ICEEMDAN-Solar_power-forecast/iceemdan-low-LSTM.ipynb

212 KiB
Raw Blame History

In [1]:
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
from tensorflow.keras.layers import Dropout
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\computation\expressions.py:21: UserWarning: Pandas requires version '2.8.4' or newer of 'numexpr' (version '2.8.3' currently installed).
  from pandas.core.computation.check import NUMEXPR_INSTALLED
C:\Users\asus\AppData\Roaming\Python\Python39\site-packages\pandas\core\arrays\masked.py:60: UserWarning: Pandas requires version '1.3.6' or newer of 'bottleneck' (version '1.3.5' currently installed).
  from pandas.core import (

这段代码是一个函数 time_series_to_supervised它用于将时间序列数据转换为监督学习问题的数据集。下面是该函数的各个部分的含义

data: 输入的时间序列数据可以是列表或2D NumPy数组。 n_in: 作为输入的滞后观察数即用多少个时间步的观察值作为输入。默认值为96表示使用前96个时间步的观察值作为输入。 n_out: 作为输出的观测数量即预测多少个时间步的观察值。默认值为10表示预测未来10个时间步的观察值。 dropnan: 布尔值表示是否删除具有NaN值的行。默认为True即删除具有NaN值的行。 函数首先检查输入数据的维度并初始化一些变量。然后它创建一个新的DataFrame对象 df 来存储输入数据,并保存原始的列名。接着,它创建了两个空列表 cols 和 names用于存储新的特征列和列名。

接下来,函数开始构建特征列和对应的列名。首先,它将原始的观察序列添加到 cols 列表中,并将其列名添加到 names 列表中。然后,它依次将滞后的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t-滞后时间)。这样就创建了输入特征的部分。

接着,函数开始构建输出特征的部分。它依次将未来的观察序列添加到 cols 列表中,并构建相应的列名,格式为 (原始列名)(t+未来时间)。

最后函数将所有的特征列拼接在一起构成一个新的DataFrame对象 agg。如果 dropnan 参数为True则删除具有NaN值的行。最后函数返回处理后的数据集 agg。

In [2]:
def time_series_to_supervised(data, n_in=96, n_out=10,dropnan=True):
    """
    :param data:作为列表或2D NumPy数组的观察序列。需要。
    :param n_in:作为输入的滞后观察数X。值可以在[1..len数据]之间可选。默认为1。
    :param n_out:作为输出的观测数量y。值可以在[0..len数据]之间。可选的。默认为1。
    :param dropnan:Boolean是否删除具有NaN值的行。可选的。默认为True。
    :return:
    """
    n_vars = 1 if type(data) is list else data.shape[1]
    df = pd.DataFrame(data)
    origNames = df.columns
    cols, names = list(), list()
    cols.append(df.shift(0))
    names += [('%s' % origNames[j]) for j in range(n_vars)]
    n_in = max(0, n_in)
    for i in range(n_in, 0, -1):
        time = '(t-%d)' % i
        cols.append(df.shift(i))
        names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]
    n_out = max(n_out, 0)
    for i in range(1, n_out+1):
        time = '(t+%d)' % i
        cols.append(df.shift(-i))
        names += [('%s%s' % (origNames[j], time)) for j in range(n_vars)]
    agg = pd.concat(cols, axis=1)
    agg.columns = names
    if dropnan:
        agg.dropna(inplace=True)
    return agg
In [3]:
# 加载数据
path1 = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\data6.csv"#数据所在路径
#我的数据是excel表若是csv文件用pandas的read_csv()函数替换即可。
datas1 = pd.DataFrame(pd.read_csv(path1))
#我只取了data表里的第3、23、16、17、18、19、20、21、27列如果取全部列的话这一行可以去掉
# data1 = datas1.iloc[:,np.r_[3,23,16:22,27]]
data1=datas1.interpolate()
values1 = data1.values
print(data1.head())
print(data1.shape)
        Temp   Humidity       GHI       DHI  Rainfall  Power
0  19.779453  40.025826  3.232706  1.690531       0.0    0.0
1  19.714937  39.605961  3.194991  1.576346       0.0    0.0
2  19.549330  39.608631  3.070866  1.576157       0.0    0.0
3  19.405870  39.680702  3.038623  1.482489       0.0    0.0
4  19.387363  39.319881  2.656474  1.134153       0.0    0.0
(104256, 6)
In [4]:
# data2= data1.drop(['date'], axis = 1)
In [5]:
# # 获取重构的原始数据
# # 获取重构的原始数据
# # 获取重构的原始数据
path_re = r"D:\project\小论文1-基于ICEEMDAN分解的时序高维变化的短期光伏功率预测模型\CEEMAN-PosConv1dbiLSTM-LSTM\模型代码流程\完整的模型代码流程\iceemdan_reconstructed_data_low.csv"#数据所在路径
# #我的数据是excel表若是csv文件用pandas的read_csv()函数替换即可。
data_re = pd.DataFrame(pd.read_csv(path_re))
In [6]:
data_re
Out[6]:
column_name
0 1.426824
1 1.426819
2 1.426815
3 1.426812
4 1.426810
... ...
104251 1.629381
104252 1.629328
104253 1.629271
104254 1.629213
104255 1.629152

104256 rows × 1 columns

In [7]:
import matplotlib.pyplot as plt

# # 假设你已经有了原始数据和重构数据
# # 原始数据
original_data = data1['Power'].values

# # 创建时间序列(假设时间序列与数据对应)
time = range(len(original_data))

# # 创建画布和子图
plt.figure(figsize=(10, 6))

# # 绘制原始数据
# plt.plot(time, original_data, label='Original Data', color='blue')

# # 绘制重构数据
plt.plot( data_re[:], label='Reconstructed Data', color='red')

# # 添加标题和标签
plt.title('Comparison between Original and reconstructed_data_high')
plt.xlabel('Time')
plt.ylabel('Power')
plt.legend()

# # 显示图形
plt.show()
No description has been provided for this image
In [8]:
data3=data1.iloc[:,:5]
In [9]:
import pandas as pd

# # 创建data3和imf1_array对应的DataFrame
data3_df = pd.DataFrame(data3)
imf1_df = pd.DataFrame(data_re)

# # 合并data3_df和imf1_df
merged_df = pd.concat([data3_df, imf1_df], axis=1)

# # 设置行数为35040行
merged_df = merged_df.iloc[:104256]

# # 打印合并后的表
print(merged_df)
             Temp   Humidity       GHI       DHI  Rainfall  column_name
0       19.779453  40.025826  3.232706  1.690531       0.0     1.426824
1       19.714937  39.605961  3.194991  1.576346       0.0     1.426819
2       19.549330  39.608631  3.070866  1.576157       0.0     1.426815
3       19.405870  39.680702  3.038623  1.482489       0.0     1.426812
4       19.387363  39.319881  2.656474  1.134153       0.0     1.426810
...           ...        ...       ...       ...       ...          ...
104251  13.303740  34.212711  1.210789  0.787026       0.0     1.629381
104252  13.120920  34.394939  2.142980  1.582670       0.0     1.629328
104253  12.879215  35.167400  1.926214  1.545889       0.0     1.629271
104254  12.915867  35.359989  1.317695  0.851529       0.0     1.629213
104255  13.134816  34.500034  1.043269  0.597816       0.0     1.629152

[104256 rows x 6 columns]
In [10]:
merged_df.shape
Out[10]:
(104256, 6)
In [11]:
# 使用MinMaxScaler进行归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaledData1 = scaler.fit_transform(merged_df)
print(scaledData1.shape)
(104256, 6)
In [12]:
n_steps_in =96 #历史时间长度
n_steps_out=1#预测时间长度
processedData1 = time_series_to_supervised(scaledData1,n_steps_in,n_steps_out)
print(processedData1.head())
            0         1         2         3    4         5   0(t-96)  \
96   0.555631  0.349673  0.190042  0.040558  0.0  0.836699  0.490360   
97   0.564819  0.315350  0.211335  0.044613  0.0  0.836762  0.489088   
98   0.576854  0.288321  0.229657  0.047549  0.0  0.836826  0.485824   
99   0.581973  0.268243  0.247775  0.053347  0.0  0.836891  0.482997   
100  0.586026  0.264586  0.266058  0.057351  0.0  0.836956  0.482632   

      1(t-96)   2(t-96)   3(t-96)  ...    2(t-1)    3(t-1)  4(t-1)    5(t-1)  \
96   0.369105  0.002088  0.002013  ...  0.166009  0.036794     0.0  0.836635   
97   0.364859  0.002061  0.001839  ...  0.190042  0.040558     0.0  0.836699   
98   0.364886  0.001973  0.001839  ...  0.211335  0.044613     0.0  0.836762   
99   0.365615  0.001950  0.001697  ...  0.229657  0.047549     0.0  0.836826   
100  0.361965  0.001679  0.001167  ...  0.247775  0.053347     0.0  0.836891   

       0(t+1)    1(t+1)    2(t+1)    3(t+1)  4(t+1)    5(t+1)  
96   0.564819  0.315350  0.211335  0.044613     0.0  0.836762  
97   0.576854  0.288321  0.229657  0.047549     0.0  0.836826  
98   0.581973  0.268243  0.247775  0.053347     0.0  0.836891  
99   0.586026  0.264586  0.266058  0.057351     0.0  0.836956  
100  0.590772  0.258790  0.282900  0.060958     0.0  0.837022  

[5 rows x 588 columns]
In [13]:
# processedData1.to_csv('processedData1.csv', index=False)
In [14]:
data_x = processedData1.loc[:,'0(t-96)':'5(t-1)']
data_y = processedData1.loc[:,'5']
In [15]:
data_x.shape
Out[15]:
(104159, 576)
In [16]:
data_y
Out[16]:
96        0.836699
97        0.836762
98        0.836826
99        0.836891
100       0.836956
            ...   
104250    0.989547
104251    0.989508
104252    0.989466
104253    0.989423
104254    0.989378
Name: 5, Length: 104159, dtype: float64
In [17]:
data_y.shape
Out[17]:
(104159,)
In [18]:
# 7.划分训练集和测试集

test_size = int(len(data_x) * 0.2)
# 计算训练集和测试集的索引范围
train_indices = range(len(data_x) - test_size)
test_indices = range(len(data_x) - test_size, len(data_x))

# 根据索引范围划分数据集
train_X1 = data_x.iloc[train_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))
test_X1 = data_x.iloc[test_indices].values.reshape((-1, n_steps_in, scaledData1.shape[1]))
train_y = data_y.iloc[train_indices].values
test_y = data_y.iloc[test_indices].values


# # 多次运行代码时希望得到相同的数据分割,可以设置 random_state 参数为一个固定的整数值
# train_X1,test_X1, train_y, test_y = train_test_split(data_x.values, data_y.values, test_size=0.2, random_state=343)
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X1.reshape((train_X1.shape[0], n_steps_in, scaledData1.shape[1]))
test_X = test_X1.reshape((test_X1.shape[0], n_steps_in,scaledData1.shape[1]))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
# 使用train_test_split函数划分训练集和测试集测试集的比重是40%。
# 然后将train_X1、test_X1进行一个升维变成三维维数分别是[samples,timesteps,features]。
# 打印一下他们的shape\
(83328, 96, 6) (83328,) (20831, 96, 6) (20831,)
In [19]:
train_X1.shape
Out[19]:
(83328, 96, 6)
In [20]:
from keras.layers import GRU, Bidirectional
from keras.models import Model
from keras.layers import Input, Conv1D, MaxPooling1D, LSTM, Dense, Attention, Flatten
import keras
from keras.models import Sequential
from keras.layers import LSTM, Dense

# 创建模型
model = Sequential()

# 添加单层 LSTM
model.add(LSTM(units=128, input_shape=(96, 6)))

# 添加输出层
model.add(Dense(1))

# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')

# 查看模型结构
model.summary()
d:\Anaconda3\lib\site-packages\keras\src\layers\rnn\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
  super().__init__(**kwargs)
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ lstm (LSTM)                     │ (None, 128)            │        69,120 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense)                   │ (None, 1)              │           129 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
 Total params: 69,249 (270.50 KB)
 Trainable params: 69,249 (270.50 KB)
 Non-trainable params: 0 (0.00 B)
In [21]:
# Compile and train the model
model.compile(optimizer='adam', loss='mean_squared_error')
from keras.callbacks import EarlyStopping, ModelCheckpoint

# 定义早停机制
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=0, mode='min')

# 拟合模型,并添加早停机制和模型检查点
history = model.fit(train_X, train_y, epochs=100, batch_size=64, validation_data=(test_X, test_y), 
                    callbacks=[early_stopping])
# 预测
lstm_pred = model.predict(test_X)
# 将预测结果的形状修改为与原始数据相同的形状
Epoch 1/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 122s 92ms/step - loss: 0.0156 - val_loss: 1.0318e-05
Epoch 2/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 110s 85ms/step - loss: 1.2280e-05 - val_loss: 2.9811e-06
Epoch 3/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 114s 87ms/step - loss: 9.1935e-06 - val_loss: 2.5579e-06
Epoch 4/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 128s 98ms/step - loss: 1.0443e-05 - val_loss: 8.4623e-06
Epoch 5/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 118s 90ms/step - loss: 1.1108e-05 - val_loss: 8.1167e-06
Epoch 6/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 111s 85ms/step - loss: 5.3451e-06 - val_loss: 2.4689e-06
Epoch 7/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 117s 90ms/step - loss: 1.5962e-05 - val_loss: 2.2134e-06
Epoch 8/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 124s 95ms/step - loss: 5.3290e-06 - val_loss: 3.5285e-07
Epoch 9/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 126s 97ms/step - loss: 4.5184e-06 - val_loss: 1.2596e-07
Epoch 10/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 128s 98ms/step - loss: 1.6976e-06 - val_loss: 7.1095e-06
Epoch 11/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 123s 95ms/step - loss: 6.6386e-06 - val_loss: 1.0392e-07
Epoch 12/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 126s 97ms/step - loss: 2.3165e-06 - val_loss: 8.4822e-07
Epoch 13/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 120s 92ms/step - loss: 3.5823e-06 - val_loss: 4.9285e-08
Epoch 14/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 117s 90ms/step - loss: 3.1791e-06 - val_loss: 2.2294e-07
Epoch 15/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 124s 95ms/step - loss: 2.9977e-06 - val_loss: 3.9852e-06
Epoch 16/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 128s 98ms/step - loss: 2.3874e-06 - val_loss: 1.3594e-07
Epoch 17/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 135s 103ms/step - loss: 3.1801e-07 - val_loss: 1.6932e-07
Epoch 18/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 128s 98ms/step - loss: 1.5647e-06 - val_loss: 2.1397e-08
Epoch 19/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 135s 104ms/step - loss: 1.4188e-06 - val_loss: 1.4569e-07
Epoch 20/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 128s 99ms/step - loss: 1.1043e-06 - val_loss: 5.9704e-07
Epoch 21/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 135s 103ms/step - loss: 2.0067e-06 - val_loss: 2.0218e-06
Epoch 22/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 145s 111ms/step - loss: 1.9982e-06 - val_loss: 2.2618e-07
Epoch 23/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 136s 104ms/step - loss: 1.4178e-06 - val_loss: 1.3009e-06
Epoch 24/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 130s 100ms/step - loss: 2.7170e-06 - val_loss: 1.2247e-08
Epoch 25/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 124s 95ms/step - loss: 1.8664e-06 - val_loss: 5.6499e-07
Epoch 26/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 89s 68ms/step - loss: 1.3434e-06 - val_loss: 1.2509e-08
Epoch 27/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 85s 65ms/step - loss: 1.8632e-06 - val_loss: 5.3179e-07
Epoch 28/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 82s 63ms/step - loss: 1.2746e-06 - val_loss: 9.0354e-08
Epoch 29/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 83s 63ms/step - loss: 1.5440e-06 - val_loss: 1.2604e-07
Epoch 30/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 88s 68ms/step - loss: 1.2646e-06 - val_loss: 2.5639e-07
Epoch 31/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 81s 62ms/step - loss: 1.3377e-06 - val_loss: 4.0479e-08
Epoch 32/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 48s 37ms/step - loss: 7.9140e-07 - val_loss: 1.1824e-06
Epoch 33/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 48s 37ms/step - loss: 2.1865e-06 - val_loss: 4.2140e-06
Epoch 34/100
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 51s 39ms/step - loss: 1.4884e-06 - val_loss: 1.8359e-06
651/651 ━━━━━━━━━━━━━━━━━━━━ 10s 16ms/step
In [22]:
lstm_pred.shape
Out[22]:
(20831, 1)
In [23]:
test_y.shape
Out[23]:
(20831,)
In [24]:
test_y1=test_y.reshape(20831,1)
In [25]:
test_y1
Out[25]:
array([[0.65620206],
       [0.6565139 ],
       [0.65682633],
       ...,
       [0.98946626],
       [0.98942303],
       [0.98937795]])
In [26]:
results1 = np.broadcast_to(lstm_pred, (20831, 6))
In [27]:
test_y2 = np.broadcast_to(test_y1, (20831, 6))
In [28]:
# 反归一化
inv_forecast_y = scaler.inverse_transform(results1)
inv_test_y = scaler.inverse_transform(test_y2)
In [29]:
inv_test_y
Out[29]:
array([[2.81937911e+01, 6.84129659e+01, 9.24487326e+02, 4.31993807e+02,
        1.56176147e+01, 1.19628092e+00],
       [2.82096130e+01, 6.84437997e+01, 9.24926524e+02, 4.32198926e+02,
        1.56250366e+01, 1.19668613e+00],
       [2.82254649e+01, 6.84746920e+01, 9.25366555e+02, 4.32404434e+02,
        1.56324725e+01, 1.19709211e+00],
       ...,
       [4.51026009e+01, 1.01364948e+02, 1.39385702e+03, 6.51203592e+02,
        2.35493057e+01, 1.62932764e+00],
       [4.51004072e+01, 1.01360673e+02, 1.39379613e+03, 6.51175153e+02,
        2.35482767e+01, 1.62927146e+00],
       [4.50981204e+01, 1.01356216e+02, 1.39373265e+03, 6.51145506e+02,
        2.35472040e+01, 1.62921289e+00]])
In [30]:
# 计算均方根误差
rmse = sqrt(mean_squared_error(inv_test_y[:,5], inv_forecast_y[:,5]))
print('Test RMSE: %.3f' % rmse)
#画图
plt.figure(figsize=(16,8))
plt.plot(inv_test_y[:,5], label='true')
plt.plot(inv_forecast_y[:,5], label='pre')
plt.legend()
plt.show()
Test RMSE: 0.002
No description has been provided for this image
In [31]:
from sklearn.metrics import mean_squared_error, mean_absolute_error  # 评价指标
# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2
from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
print('mean_squared_error:', mean_squared_error(lstm_pred, test_y))  # mse)
print("mean_absolute_error:", mean_absolute_error(lstm_pred, test_y))  # mae
print("rmse:", sqrt(mean_squared_error(lstm_pred,test_y)))
print("r2 score:", r2_score(inv_test_y[:], inv_forecast_y[:]))
mean_squared_error: 1.8358609523038586e-06
mean_absolute_error: 0.0012240899816947145
rmse: 0.0013549394644425479
r2 score: 0.9998451201868883
In [32]:
df1 = pd.DataFrame(inv_test_y[:,5], columns=['column_name'])
In [33]:
# 指定文件路径和文件名保存DataFrame到CSV文件中
df1.to_csv('低频_test.csv', index=False)
In [34]:
df2 = pd.DataFrame(inv_forecast_y[:,5], columns=['column_name'])
In [35]:
# 指定文件路径和文件名保存DataFrame到CSV文件中
df2.to_csv('低频_forecast.csv', index=False)
In [ ]: