ICEEMDAN-Solar_power-forecast/iceemdan-筛选-high-ConvBiGruA...

274 KiB
Raw Permalink Blame History

In [1]:
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dropout
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\computation\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed).
  from pandas.core.computation.check import NUMEXPR_INSTALLED
C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).
  from pandas.core import (

这段代码是一个函数 time_series_to_supervised它用于将时间序列数据转换为监督学习问题的数据集。下面是该函数的各个部分的含义

data: 输入的时间序列数据可以是列表或2D NumPy数组。 n_in: 作为输入的滞后观察数即用多少个时间步的观察值作为输入。默认值为96表示使用前96个时间步的观察值作为输入。 n_out: 作为输出的观测数量即预测多少个时间步的观察值。默认值为10表示预测未来10个时间步的观察值。 dropnan: 布尔值表示是否删除具有NaN值的行。默认为True即删除具有NaN值的行。 函数首先检查输入数据的维度并初始化一些变量。然后它创建一个新的DataFrame对象 df 来存储输入数据,并保存原始的列名。接着,它创建了两个空列表 cols 和 names用于存储新的特征列和列名。

接下来,函数开始构建特征列和对应的列名。首先,它将原始的观察序列添加到 cols 列表中,并将其列名添加到 names 列表中。然后,它依次将滞后的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t-滞后时间)。这样就创建了输入特征的部分。

接着,函数开始构建输出特征的部分。它依次将未来的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t+未来时间)。

最后函数将所有的特征列拼接在一起构成一个新的DataFrame对象 agg。如果 dropnan 参数为True则删除具有NaN值的行。最后函数返回处理后的数据集 agg。

In [2]:
def time_series_to_supervised(data, n_in=96, n_out=10,dropnan=True):
    """
    :param data:作为列表或2D NumPy数组的观察序列。需要。
    :param n_in:作为输入的滞后观察数X。值可以在[1..len数据]之间可选。默认为1。
    :param n_out:作为输出的观测数量y。值可以在[0..len数据]之间。可选的。默认为1。
    :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。
    :return:
    """
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    origNames = df.columns
    cols, names = list(), list()
    cols.append(df.shift(0))
    names += [('%s' % origNames[j]) for j in range(n_vars)]
    n_in = max(0, n_in)
    for i in range(n_in, 0, -1):
        time = '(t-%d)' % i
        cols.append(df.shift(i))
        names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]
    n_out = max(n_out, 0)
    for i in range(1, n_out+1):
        time = '(t+%d)' % i
        cols.append(df.shift(-i))
        names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    if dropnan:
        agg.dropna(inplace=True)
    return agg
In [3]:
# 加载数据
path1 = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程 copy\data66.csv"#数据所在路径
#我的数据是excel表若是csv文件用pandas的read_csv()函数替换即可。
datas1 = pd.DataFrame(pd.read_csv(path1))
#我只取了data表里的第3、23、16、17、18、19、20、21、27列如果取全部列的话这一行可以去掉
# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]
data1=datas1.interpolate()
values1 = data1.values
print(data1.head())
print(data1.shape)
        Temp   Humidity       GHI       DHI  Rainfall  Power
0  19.779453  40.025826  3.232706  1.690531       0.0    0.0
1  19.714937  39.605961  3.194991  1.576346       0.0    0.0
2  19.549330  39.608631  3.070866  1.576157       0.0    0.0
3  19.405870  39.680702  3.038623  1.482489       0.0    0.0
4  19.387363  39.319881  2.656474  1.134153       0.0    0.0
(104256, 6)
In [4]:
# # 获取重构的原始数据
# # 获取重构的原始数据
# # 获取重构的原始数据
high_re= r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程 copy\t+3\iceemdan_reconstructed_data_re_high.csv"#数据所在路径
# #我的数据是excel表若是csv文件用pandas的read_csv()函数替换即可。
high_re = pd.DataFrame(pd.read_csv(high_re))
In [5]:
reconstructed_data_high= high_re
# # 打印重构的原始数据
print(reconstructed_data_high)
        column_name
0         -1.460307
1         -1.460504
2         -1.460698
3         -1.460886
4         -1.461071
...             ...
104251    -1.663370
104252    -1.664516
104253    -1.665650
104254    -1.666774
104255    -1.667887

[104256 rows x 1 columns]
In [6]:
import matplotlib.pyplot as plt

# # 假设你已经有了原始数据和重构数据
# # 原始数据
original_data = data1['Power'].values

# # 创建时间序列(假设时间序列与数据对应)
time = range(len(original_data))

# # 创建画布和子图
plt.figure(figsize=(10, 6))

# # 绘制原始数据
# plt.plot(time, original_data, label='Original Data', color='blue')

# # 绘制重构数据
plt.plot(reconstructed_data_high[90000:], label='Reconstructed Data', color='red')

# # 添加标题和标签
plt.title('Comparison between Original and reconstructed_data_high')
plt.xlabel('Time')
plt.ylabel('Power')
plt.legend()

# # 显示图形
plt.show()
No description has been provided for this image
In [7]:
data3=data1.iloc[:,:5]
In [8]:
import pandas as pd

# # 创建data3和imf1_array对应的DataFrame
data3_df = pd.DataFrame(data3)
imf1_df = pd.DataFrame(reconstructed_data_high)

# # 合并data3_df和imf1_df
merged_df = pd.concat([data3_df, imf1_df], axis=1)

merged_df = merged_df.iloc[:104256]

# # 打印合并后的表
print(merged_df)
             Temp   Humidity       GHI       DHI  Rainfall  column_name
0       19.779453  40.025826  3.232706  1.690531       0.0    -1.460307
1       19.714937  39.605961  3.194991  1.576346       0.0    -1.460504
2       19.549330  39.608631  3.070866  1.576157       0.0    -1.460698
3       19.405870  39.680702  3.038623  1.482489       0.0    -1.460886
4       19.387363  39.319881  2.656474  1.134153       0.0    -1.461071
...           ...        ...       ...       ...       ...          ...
104251  13.303740  34.212711  1.210789  0.787026       0.0    -1.663370
104252  13.120920  34.394939  2.142980  1.582670       0.0    -1.664516
104253  12.879215  35.167400  1.926214  1.545889       0.0    -1.665650
104254  12.915867  35.359989  1.317695  0.851529       0.0    -1.666774
104255  13.134816  34.500034  1.043269  0.597816       0.0    -1.667887

[104256 rows x 6 columns]
In [9]:
merged_df.shape
Out[9]:
(104256, 6)
In [10]:
# 使用MinMaxScaler进行归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaledData1 = scaler.fit_transform(merged_df)
print(scaledData1.shape)
(104256, 6)
In [11]:
n_steps_in =96 #历史时间长度
n_steps_out=3#预测时间长度
processedData1 = time_series_to_supervised(scaledData1,n_steps_in,n_steps_out)
print(processedData1.head())
            0         1         2         3    4         5   0(t-96)  \
96   0.555631  0.349673  0.190042  0.040558  0.0  0.250386  0.490360   
97   0.564819  0.315350  0.211335  0.044613  0.0  0.268375  0.489088   
98   0.576854  0.288321  0.229657  0.047549  0.0  0.286165  0.485824   
99   0.581973  0.268243  0.247775  0.053347  0.0  0.303808  0.482997   
100  0.586026  0.264586  0.266058  0.057351  0.0  0.321484  0.482632   

      1(t-96)   2(t-96)   3(t-96)  ...    2(t+2)    3(t+2)  4(t+2)    5(t+2)  \
96   0.369105  0.002088  0.002013  ...  0.229657  0.047549     0.0  0.286165   
97   0.364859  0.002061  0.001839  ...  0.247775  0.053347     0.0  0.303808   
98   0.364886  0.001973  0.001839  ...  0.266058  0.057351     0.0  0.321484   
99   0.365615  0.001950  0.001697  ...  0.282900  0.060958     0.0  0.338338   
100  0.361965  0.001679  0.001167  ...  0.299668  0.065238     0.0  0.355108   

       0(t+3)    1(t+3)    2(t+3)    3(t+3)  4(t+3)    5(t+3)  
96   0.581973  0.268243  0.247775  0.053347     0.0  0.303808  
97   0.586026  0.264586  0.266058  0.057351     0.0  0.321484  
98   0.590772  0.258790  0.282900  0.060958     0.0  0.338338  
99   0.600396  0.249246  0.299668  0.065238     0.0  0.355108  
100  0.607019  0.247850  0.313694  0.066189     0.0  0.372185  

[5 rows x 600 columns]
In [12]:
data_x = processedData1.loc[:,'0(t-96)':'5(t-1)']
data_y = processedData1.loc[:,'5(t+3)']
In [13]:
data_x.shape
Out[13]:
(104157, 576)
In [14]:
data_y
Out[14]:
96        0.303808
97        0.321484
98        0.338338
99        0.355108
100       0.372185
            ...   
104248    0.023869
104249    0.023687
104250    0.023507
104251    0.023329
104252    0.023153
Name: 5(t+3), Length: 104157, dtype: float64
In [15]:
data_y.shape
Out[15]:
(104157,)
In [16]:
# 计算训练集、验证集和测试集的大小
train_size = int(len(data_x) * 0.8)
test_size = int(len(data_x) * 0.1)
val_size = len(data_x) - train_size - test_size

# 计算训练集、验证集和测试集的索引范围
train_indices = range(train_size)
val_indices = range(train_size, train_size + val_size)
test_indices = range(train_size + val_size, len(data_x))

# 根据索引范围划分数据集
train_X1 = data_x.iloc[train_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))
val_X1 = data_x.iloc[val_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))
test_X1 = data_x.iloc[test_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))
train_y = data_y.iloc[train_indices].values
val_y = data_y.iloc[val_indices].values
test_y = data_y.iloc[test_indices].values

# reshape input to be 3D [samples, timesteps, features]
train_X = train_X1.reshape((train_X1.shape[0], n_steps_in, scaledData1.shape[1]))
val_X = val_X1.reshape((val_X1.shape[0], n_steps_in, scaledData1.shape[1]))
test_X = test_X1.reshape((test_X1.shape[0], n_steps_in, scaledData1.shape[1]))

print(train_X.shape, train_y.shape, val_X.shape, val_y.shape, test_X.shape, test_y.shape)
(83325, 96, 6) (83325,) (10417, 96, 6) (10417,) (10415, 96, 6) (10415,)
In [17]:
train_X1.shape
Out[17]:
(83325, 96, 6)
In [18]:
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D, Bidirectional, GlobalAveragePooling1D, Dense, GRU, MaxPooling1D
from tensorflow.keras.models import Model

class AttentionWithImproveRelativePositionEncoding(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, max_len=5000):
        super(AttentionWithImproveRelativePositionEncoding, self).__init__()
        self.num_heads = num_heads
        self.d_model = d_model
        self.max_len = max_len
        self.wq = tf.keras.layers.Dense(d_model)
        self.wk = tf.keras.layers.Dense(d_model)
        self.wv = tf.keras.layers.Dense(d_model)
        self.dense = tf.keras.layers.Dense(d_model)
        self.position_encoding = ImproveRelativePositionEncoding(d_model)

    def call(self, v, k, q, mask=None):
        batch_size = tf.shape(q)[0]
        q = self.wq(q)
        k = self.wk(k)
        v = self.wv(v)

        # Adding position encoding
        k += self.position_encoding(k)
        q += self.position_encoding(q)

        q = self.split_heads(q, batch_size)
        k = self.split_heads(k, batch_size)
        v = self.split_heads(v, batch_size)

        scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
        scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
        concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
        output = self.dense(concat_attention)
        return output, attention_weights

    def split_heads(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.d_model // self.num_heads))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def scaled_dot_product_attention(self, q, k, v, mask):
        matmul_qk = tf.matmul(q, k, transpose_b=True)
        dk = tf.cast(tf.shape(k)[-1], tf.float32)
        scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

        if mask is not None:
            scaled_attention_logits += (mask * -1e9)

        attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
        output = tf.matmul(attention_weights, v)
        return output, attention_weights

class ImproveRelativePositionEncoding(tf.keras.layers.Layer):
    def __init__(self, d_model, max_len=5000):
        super(ImproveRelativePositionEncoding, self).__init__()
        self.max_len = max_len
        self.d_model = d_model
        # Introduce learnable parameters u and v
        self.u = self.add_weight(shape=(self.d_model,), initializer=tf.keras.initializers.HeNormal(), trainable=True)
        self.v = self.add_weight(shape=(self.d_model,), initializer=tf.keras.initializers.HeNormal(), trainable=True)

    def build(self, input_shape):
        super(ImproveRelativePositionEncoding, self).build(input_shape)

    def call(self, inputs):
        seq_length = tf.shape(inputs)[1]
        pos_encoding = self.relative_positional_encoding(seq_length, self.d_model)

        # Adjusting relative position encoding with parameters
        pe_with_params = pos_encoding * self.u + pos_encoding * self.v
        return inputs + pe_with_params

    def relative_positional_encoding(self, position, d_model):
        pos = tf.range(position, dtype=tf.float32)
        i = tf.range(d_model, dtype=tf.float32)

        angles = 1 / tf.pow(10000.0, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
        angle_rads = tf.einsum('i,j->ij', pos, angles)

        angle_rads_sin = tf.sin(angle_rads[:, 0::2])
        angle_rads_cos = tf.cos(angle_rads[:, 1::2])

        pos_encoding = tf.stack([angle_rads_sin, angle_rads_cos], axis=2)
        pos_encoding = tf.reshape(pos_encoding, [1, position, d_model])

        return pos_encoding

def PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads):
    inputs = Input(shape=input_shape)
    # CNN layer
    cnn_layer = Conv1D(filters=64, kernel_size=2, activation='relu')(inputs)
    cnn_layer = MaxPooling1D(pool_size=1)(cnn_layer)
    gru_output = Bidirectional(GRU(gru_units, return_sequences=True))(cnn_layer)

    # Apply Self-Attention
    self_attention = AttentionWithImproveRelativePositionEncoding(d_model=gru_units*2, num_heads=num_heads)
    gru_output, _ = self_attention(gru_output, gru_output, gru_output, mask=None)

    pool1 = GlobalAveragePooling1D()(gru_output)
    output = Dense(1)(pool1)

    return Model(inputs=inputs, outputs=output)

input_shape = (96, 6)
gru_units = 64
num_heads = 8

# Create model
model = PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads)
model.compile(optimizer='adam', loss='mse')
model.summary()
WARNING:tensorflow:From d:\Anaconda3\lib\site-packages\keras\src\backend\tensorflow\core.py:192: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

Model: "functional"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type)         Output Shape          Param #  Connected to      ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ input_layer         │ (None, 96, 6)     │          0 │ -                 │
│ (InputLayer)        │                   │            │                   │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ conv1d (Conv1D)     │ (None, 95, 64)    │        832 │ input_layer[0][0] │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ max_pooling1d       │ (None, 95, 64)    │          0 │ conv1d[0][0]      │
│ (MaxPooling1D)      │                   │            │                   │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ bidirectional       │ (None, 95, 128)   │     49,920 │ max_pooling1d[0]… │
│ (Bidirectional)     │                   │            │                   │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ attention_with_imp… │ [(None, None,     │     66,304 │ bidirectional[0]… │
│ (AttentionWithImpr…128), (None, 8,   │            │ bidirectional[0]… │
│                     │ None, None)]      │            │ bidirectional[0]… │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ global_average_poo… │ (None, 128)       │          0 │ attention_with_i… │
│ (GlobalAveragePool… │                   │            │                   │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ dense_4 (Dense)     │ (None, 1)         │        129 │ global_average_p… │
└─────────────────────┴───────────────────┴────────────┴───────────────────┘
 Total params: 117,185 (457.75 KB)
 Trainable params: 117,185 (457.75 KB)
 Non-trainable params: 0 (0.00 B)
In [19]:
# Compile and train the model
model.compile(optimizer='adam', loss='mean_squared_error')
from keras.callbacks import EarlyStopping, ModelCheckpoint

# 定义早停机制
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='min')

# 拟合模型,并添加早停机制和模型检查点
history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(val_X, val_y), 
                    callbacks=[early_stopping])

# 将预测结果的形状修改为与原始数据相同的形状
Epoch 1/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 114s 86ms/step - loss: 0.0116 - val_loss: 0.0025
Epoch 2/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0016 - val_loss: 0.0024
Epoch 3/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 125s 96ms/step - loss: 0.0016 - val_loss: 0.0023
Epoch 4/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 114s 87ms/step - loss: 0.0016 - val_loss: 0.0025
Epoch 5/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 103s 79ms/step - loss: 0.0015 - val_loss: 0.0025
Epoch 6/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 111s 85ms/step - loss: 0.0015 - val_loss: 0.0025
Epoch 7/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0014 - val_loss: 0.0027
Epoch 8/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 108s 83ms/step - loss: 0.0015 - val_loss: 0.0024
Epoch 9/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 142s 109ms/step - loss: 0.0014 - val_loss: 0.0023
Epoch 10/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 182s 140ms/step - loss: 0.0014 - val_loss: 0.0025
Epoch 11/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 143s 110ms/step - loss: 0.0014 - val_loss: 0.0026
Epoch 12/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 116s 89ms/step - loss: 0.0014 - val_loss: 0.0023
Epoch 13/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 116s 89ms/step - loss: 0.0014 - val_loss: 0.0023
Epoch 14/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 135s 104ms/step - loss: 0.0014 - val_loss: 0.0024
Epoch 15/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 112s 86ms/step - loss: 0.0014 - val_loss: 0.0024
Epoch 16/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 105s 81ms/step - loss: 0.0013 - val_loss: 0.0024
Epoch 17/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0013 - val_loss: 0.0024
Epoch 18/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 125s 96ms/step - loss: 0.0013 - val_loss: 0.0024
Epoch 19/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 179s 137ms/step - loss: 0.0013 - val_loss: 0.0025
In [20]:
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
No description has been provided for this image
In [21]:
# 预测
lstm_pred = model.predict(test_X)
326/326 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step
In [22]:
lstm_pred.shape
Out[22]:
(10415, 1)
In [23]:
test_y.shape
Out[23]:
(10415,)
In [24]:
test_y1=test_y.reshape(10415,1)
In [25]:
test_y1
Out[25]:
array([[0.06037087],
       [0.06032172],
       [0.06027242],
       ...,
       [0.02350742],
       [0.0233294 ],
       [0.02315312]])
In [26]:
results1 = np.broadcast_to(lstm_pred, (10415, 6))
In [27]:
test_y2 = np.broadcast_to(test_y1, (10415, 6))
In [28]:
# 反归一化
inv_forecast_y = scaler.inverse_transform(results1)
inv_test_y = scaler.inverse_transform(test_y2)
In [29]:
inv_test_y
Out[29]:
array([[-2.03686661,  9.49929284, 85.31799419, 40.07645259,  1.43682734,
        -1.43294754],
       [-2.03936077,  9.49443222, 85.2487593 , 40.04411781,  1.43565736,
        -1.43325785],
       [-2.04186187,  9.48955805, 85.17933142, 40.0116929 ,  1.43448413,
        -1.43356904],
       ...,
       [-3.90720611,  5.85436487, 33.39945635, 15.82893159,  0.5594767 ,
        -1.66565038],
       [-3.91623795,  5.83676359, 33.14874276, 15.71184079,  0.55523999,
        -1.6667741 ],
       [-3.92518186,  5.81933364, 32.90046971, 15.5958898 ,  0.55104453,
        -1.66788688]])
In [42]:
# 计算均方根误差
rmse = sqrt(mean_squared_error(inv_test_y[:,5], inv_forecast_y[:,5]))
print('Test RMSE: %.3f' % rmse)
#画图
plt.figure(figsize=(16,8))
plt.plot(inv_test_y[900:2100,5], label='true')
plt.plot(inv_forecast_y[900:2100,5], label='pre')
plt.legend()
plt.show()
Test RMSE: 0.217
No description has been provided for this image
In [38]:
from sklearn.metrics import mean_squared_error, mean_absolute_error  # 评价指标
# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2
from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
print('mean_squared_error:', mean_squared_error(lstm_pred, test_y))  # mse)
print("mean_absolute_error:", mean_absolute_error(lstm_pred, test_y))  # mae
print("rmse:", sqrt(mean_squared_error(lstm_pred,test_y)))
print("r2 score:", r2_score(inv_test_y[900:2100], inv_forecast_y[900:2100]))
mean_squared_error: 0.0011780920849826654
mean_absolute_error: 0.013530156512489254
rmse: 0.03432334606332351
r2 score: 0.9966738024269023
In [43]:
df1 = pd.DataFrame(inv_test_y[:,5], columns=['column_name'])
In [44]:
# 指定文件路径和文件名保存DataFrame到CSV文件中
df1.to_csv('xin99939高频re_test(t+3).csv', index=False)
In [45]:
df2 = pd.DataFrame(inv_forecast_y[:,5], columns=['column_name'])
In [46]:
# 指定文件路径和文件名保存DataFrame到CSV文件中
df2.to_csv('xin99939高频re_forecast(t+3).csv', index=False)
In [ ]: