317 KiB
317 KiB
In [18]:
from math import sqrt from numpy import concatenate from matplotlib import pyplot import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Dropout from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt
In [19]:
# 加载数据 path1 = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程\低频_forecast.csv"#数据所在路径 #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 f_low= pd.DataFrame(pd.read_csv(path1))
In [20]:
# 加载数据 path2 = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程\高频re_forecast.csv"#数据所在路径 #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 f_high= pd.DataFrame(pd.read_csv(path2))
In [21]:
path3= r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程\低频_test.csv"#数据所在路径 #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 true_low= pd.DataFrame(pd.read_csv(path3))
In [22]:
path4= r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程\高频re_test.csv"#数据所在路径 #我的数据是excel表,若是csv文件用pandas的read_csv()函数替换即可。 true_high= pd.DataFrame(pd.read_csv(path4))
In [23]:
pre_data=f_low+f_high pre_data
Out[23]:
column_name | |
---|---|
0 | 1.958189 |
1 | 2.254070 |
2 | 1.279676 |
3 | 1.747101 |
4 | 1.987240 |
... | ... |
20826 | 0.017192 |
20827 | 0.014549 |
20828 | 0.014636 |
20829 | 0.016639 |
20830 | 0.017215 |
20831 rows × 1 columns
In [24]:
true=true_low+true_high true
Out[24]:
column_name | |
---|---|
0 | 2.186333e+00 |
1 | 1.377467e+00 |
2 | 1.452000e+00 |
3 | 1.846867e+00 |
4 | 2.793334e+00 |
... | ... |
20826 | 6.661338e-16 |
20827 | 0.000000e+00 |
20828 | 2.220446e-16 |
20829 | 2.220446e-16 |
20830 | 4.440892e-16 |
20831 rows × 1 columns
In [25]:
plt.figure(figsize=(16,8)) plt.plot(true, label='true') plt.plot(pre_data, label='pre') plt.legend() plt.show()
In [29]:
from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标 # 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2 from math import sqrt from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score print('mean_squared_error:', mean_squared_error(pre_data, true)) # mse) print("mean_absolute_error:", mean_absolute_error(pre_data, true)) # mae print("rmse:", sqrt(mean_squared_error(pre_data, true))) print("r2 score:", r2_score(pre_data[5000:10000], true[5000:10000]))#预测50天
mean_squared_error: 0.04969353670622598 mean_absolute_error: 0.08076025073121713 rmse: 0.22292047170734675 r2 score: 0.9988271323117631
In [46]:
# 使用MinMaxScaler进行归一化 from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) pre = scaler.fit_transform(pre_data) print(pre.shape)
(20831, 1)
In [47]:
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) true_data = scaler.fit_transform(true) print(true_data.shape)
(20831, 1)
In [50]:
from sklearn.metrics import mean_squared_error, mean_absolute_error # 评价指标 # 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2 from math import sqrt from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score print('mean_squared_error:', mean_squared_error(pre, true_data)) # mse) print("mean_absolute_error:", mean_absolute_error(pre, true_data)) # mae print("rmse:", sqrt(mean_squared_error(pre, true_data))) print("r2 score:", r2_score(pre_data, true))
mean_squared_error: 0.0026778377010073626 mean_absolute_error: 0.027468762691519367 rmse: 0.05174782798347543 r2 score: 0.9988074259067585