Tan_pytorch_segmentation/pytorch_segmentation/PV_LRASPP/predict.py

77 lines
2.3 KiB
Python
Raw Permalink Normal View History

2025-05-19 20:48:24 +08:00
import os
import time
import json
import torch
from torchvision import transforms
import numpy as np
from PIL import Image
from src import lraspp_mobilenetv3_large
def time_synchronized():
torch.cuda.synchronize() if torch.cuda.is_available() else None
return time.time()
def main():
classes = 20
weights_path = "./save_weights/model_29.pth"
img_path = "./test.jpg"
palette_path = "./palette.json"
assert os.path.exists(weights_path), f"weights {weights_path} not found."
assert os.path.exists(img_path), f"image {img_path} not found."
assert os.path.exists(palette_path), f"palette {palette_path} not found."
with open(palette_path, "rb") as f:
pallette_dict = json.load(f)
pallette = []
for v in pallette_dict.values():
pallette += v
# get devices
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
# create model
model = lraspp_mobilenetv3_large(num_classes=classes+1)
# load weights
weights_dict = torch.load(weights_path, map_location='cpu')['model']
model.load_state_dict(weights_dict)
model.to(device)
# load image
original_img = Image.open(img_path)
# from pil image to tensor and normalize
data_transform = transforms.Compose([transforms.Resize(520),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225))])
img = data_transform(original_img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)
model.eval() # 进入验证模式
with torch.no_grad():
# init model
img_height, img_width = img.shape[-2:]
init_img = torch.zeros((1, 3, img_height, img_width), device=device)
model(init_img)
t_start = time_synchronized()
output = model(img.to(device))
t_end = time_synchronized()
print("inference time: {}".format(t_end - t_start))
prediction = output['out'].argmax(1).squeeze(0)
prediction = prediction.to("cpu").numpy().astype(np.uint8)
mask = Image.fromarray(prediction)
mask.putpalette(pallette)
mask.save("test_result.png")
if __name__ == '__main__':
main()