58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
|
||
|
class ChannelAttention(nn.Module):
|
||
|
def __init__(self, in_planes, ratio=16):
|
||
|
super(ChannelAttention, self).__init__()
|
||
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||
|
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
||
|
|
||
|
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
|
||
|
self.relu1 = nn.ReLU()
|
||
|
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
|
||
|
self.sigmoid = nn.Sigmoid()
|
||
|
|
||
|
def forward(self, x):
|
||
|
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
|
||
|
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
|
||
|
out = avg_out + max_out
|
||
|
return self.sigmoid(out)
|
||
|
|
||
|
|
||
|
class SpatialAttention(nn.Module):
|
||
|
def __init__(self, kernel_size=7):
|
||
|
super(SpatialAttention, self).__init__()
|
||
|
|
||
|
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
||
|
padding = 3 if kernel_size == 7 else 1
|
||
|
|
||
|
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) # 7,3 3,1
|
||
|
self.sigmoid = nn.Sigmoid()
|
||
|
|
||
|
def forward(self, x):
|
||
|
avg_out = torch.mean(x, dim=1, keepdim=True)
|
||
|
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
||
|
x = torch.cat([avg_out, max_out], dim=1)
|
||
|
x = self.conv1(x)
|
||
|
return self.sigmoid(x)
|
||
|
|
||
|
|
||
|
class CBAM(nn.Module):
|
||
|
def __init__(self, in_planes, ratio=16, kernel_size=7):
|
||
|
super(CBAM, self).__init__()
|
||
|
self.ca = ChannelAttention(in_planes, ratio)
|
||
|
self.sa = SpatialAttention(kernel_size)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x * self.ca(x)
|
||
|
result = out * self.sa(out)
|
||
|
return result
|
||
|
|
||
|
|
||
|
# 输入 N C H W, 输出 N C H W
|
||
|
if __name__ == '__main__':
|
||
|
block = CBAM(64)
|
||
|
input = torch.rand(1, 64, 64, 64)
|
||
|
output = block(input)
|
||
|
print(input.size(), output.size())
|