1
0
Fork 0
wgz_forecast/carbon/matrix2series.ipynb

119 KiB
Raw Permalink Blame History

In [63]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [64]:
data = pd.read_csv('./data/carbon_original.csv')
data.head()
Out[64]:
MSN YYYYMM Value Column_Order Description Unit
0 CLEIEUS 197301 72.076 1 Coal Electric Power Sector CO2 Emissions Million Metric Tons of Carbon Dioxide
1 CLEIEUS 197302 64.442 1 Coal Electric Power Sector CO2 Emissions Million Metric Tons of Carbon Dioxide
2 CLEIEUS 197303 64.084 1 Coal Electric Power Sector CO2 Emissions Million Metric Tons of Carbon Dioxide
3 CLEIEUS 197304 60.842 1 Coal Electric Power Sector CO2 Emissions Million Metric Tons of Carbon Dioxide
4 CLEIEUS 197305 61.798 1 Coal Electric Power Sector CO2 Emissions Million Metric Tons of Carbon Dioxide
In [65]:
use_data = data[data['MSN']=='CLEIEUS'].iloc[:,[2]]
In [66]:
use_data
Out[66]:
Value
0 72.076
1 64.442
2 64.084
3 60.842
4 61.798
... ...
561 72.84
562 71.41
563 82.51
564 115.772
565 135.958

566 rows × 1 columns

In [66]:
 
In [67]:
# 生成日期范围484天
dates = pd.date_range(start='2022-01-01', periods=566, freq='H')
dates=pd.DataFrame(dates, columns=['date'])
C:\Users\liuhao\AppData\Local\Temp\ipykernel_17444\217526566.py:2: FutureWarning: 'H' is deprecated and will be removed in a future version, please use 'h' instead.
  dates = pd.date_range(start='2022-01-01', periods=566, freq='H')
In [68]:
date_data=pd.concat([dates,use_data],axis=1)
In [69]:
# 将 'Value' 列转换为 float 类型
date_data['Value'] = date_data['Value'].astype(float)
In [70]:
# 绘制第二列的图像
plt.figure(figsize=(10, 6))
plt.plot(date_data.index, date_data['Value'], label='Value')
plt.xlabel('Date')
plt.ylabel('Value')
plt.title('Time Series Plot of Second Column')
plt.legend()
plt.grid(True)
plt.show()
No description has been provided for this image
In [71]:
date_data.to_csv('data/carbon_data_hourly.csv', index=False, encoding='utf-8-sig')
In [71]: