjEuu+wyNm7ceNx7vv3tb3PhhRdy/fXX09nZyemnn85HP/pRstns846TyWTo7+8/5pckSZIkSXNNLt0SfjDcU5Tnx0ePTI7TVpTnS6o80yoLDx06RDabpbOz85jPd3Z20tXVddx7tm/fzte+9jWy2Sy33HILH/zgB/nEJz7BX/7lXz7vODfeeCPNzc1Hfy1dunQ6MSVJkiRJqgr52rDEi2WKUxYmJ58b1LcX5fmSKk/RT0PO5XLMnz+fz3zmM5x77rm86U1v4k//9E+56aabnvee97///fT19R39tXv37mLHlCRJkiSp7MQnS7xkkcrC9FhvOE7DvKI8X1LlmdaehfPmzSMej9Pd3X3M57u7u1mwYMFx71m4cCHJZJJ4PH70c2vXrqWrq4uxsTFqamqec08qlSKVSk0nmiRJkiRJVSfRGJZ46fG+ojy/LtsLQLKxoyjPl1R5pjWzsKamhnPPPZc77rjj6OdyuRx33HEHF1544XHvufjii9m2bRu5XO7o55588kkWLlx43KJQkiRJkiSF0pNlYV22OHv5N0w+N93kzEJJoWkvQ77hhhv4l3/5F/793/+dzZs381u/9VsMDQ0dPR352muv5f3vf//R63/rt36LI0eO8N73vpcnn3ySm2++mY9+9KNcf/31hftdSJIkSZJUhWpbwhl/DbkilIX5PE35AQDqWuYX/vmSKtK0liEDvOlNb+LgwYN86EMfoquri7PPPpvvf//7Rw892bVrF7HYLzrIpUuXcuutt/J7v/d7nHnmmSxevJj3vve9/PEf/3HhfheSJEmSJFWhptawxGtiiHx2nCCeLNizx4d7SQbZ8PltnS9wtaS5Isjn8/moQ7yQ/v5+mpub6evro6mpKeo4kiRJkiSVxMhohtqPhYXh4O9soaFtYcGefXj3Fto/u4HBfJraD3cRjwUFe7ak8jPVfq3opyFLkiRJkqSZqU2n6MvXA9B/+EBBnz14JDy8tC9otCiUdJRloSRJkiRJZWww1gDAUF9hy8Lh3vB5A7Hmgj5XUmWzLJQkSZIkqYwNTpZ5I32HCvrcTP/B8LmJloI+V1JlsyyUJEmSJKmMDSdbARjvL+zMwonBsCzM1LQU9LmSKptloSRJkiRJZWw01Q5AbrCwZWF+6DAA2XRrQZ8rqbJZFkqSJEmSVMYm0mFZGAwdLOhzg5EjAORr2wr6XEmVzbJQkiRJkqQylqubB0Bi9HBBn5vI9AIQ1LcX9LmSKptloSRJkiRJZSzW0AFAKnOkoM9NjfUAkGzsKOhzJVU2y0JJkiRJkspYomk+AHXjhS0L6yb6AEg1WRZK+gXLQkmSJEmSyli6ZQEAjdnegj63MReWhXUt8wv6XEmVzbJQkiRJkqQy1tAaloXN+X7IZQvyzHwuS3N+AIDGts6CPFNSdbAslCRJkiSpjLV0LAIgTo6JwcIccjLQe5h4kA+f325ZKOkXLAslSZIkSSpjbY11HMk3ANB3eF9Bntl3pBuAgXwt6XRtQZ4pqTpYFkqSJEmSVMbisYDeoAWAgcNdBXnmUE9YFvbHmgryPEnVw7JQkiRJkqQyNxBvAWCkpzBl4UjfQQCG4s0FeZ6k6mFZKEmSJElSmRupaQVgrL+7IM8b7z8AwGjCslDSsSwLJUmSJEkqc2OpdgBykyXfbD17UEom1VqQ50mqHpaFkiRJkiSVuVztvPCD4YOFeeDwkfC56bbCPE9S1bAslCRJkiSp3DXOByA5erggj4uNhmUhdZaFko5lWShJkiRJUplLTpaFqcyRgjwvlQlLx3j9vII8T1L1sCyUJEmSJKnMpVs6Aaif6CnI8+rHwrKwpnVRQZ4nqXpYFkqSJEmSVObq2xYC0JIrTFnYkg3Lwrr2JQV5nqTqYVkoSZIkSVKZa+5YCkAdo+RH+2f1rNzEBG35XgCaJp8rSc+yLJQkSZIkqcy1trYymE8DMHBo76ye1Xt4H4kgRzYf0DrfZciSjmVZKEmSJElSmUsn4xwKWgHon2VZ2HdgNwBHghaSyZpZZ5NUXSwLJUmSJEmqAH2xNgBGDs+uLByavL938nmS9N9ZFkqSJEmSVAEGa9oBGOvbN6vnjPWG9w/UzJt1JknVx7JQkiRJkqQKMJrqACDX3zWr52T7wvszKctCSc9lWShJkiRJUgWYqOsEIDbUPavnxIYOhM+rnz/rTJKqj2WhJEmSJEmVoCEs92pGDs7qMcmRA5PP65xtIklVyLJQkiRJkqQKkGpdCEBt5tCsnvPs/cnmhbPOJKn6WBZKkiRJklQB6tqXANA0cXhWz2mcvD/dalko6bksCyVJkiRJqgAt85cC0JQfgInMzB6Sz9Oa6wGgYd6SQkWTVEUsCyVJkiRJqgDzOhaQyScAyPTun9EzJoZ7STEOQMt8y0JJz2VZKEmSJElSBWitr+EQLQD0du+e0TN6D4T39eXraW1qKlQ0SVXEslCSJEmSpAoQBAG9sTYABg/vmdEz+ibLwiOxVuKxoGDZJFUPy0JJkiRJkirEYE07ACOH983s/sn7BhNtBcskqbpYFkqSJEmSVCEy6Q4AJvpntmfheM9eAIZT8wuWSVJ1sSyUJEmSJKlCTNQvBCA2MLOZhfSHZeHY5HMk6ZdZFkqSJEmSVClawhOM08Mzm1lYM3lf0LSoYJEkVRfLQkmSJEmSKkRN20kANGa6ZnR//Wg3AMm2pQXLJKm6WBZKkiRJklQh6ucvB6A9exByuWnf3zpxAIC6eScVMpakKmJZKEmSJElShWjpPIlcPqCGcfJDB6d1b35ijLZ8b/icBZaFko7PslCSJEmSpAqxsK2RbloBGDywY1r3DhyaPNwkH6ej0z0LJR2fZaEkSZIkSRUinYxzIOgAoGf/9mnd29O9E4BDQRvpmmTBs0mqDpaFkiRJkiRVkP5UJwBDB3ZO677Bg7sB6InPK3gmSdXDslCSJEmSpAoyWrcQgImeXdO6L3M4LBeHUvMLnklS9bAslCRJkiSpguSblgCQGNgzvRt7wrJwtGFpoSNJqiKWhZIkSZIkVZBk2zIAaof3T+u+moFwGTItywodSVIVsSyUJEmSJKmCNMxfDkDLePe07msa3QdAqmNloSNJqiKWhZIkSZIkVZDWRWHZ15Lvg7Hhqd2Uz9OR7QKgedHqYkWTVAUsCyVJkiRJqiALOxfSl68DYLDrqSndM9rbRS0ZcvmA+UssCyU9P8tCSZIkSZIqSH06ya5gEQC9uzdP6Z5De54EoJs2WpsaipZNUuWzLJQkSZIkqcIcrAkPKRnev2VK1/fvfzq8L7GAIAiKlktS5bMslCRJkiSpwgw3LQcgf2jblK7PHNwOwEB6UbEiSaoSloWSJEmSJFWa9pMBSPdtn9r1fbsBGG9cUqxEkqqEZaEkSZIkSRWmftGpALSN7prS9TUDewCIt51UtEySqoNloSRJkiRJFabjpHUANOYHYOjwC17fmOkK/9m5oqi5JFU+y0JJkiRJkirMSQva2ZtvB2DoBQ45yWZztGcPAtC5ZFXRs0mqbJaFkiRJkiRVmMZ0kj2xxQAc2fX4Ca/d191NfZABYP6SlUXPJqmyWRZKkiRJklSBemuXATCyf+sJr9u/OzwxuT9oJJ6qL3ouSZXNslCSJEmSpAo01hIuKQ4OPXnC61KbvwFAU36g6JkkVT7LQkmSJEmSKlDNotMBaBk4cVm4dN/3ABhKthU9k6TKZ1koSZIkSVIFmrf6PAA6JrpgtO95r+vN1QHw1Gm/XZJckiqbZaEkSZIkSRXo5OVL2ZOfB8DAzk3HvSY3McGC8T0AtKx9WamiSapgloWSJEmSJFWgpnSSHfEVABza9sBxr9n3zOPUBRlG80mWrFpXyniSKpRloSRJkiRJFepI01oAsrvvO+7Xex+/A4CdyZUkkjUlyyWpclkWSpIkSZJUocaXXABA26HjzywM9vwcgD1tLypZJkmVzbJQkiRJkqQKtXDdJYzn47RNdEPvrud8vb33kfCDpRtKnExSpbIslCRJkiSpQp25chGP5cN9C3s333nM18aP7GLBxD6y+YClZ74kgnSSKpFloSRJkiRJFaohlWB73ZkA9G2965ivdT30PQAeC1azeunSkmeTVJksCyVJkiRJqmBji8P9COv2/eyYz2ee/CEAO5s3EIsFJc8lqTJZFkqSJEmSVMFOOucyxvJxOsZ2k+t6PPzkSA8LDtwNQHz1pdGFk1RxZlQWfvrTn2b58uWk02k2bNjAvffeO6X7vvSlLxEEAddcc81MhpUkSZIkSb/kvFNXcFdwLgAH7v43AIbu/U8a8oM8lVvMmRdeEWU8SRVm2mXhl7/8ZW644QY+/OEP8+CDD3LWWWdxxRVXcODAgRPet2PHDv7gD/6Al7zETVUlSZIkSSqUmkSMHUuuAaDlif8HPTuJ/+TjANzRcBVL5zVFmE5SpZl2WfjJT36Sd73rXVx33XWcdtpp3HTTTdTV1fG5z33uee/JZrO89a1v5SMf+QgrV66cVWBJkiRJknSscy7/NR7OrSSdG4H/eybpiT4AOi94Y8TJJFWaaZWFY2NjPPDAA1x22WW/eEAsxmWXXcbGjRuf974///M/Z/78+bzjHe+Y0jiZTIb+/v5jfkmSJEmSpOM756R2vrbgvQzka49+7t/ib+RVF50bYSpJlSgxnYsPHTpENpuls7PzmM93dnayZcuW495z991389nPfpZNmzZNeZwbb7yRj3zkI9OJJkmSJEnSnPaet7yJ9/xjwPnDd3Jn7EW8/9o3UFsTjzqWpAozrbJwugYGBvj1X/91/uVf/oV58+ZN+b73v//93HDDDUf/vb+/n6VLlxYjoiRJkiRJVWFxSy2f+f238uCuV/PWBU10NKaijiSpAk2rLJw3bx7xeJzu7u5jPt/d3c2CBQuec/3TTz/Njh07uPrqq49+LpfLhQMnEmzdupVVq1Y9575UKkUq5R9qkiRJkiRNR30qwUtO7og6hqQKNq09C2tqajj33HO54447jn4ul8txxx13cOGFFz7n+jVr1vDoo4+yadOmo79e+9rX8rKXvYxNmzY5W1CSJEmSJEkqI9NehnzDDTfw9re/nfPOO48LLriAT33qUwwNDXHdddcBcO2117J48WJuvPFG0uk0p59++jH3t7S0ADzn85IkSZIkSZKiNe2y8E1vehMHDx7kQx/6EF1dXZx99tl8//vfP3roya5du4jFpjVhUZIkSZIkSVIZCPL5fD7qEC+kv7+f5uZm+vr6aGpqijqOJEmSJEmSVFGm2q85BVCSJEmSJEkSYFkoSZIkSZIkaZJloSRJkiRJkiTAslCSJEmSJEnSJMtCSZIkSZIkSYBloSRJkiRJkqRJloWSJEmSJEmSAMtCSZIkSZIkSZMsCyVJkiRJkiQBloWSJEmSJEmSJlkWSpIkSZIkSQIsCyVJkiRJkiRNsiyUJEmSJEmSBFgWSpIkSZIkSZpkWShJkiRJkiQJsCyUJEmSJEmSNMmyUJIkSZIkSRJgWShJkiRJkiRpkmWhJEmSJEmSJMCyUJIkSZIkSdKkRNQBpiKfzwPQ398fcRJJkiRJkiSp8jzbqz3bsz2fiigLBwYGAFi6dGnESSRJkiRJkqTKNTAwQHNz8/N+Pci/UJ1YBnK5HPv27aOxsZEgCKKOU3D9/f0sXbqU3bt309TUFHUcqer4PSYVj99fUnH5PSYVj99fUnH5PVZ+8vk8AwMDLFq0iFjs+XcmrIiZhbFYjCVLlkQdo+iampr8BpKKyO8xqXj8/pKKy+8xqXj8/pKKy++x8nKiGYXP8oATSZIkSZIkSYBloSRJkiRJkqRJloVlIJVK8eEPf5hUKhV1FKkq+T0mFY/fX1Jx+T0mFY/fX1Jx+T1WuSrigBNJkiRJkiRJxefMQkmSJEmSJEmAZaEkSZIkSZKkSZaFkiRJkiRJkgDLQkmSJEmSJEmTLAslSZIkSZIkAZaFZeHTn/40y5cvJ51Os2HDBu69996oI0ll5cYbb+T888+nsbGR+fPnc80117B169ZjrhkdHeX666+nvb2dhoYGXv/619Pd3X3MNbt27eKqq66irq6O+fPn84d/+IdMTEwcc82dd97JOeecQyqVYvXq1Xz+858v9m9PKisf+9jHCIKA3/3d3z36Ob+/pNnZu3cvb3vb22hvb6e2tpYzzjiD/7+9+4+Juv7jAP6E+8XdHBxG3omJYZEUUJFMOrX6w1torFpt/WDM0Y9VGi6opuXM+qOZzFpbuTJry9oymWxqRYRjQBoOMQiQE4Y2KFvzZEUnOJkC9/z+kX7ykz9mind89fnYboPP+7m795vtOe5eO7jm5mZjnSRef/11TJ48GU6nE36/HwcOHDDdR39/PwoLCxEfHw+3242nn34aR48eNWX27t2Lu+66C3FxcZg6dSrWrFkTkfOJRNPo6ChWrlyJ1NRUOJ1O3HDDDXjzzTdB0sioYyIXZufOnbj//vuRnJyMmJgYbNu2zbQeyS5VVFQgPT0dcXFxyMrKQlVV1ZifV86DElXl5eW02+389NNPuW/fPj7zzDN0u908fPhwtLcmMm7k5eVxw4YNDAQCbGtr43333ceUlBQePXrUyCxatIhTp05lbW0tm5ubeeedd3L27NnG+sjICDMzM+n3+9na2sqqqiomJSVx+fLlRqanp4cul4svvfQSOzs7uXbtWlosFlZXV0f0vCLRsmfPHl5//fW89dZbWVJSYlxXv0QuXn9/P6dNm8YnnniCTU1N7Onp4fbt2/nzzz8bmbKyMiYkJHDbtm1sb2/nAw88wNTUVA4NDRmZ+fPn87bbbuPu3bv5ww8/8MYbb2RBQYGxfuTIEXo8HhYWFjIQCHDTpk10Op1cv359RM8rEmmrVq3iNddcw8rKSvb29rKiooITJkzge++9Z2TUMZELU1VVxRUrVnDLli0EwK1bt5rWI9WlXbt20WKxcM2aNezs7ORrr71Gm83Gjo6Oy/4zkL9pWBhls2bNYnFxsfH96Ogok5OTuXr16ijuSmR86+vrIwDu2LGDJBkKhWiz2VhRUWFkurq6CICNjY0k//7FFxsby2AwaGTWrVvH+Ph4Hj9+nCS5bNkyZmRkmB7rscceY15e3uU+kkjUDQ4OMi0tjTU1NbznnnuMYaH6JXJpXnnlFc6dO/ec6+FwmF6vl2+//bZxLRQK0eFwcNOmTSTJzs5OAuCPP/5oZL777jvGxMTw999/J0l++OGHTExMNDp36rFnzJgx1kcSGVfy8/P51FNPma49/PDDLCwsJKmOiVysfw8LI9mlRx99lPn5+ab95Obm8rnnnhvTM8q56c+Qo+jEiRNoaWmB3+83rsXGxsLv96OxsTGKOxMZ344cOQIAmDhxIgCgpaUFw8PDpi6lp6cjJSXF6FJjYyOysrLg8XiMTF5eHgYGBrBv3z4jc/p9nMqoj3I1KC4uRn5+/hkdUL9ELs3XX3+NnJwcPPLII5g0aRKys7PxySefGOu9vb0IBoOmfiQkJCA3N9fUMbfbjZycHCPj9/sRGxuLpqYmI3P33XfDbrcbmby8PHR3d+Ovv/663McUiZrZs2ejtrYW+/fvBwC0t7ejoaEBCxYsAKCOiYyVSHZJzxujT8PCKPrjjz8wOjpqenEFAB6PB8FgMEq7EhnfwuEwSktLMWfOHGRmZgIAgsEg7HY73G63KXt6l4LB4Fm7dmrtfJmBgQEMDQ1djuOIjAvl5eX46aefsHr16jPW1C+RS9PT04N169YhLS0N27dvx+LFi/HCCy/g888/B/BPR873fDAYDGLSpEmmdavViokTJ/6nHopciV599VU8/vjjSE9Ph81mQ3Z2NkpLS1FYWAhAHRMZK5Hs0rky6lrkWKO9ARGR/6K4uBiBQAANDQ3R3orIFeG3335DSUkJampqEBcXF+3tiFxxwuEwcnJy8NZbbwEAsrOzEQgE8NFHH6GoqCjKuxP5/7d582Zs3LgRX375JTIyMtDW1obS0lIkJyerYyIiF0nvLIyipKQkWCyWMz5R8vDhw/B6vVHalcj4tWTJElRWVqK+vh7XXXedcd3r9eLEiRMIhUKm/Old8nq9Z+3aqbXzZeLj4+F0Osf6OCLjQktLC/r6+nDHHXfAarXCarVix44deP/992G1WuHxeNQvkUswefJk3HLLLaZrN998Mw4ePAjgn46c7/mg1+tFX1+faX1kZAT9/f3/qYciV6KlS5ca7y7MysrCwoUL8eKLLxrvllfHRMZGJLt0roy6FjkaFkaR3W7HzJkzUVtba1wLh8Oora2Fz+eL4s5ExheSWLJkCbZu3Yq6ujqkpqaa1mfOnAmbzWbqUnd3Nw4ePGh0yefzoaOjw/TLq6amBvHx8caLOJ/PZ7qPUxn1Ua5k8+bNQ0dHB9raw38vmAAAA21JREFU2oxbTk4OCgsLja/VL5GLN2fOHHR3d5uu7d+/H9OmTQMApKamwuv1mvoxMDCApqYmU8dCoRBaWlqMTF1dHcLhMHJzc43Mzp07MTw8bGRqamowY8YMJCYmXrbziUTbsWPHEBtrfllrsVgQDocBqGMiYyWSXdLzxnEg2p+wcrUrLy+nw+HgZ599xs7OTj777LN0u92mT5QUudotXryYCQkJ/P7773no0CHjduzYMSOzaNEipqSksK6ujs3NzfT5fPT5fMb6yMgIMzMzee+997KtrY3V1dW89tpruXz5ciPT09NDl8vFpUuXsqurix988AEtFgurq6sjel6RaDv905BJ9UvkUuzZs4dWq5WrVq3igQMHuHHjRrpcLn7xxRdGpqysjG63m1999RX37t3LBx98kKmpqRwaGjIy8+fPZ3Z2NpuamtjQ0MC0tDQWFBQY66FQiB6PhwsXLmQgEGB5eTldLhfXr18f0fOKRFpRURGnTJnCyspK9vb2csuWLUxKSuKyZcuMjDomcmEGBwfZ2trK1tZWAuC7777L1tZW/vrrryQj16Vdu3bRarXynXfeYVdXF9944w3abDZ2dHRE7odxldOwcBxYu3YtU1JSaLfbOWvWLO7evTvaWxIZVwCc9bZhwwYjMzQ0xOeff56JiYl0uVx86KGHeOjQIdP9/PLLL1ywYAGdTieTkpL48ssvc3h42JSpr6/n7bffTrvdzunTp5seQ+Rq8e9hofolcmm++eYbZmZm0uFwMD09nR9//LFpPRwOc+XKlfR4PHQ4HJw3bx67u7tNmT///JMFBQWcMGEC4+Pj+eSTT3JwcNCUaW9v59y5c+lwODhlyhSWlZVd9rOJRNvAwABLSkqYkpLCuLg4Tp8+nStWrODx48eNjDomcmHq6+vP+rqrqKiIZGS7tHnzZt5000202+3MyMjgt99+e9nOLWeKIcnovKdRRERERERERERExhP9z0IREREREREREREBoGGhiIiIiIiIiIiInKRhoYiIiIiIiIiIiADQsFBERERERERERERO0rBQREREREREREREAGhYKCIiIiIiIiIiIidpWCgiIiIiIiIiIiIANCwUERERERERERGRkzQsFBEREREREREREQAaFoqIiIiIiIiIiMhJGhaKiIiIiIiIiIgIAOB/s43dXA+S1e4AAAAASUVORK5CYII=", "text/plain": [ "