274 KiB
274 KiB
In [1]:
from math import sqrt from numpy import concatenate from matplotlib import pyplot import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Dropout from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt
C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\computation\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed). from pandas.core.computation.check import NUMEXPR_INSTALLED C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed). from pandas.core import (
这段代码是一个函数 time_series_to_supervised,它用于将时间序列数据转换为监督学习问题的数据集。下面是该函数的各个部分的含义:
data: 输入的时间序列数据,可以是列表或2D NumPy数组。 n_in: 作为输入的滞后观察数,即用多少个时间步的观察值作为输入。默认值为96,表示使用前96个时间步的观察值作为输入。 n_out: 作为输出的观测数量,即预测多少个时间步的观察值。默认值为10,表示预测未来10个时间步的观察值。 dropnan: 布尔值,表示是否删除具有NaN值的行。默认为True,即删除具有NaN值的行。 函数首先检查输入数据的维度,并初始化一些变量。然后,它创建一个新的DataFrame对象 df 来存储输入数据,并保存原始的列名。接着,它创建了两个空列表 cols 和 names,用于存储新的特征列和列名。
接下来,函数开始构建特征列和对应的列名。首先,它将原始的观察序列添加到 cols 列表中,并将其列名添加到 names 列表中。然后,它依次将滞后的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t-滞后时间)。这样就创建了输入特征的部分。
接着,函数开始构建输出特征的部分。它依次将未来的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t+未来时间)。
最后,函数将所有的特征列拼接在一起,构成一个新的DataFrame对象 agg。如果 dropnan 参数为True,则删除具有NaN值的行。最后,函数返回处理后的数据集 agg。
In [2]:
def time_series_to_supervised(data, n_in=96, n_out=10,dropnan=True): """ :param data:作为列表或2D NumPy数组的观察序列。需要。 :param n_in:作为输入的滞后观察数(X)。值可以在[1..len(数据)]之间可选。默认为1。 :param n_out:作为输出的观测数量(y)。值可以在[0..len(数据)]之间。可选的。默认为1。 :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。 :return: """ n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) origNames = df.columns cols, names = list(), list() cols.append(df.shift(0)) names += [('%s' % origNames[j]) for j in range(n_vars)] n_in = max(0, n_in) for i in range(n_in, 0, -1): time = '(t-%d)' % i cols.append(df.shift(i)) names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)] n_out = max(n_out, 0) for i in range(1, n_out+1): time = '(t+%d)' % i cols.append(df.shift(-i)) names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)] agg = pd.concat(cols, axis=1) agg.columns = names if dropnan: agg.dropna(inplace=True) return agg
In [3]:
# 加载数据 path1 = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程 copy\data66.csv"#数据所在路径 #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 datas1 = pd.DataFrame(pd.read_csv(path1)) #我只取了data表里的第3、23、16、17、18、19、20、21、27列,如果取全部列的话这一行可以去掉 # data1 = datas1.iloc[:,np.r_[3,23,16:22,27]] data1=datas1.interpolate() values1 = data1.values print(data1.head()) print(data1.shape)
Temp Humidity GHI DHI Rainfall Power 0 19.779453 40.025826 3.232706 1.690531 0.0 0.0 1 19.714937 39.605961 3.194991 1.576346 0.0 0.0 2 19.549330 39.608631 3.070866 1.576157 0.0 0.0 3 19.405870 39.680702 3.038623 1.482489 0.0 0.0 4 19.387363 39.319881 2.656474 1.134153 0.0 0.0 (104256, 6)
In [4]:
# # 获取重构的原始数据 # # 获取重构的原始数据 # # 获取重构的原始数据 high_re= r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程 copy\t+3\iceemdan_reconstructed_data_re_high.csv"#数据所在路径 # #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 high_re = pd.DataFrame(pd.read_csv(high_re))
In [5]:
reconstructed_data_high= high_re # # 打印重构的原始数据 print(reconstructed_data_high)
column_name 0 -1.460307 1 -1.460504 2 -1.460698 3 -1.460886 4 -1.461071 ... ... 104251 -1.663370 104252 -1.664516 104253 -1.665650 104254 -1.666774 104255 -1.667887 [104256 rows x 1 columns]
In [6]:
import matplotlib.pyplot as plt # # 假设你已经有了原始数据和重构数据 # # 原始数据 original_data = data1['Power'].values # # 创建时间序列(假设时间序列与数据对应) time = range(len(original_data)) # # 创建画布和子图 plt.figure(figsize=(10, 6)) # # 绘制原始数据 # plt.plot(time, original_data, label='Original Data', color='blue') # # 绘制重构数据 plt.plot(reconstructed_data_high[90000:], label='Reconstructed Data', color='red') # # 添加标题和标签 plt.title('Comparison between Original and reconstructed_data_high') plt.xlabel('Time') plt.ylabel('Power') plt.legend() # # 显示图形 plt.show()
In [7]:
data3=data1.iloc[:,:5]
In [8]:
import pandas as pd # # 创建data3和imf1_array对应的DataFrame data3_df = pd.DataFrame(data3) imf1_df = pd.DataFrame(reconstructed_data_high) # # 合并data3_df和imf1_df merged_df = pd.concat([data3_df, imf1_df], axis=1) merged_df = merged_df.iloc[:104256] # # 打印合并后的表 print(merged_df)
Temp Humidity GHI DHI Rainfall column_name 0 19.779453 40.025826 3.232706 1.690531 0.0 -1.460307 1 19.714937 39.605961 3.194991 1.576346 0.0 -1.460504 2 19.549330 39.608631 3.070866 1.576157 0.0 -1.460698 3 19.405870 39.680702 3.038623 1.482489 0.0 -1.460886 4 19.387363 39.319881 2.656474 1.134153 0.0 -1.461071 ... ... ... ... ... ... ... 104251 13.303740 34.212711 1.210789 0.787026 0.0 -1.663370 104252 13.120920 34.394939 2.142980 1.582670 0.0 -1.664516 104253 12.879215 35.167400 1.926214 1.545889 0.0 -1.665650 104254 12.915867 35.359989 1.317695 0.851529 0.0 -1.666774 104255 13.134816 34.500034 1.043269 0.597816 0.0 -1.667887 [104256 rows x 6 columns]
In [9]:
merged_df.shape
Out[9]:
(104256, 6)
In [10]:
# 使用MinMaxScaler进行归一化 scaler = MinMaxScaler(feature_range=(0, 1)) scaledData1 = scaler.fit_transform(merged_df) print(scaledData1.shape)
(104256, 6)
In [11]:
n_steps_in =96 #历史时间长度 n_steps_out=3#预测时间长度 processedData1 = time_series_to_supervised(scaledData1,n_steps_in,n_steps_out) print(processedData1.head())
0 1 2 3 4 5 0(t-96) \ 96 0.555631 0.349673 0.190042 0.040558 0.0 0.250386 0.490360 97 0.564819 0.315350 0.211335 0.044613 0.0 0.268375 0.489088 98 0.576854 0.288321 0.229657 0.047549 0.0 0.286165 0.485824 99 0.581973 0.268243 0.247775 0.053347 0.0 0.303808 0.482997 100 0.586026 0.264586 0.266058 0.057351 0.0 0.321484 0.482632 1(t-96) 2(t-96) 3(t-96) ... 2(t+2) 3(t+2) 4(t+2) 5(t+2) \ 96 0.369105 0.002088 0.002013 ... 0.229657 0.047549 0.0 0.286165 97 0.364859 0.002061 0.001839 ... 0.247775 0.053347 0.0 0.303808 98 0.364886 0.001973 0.001839 ... 0.266058 0.057351 0.0 0.321484 99 0.365615 0.001950 0.001697 ... 0.282900 0.060958 0.0 0.338338 100 0.361965 0.001679 0.001167 ... 0.299668 0.065238 0.0 0.355108 0(t+3) 1(t+3) 2(t+3) 3(t+3) 4(t+3) 5(t+3) 96 0.581973 0.268243 0.247775 0.053347 0.0 0.303808 97 0.586026 0.264586 0.266058 0.057351 0.0 0.321484 98 0.590772 0.258790 0.282900 0.060958 0.0 0.338338 99 0.600396 0.249246 0.299668 0.065238 0.0 0.355108 100 0.607019 0.247850 0.313694 0.066189 0.0 0.372185 [5 rows x 600 columns]
In [12]:
data_x = processedData1.loc[:,'0(t-96)':'5(t-1)'] data_y = processedData1.loc[:,'5(t+3)']
In [13]:
data_x.shape
Out[13]:
(104157, 576)
In [14]:
data_y
Out[14]:
96 0.303808 97 0.321484 98 0.338338 99 0.355108 100 0.372185 ... 104248 0.023869 104249 0.023687 104250 0.023507 104251 0.023329 104252 0.023153 Name: 5(t+3), Length: 104157, dtype: float64
In [15]:
data_y.shape
Out[15]:
(104157,)
In [16]:
# 计算训练集、验证集和测试集的大小 train_size = int(len(data_x) * 0.8) test_size = int(len(data_x) * 0.1) val_size = len(data_x) - train_size - test_size # 计算训练集、验证集和测试集的索引范围 train_indices = range(train_size) val_indices = range(train_size, train_size + val_size) test_indices = range(train_size + val_size, len(data_x)) # 根据索引范围划分数据集 train_X1 = data_x.iloc[train_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1])) val_X1 = data_x.iloc[val_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1])) test_X1 = data_x.iloc[test_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1])) train_y = data_y.iloc[train_indices].values val_y = data_y.iloc[val_indices].values test_y = data_y.iloc[test_indices].values # reshape input to be 3D [samples, timesteps, features] train_X = train_X1.reshape((train_X1.shape[0], n_steps_in, scaledData1.shape[1])) val_X = val_X1.reshape((val_X1.shape[0], n_steps_in, scaledData1.shape[1])) test_X = test_X1.reshape((test_X1.shape[0], n_steps_in, scaledData1.shape[1])) print(train_X.shape, train_y.shape, val_X.shape, val_y.shape, test_X.shape, test_y.shape)
(83325, 96, 6) (83325,) (10417, 96, 6) (10417,) (10415, 96, 6) (10415,)
In [17]:
train_X1.shape
Out[17]:
(83325, 96, 6)
In [18]:
import tensorflow as tf from tensorflow.keras.layers import Input, Conv1D, Bidirectional, GlobalAveragePooling1D, Dense, GRU, MaxPooling1D from tensorflow.keras.models import Model class AttentionWithImproveRelativePositionEncoding(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, max_len=5000): super(AttentionWithImproveRelativePositionEncoding, self).__init__() self.num_heads = num_heads self.d_model = d_model self.max_len = max_len self.wq = tf.keras.layers.Dense(d_model) self.wk = tf.keras.layers.Dense(d_model) self.wv = tf.keras.layers.Dense(d_model) self.dense = tf.keras.layers.Dense(d_model) self.position_encoding = ImproveRelativePositionEncoding(d_model) def call(self, v, k, q, mask=None): batch_size = tf.shape(q)[0] q = self.wq(q) k = self.wk(k) v = self.wv(v) # Adding position encoding k += self.position_encoding(k) q += self.position_encoding(q) q = self.split_heads(q, batch_size) k = self.split_heads(k, batch_size) v = self.split_heads(v, batch_size) scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask) scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) output = self.dense(concat_attention) return output, attention_weights def split_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.d_model // self.num_heads)) return tf.transpose(x, perm=[0, 2, 1, 3]) def scaled_dot_product_attention(self, q, k, v, mask): matmul_qk = tf.matmul(q, k, transpose_b=True) dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) if mask is not None: scaled_attention_logits += (mask * -1e9) attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) output = tf.matmul(attention_weights, v) return output, attention_weights class ImproveRelativePositionEncoding(tf.keras.layers.Layer): def __init__(self, d_model, max_len=5000): super(ImproveRelativePositionEncoding, self).__init__() self.max_len = max_len self.d_model = d_model # Introduce learnable parameters u and v self.u = self.add_weight(shape=(self.d_model,), initializer=tf.keras.initializers.HeNormal(), trainable=True) self.v = self.add_weight(shape=(self.d_model,), initializer=tf.keras.initializers.HeNormal(), trainable=True) def build(self, input_shape): super(ImproveRelativePositionEncoding, self).build(input_shape) def call(self, inputs): seq_length = tf.shape(inputs)[1] pos_encoding = self.relative_positional_encoding(seq_length, self.d_model) # Adjusting relative position encoding with parameters pe_with_params = pos_encoding * self.u + pos_encoding * self.v return inputs + pe_with_params def relative_positional_encoding(self, position, d_model): pos = tf.range(position, dtype=tf.float32) i = tf.range(d_model, dtype=tf.float32) angles = 1 / tf.pow(10000.0, (2 * (i // 2)) / tf.cast(d_model, tf.float32)) angle_rads = tf.einsum('i,j->ij', pos, angles) angle_rads_sin = tf.sin(angle_rads[:, 0::2]) angle_rads_cos = tf.cos(angle_rads[:, 1::2]) pos_encoding = tf.stack([angle_rads_sin, angle_rads_cos], axis=2) pos_encoding = tf.reshape(pos_encoding, [1, position, d_model]) return pos_encoding def PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads): inputs = Input(shape=input_shape) # CNN layer cnn_layer = Conv1D(filters=64, kernel_size=2, activation='relu')(inputs) cnn_layer = MaxPooling1D(pool_size=1)(cnn_layer) gru_output = Bidirectional(GRU(gru_units, return_sequences=True))(cnn_layer) # Apply Self-Attention self_attention = AttentionWithImproveRelativePositionEncoding(d_model=gru_units*2, num_heads=num_heads) gru_output, _ = self_attention(gru_output, gru_output, gru_output, mask=None) pool1 = GlobalAveragePooling1D()(gru_output) output = Dense(1)(pool1) return Model(inputs=inputs, outputs=output) input_shape = (96, 6) gru_units = 64 num_heads = 8 # Create model model = PosConv1biGRUWithSelfAttention(input_shape, gru_units, num_heads) model.compile(optimizer='adam', loss='mse') model.summary()
WARNING:tensorflow:From d:\Anaconda3\lib\site-packages\keras\src\backend\tensorflow\core.py:192: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
Model: "functional"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩ │ input_layer │ (None, 96, 6) │ 0 │ - │ │ (InputLayer) │ │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ conv1d (Conv1D) │ (None, 95, 64) │ 832 │ input_layer[0][0] │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ max_pooling1d │ (None, 95, 64) │ 0 │ conv1d[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ bidirectional │ (None, 95, 128) │ 49,920 │ max_pooling1d[0]… │ │ (Bidirectional) │ │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ attention_with_imp… │ [(None, None, │ 66,304 │ bidirectional[0]… │ │ (AttentionWithImpr… │ 128), (None, 8, │ │ bidirectional[0]… │ │ │ None, None)] │ │ bidirectional[0]… │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ global_average_poo… │ (None, 128) │ 0 │ attention_with_i… │ │ (GlobalAveragePool… │ │ │ │ ├─────────────────────┼───────────────────┼────────────┼───────────────────┤ │ dense_4 (Dense) │ (None, 1) │ 129 │ global_average_p… │ └─────────────────────┴───────────────────┴────────────┴───────────────────┘
Total params: 117,185 (457.75 KB)
Trainable params: 117,185 (457.75 KB)
Non-trainable params: 0 (0.00 B)
In [19]:
# Compile and train the model model.compile(optimizer='adam', loss='mean_squared_error') from keras.callbacks import EarlyStopping, ModelCheckpoint # 定义早停机制 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='min') # 拟合模型,并添加早停机制和模型检查点 history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(val_X, val_y), callbacks=[early_stopping]) # 将预测结果的形状修改为与原始数据相同的形状
Epoch 1/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 114s 86ms/step - loss: 0.0116 - val_loss: 0.0025 Epoch 2/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0016 - val_loss: 0.0024 Epoch 3/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 125s 96ms/step - loss: 0.0016 - val_loss: 0.0023 Epoch 4/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 114s 87ms/step - loss: 0.0016 - val_loss: 0.0025 Epoch 5/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 103s 79ms/step - loss: 0.0015 - val_loss: 0.0025 Epoch 6/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 111s 85ms/step - loss: 0.0015 - val_loss: 0.0025 Epoch 7/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0014 - val_loss: 0.0027 Epoch 8/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 108s 83ms/step - loss: 0.0015 - val_loss: 0.0024 Epoch 9/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 142s 109ms/step - loss: 0.0014 - val_loss: 0.0023 Epoch 10/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 182s 140ms/step - loss: 0.0014 - val_loss: 0.0025 Epoch 11/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 143s 110ms/step - loss: 0.0014 - val_loss: 0.0026 Epoch 12/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 116s 89ms/step - loss: 0.0014 - val_loss: 0.0023 Epoch 13/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 116s 89ms/step - loss: 0.0014 - val_loss: 0.0023 Epoch 14/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 135s 104ms/step - loss: 0.0014 - val_loss: 0.0024 Epoch 15/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 112s 86ms/step - loss: 0.0014 - val_loss: 0.0024 Epoch 16/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 105s 81ms/step - loss: 0.0013 - val_loss: 0.0024 Epoch 17/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 109s 84ms/step - loss: 0.0013 - val_loss: 0.0024 Epoch 18/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 125s 96ms/step - loss: 0.0013 - val_loss: 0.0024 Epoch 19/100 1302/1302 ━━━━━━━━━━━━━━━━━━━━ 179s 137ms/step - loss: 0.0013 - val_loss: 0.0025
In [20]:
plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='test') plt.legend() plt.show()
In [21]:
# 预测 lstm_pred = model.predict(test_X)
326/326 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step
In [22]:
lstm_pred.shape
Out[22]:
(10415, 1)
In [23]:
test_y.shape
Out[23]:
(10415,)
In [24]:
test_y1=test_y.reshape(10415,1)
In [25]:
test_y1
Out[25]:
array([[0.06037087], [0.06032172], [0.06027242], ..., [0.02350742], [0.0233294 ], [0.02315312]])
In [26]:
results1 = np.broadcast_to(lstm_pred, (10415, 6))
In [27]:
test_y2 = np.broadcast_to(test_y1, (10415, 6))
In [28]:
# 反归一化 inv_forecast_y = scaler.inverse_transform(results1) inv_test_y = scaler.inverse_transform(test_y2)
In [29]:
inv_test_y
Out[29]:
array([[-2.03686661, 9.49929284, 85.31799419, 40.07645259, 1.43682734, -1.43294754], [-2.03936077, 9.49443222, 85.2487593 , 40.04411781, 1.43565736, -1.43325785], [-2.04186187, 9.48955805, 85.17933142, 40.0116929 , 1.43448413, -1.43356904], ..., [-3.90720611, 5.85436487, 33.39945635, 15.82893159, 0.5594767 , -1.66565038], [-3.91623795, 5.83676359, 33.14874276, 15.71184079, 0.55523999, -1.6667741 ], [-3.92518186, 5.81933364, 32.90046971, 15.5958898 , 0.55104453, -1.66788688]])
In [42]:
# 计算均方根误差 rmse = sqrt(mean_squared_error(inv_test_y[:,5], inv_forecast_y[:,5])) print('Test RMSE: %.3f' % rmse) #画图 plt.figure(figsize=(16,8)) plt.plot(inv_test_y[900:2100,5], label='true') plt.plot(inv_forecast_y[900:2100,5], label='pre') plt.legend() plt.show()
Test RMSE: 0.217
In [38]:
from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标 # 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2 from math import sqrt from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score print('mean_squared_error:', mean_squared_error(lstm_pred, test_y)) # mse) print("mean_absolute_error:", mean_absolute_error(lstm_pred, test_y)) # mae print("rmse:", sqrt(mean_squared_error(lstm_pred,test_y))) print("r2 score:", r2_score(inv_test_y[900:2100], inv_forecast_y[900:2100]))
mean_squared_error: 0.0011780920849826654 mean_absolute_error: 0.013530156512489254 rmse: 0.03432334606332351 r2 score: 0.9966738024269023
In [43]:
df1 = pd.DataFrame(inv_test_y[:,5], columns=['column_name'])
In [44]:
# 指定文件路径和文件名,保存DataFrame到CSV文件中 df1.to_csv('xin99939高频re_test(t+3).csv', index=False)
In [45]:
df2 = pd.DataFrame(inv_forecast_y[:,5], columns=['column_name'])
In [46]:
# 指定文件路径和文件名,保存DataFrame到CSV文件中 df2.to_csv('xin99939高频re_forecast(t+3).csv', index=False)
In [ ]: