97 lines
3.7 KiB
Python
97 lines
3.7 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import init
|
||
|
|
||
|
|
||
|
class EMSA(nn.Module):
|
||
|
|
||
|
def __init__(self, d_model, d_k, d_v, h, dropout=.1, H=7, W=7, ratio=3, apply_transform=True):
|
||
|
|
||
|
super(EMSA, self).__init__()
|
||
|
self.H = H
|
||
|
self.W = W
|
||
|
self.fc_q = nn.Linear(d_model, h * d_k)
|
||
|
self.fc_k = nn.Linear(d_model, h * d_k)
|
||
|
self.fc_v = nn.Linear(d_model, h * d_v)
|
||
|
self.fc_o = nn.Linear(h * d_v, d_model)
|
||
|
self.dropout = nn.Dropout(dropout)
|
||
|
|
||
|
self.ratio = ratio
|
||
|
if (self.ratio > 1):
|
||
|
self.sr = nn.Sequential()
|
||
|
self.sr_conv = nn.Conv2d(d_model, d_model, kernel_size=ratio + 1, stride=ratio, padding=ratio // 2,
|
||
|
groups=d_model)
|
||
|
self.sr_ln = nn.LayerNorm(d_model)
|
||
|
|
||
|
self.apply_transform = apply_transform and h > 1
|
||
|
if (self.apply_transform):
|
||
|
self.transform = nn.Sequential()
|
||
|
self.transform.add_module('conv', nn.Conv2d(h, h, kernel_size=1, stride=1))
|
||
|
self.transform.add_module('softmax', nn.Softmax(-1))
|
||
|
self.transform.add_module('in', nn.InstanceNorm2d(h))
|
||
|
|
||
|
self.d_model = d_model
|
||
|
self.d_k = d_k
|
||
|
self.d_v = d_v
|
||
|
self.h = h
|
||
|
|
||
|
self.init_weights()
|
||
|
|
||
|
def init_weights(self):
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
||
|
if m.bias is not None:
|
||
|
init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.BatchNorm2d):
|
||
|
init.constant_(m.weight, 1)
|
||
|
init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
init.normal_(m.weight, std=0.001)
|
||
|
if m.bias is not None:
|
||
|
init.constant_(m.bias, 0)
|
||
|
|
||
|
def forward(self, queries, keys, values, attention_mask=None, attention_weights=None):
|
||
|
|
||
|
b_s, nq, c = queries.shape
|
||
|
nk = keys.shape[1]
|
||
|
|
||
|
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k)
|
||
|
|
||
|
if (self.ratio > 1):
|
||
|
x = queries.permute(0, 2, 1).view(b_s, c, self.H, self.W) # bs,c,H,W
|
||
|
x = self.sr_conv(x) # bs,c,h,w
|
||
|
x = x.contiguous().view(b_s, c, -1).permute(0, 2, 1) # bs,n',c
|
||
|
x = self.sr_ln(x)
|
||
|
k = self.fc_k(x).view(b_s, -1, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, n')
|
||
|
v = self.fc_v(x).view(b_s, -1, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, n', d_v)
|
||
|
else:
|
||
|
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk)
|
||
|
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v)
|
||
|
|
||
|
if (self.apply_transform):
|
||
|
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
|
||
|
att = self.transform(att) # (b_s, h, nq, n')
|
||
|
else:
|
||
|
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
|
||
|
att = torch.softmax(att, -1) # (b_s, h, nq, n')
|
||
|
|
||
|
if attention_weights is not None:
|
||
|
att = att * attention_weights
|
||
|
if attention_mask is not None:
|
||
|
att = att.masked_fill(attention_mask, -np.inf)
|
||
|
|
||
|
att = self.dropout(att)
|
||
|
|
||
|
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v)
|
||
|
out = self.fc_o(out) # (b_s, nq, d_model)
|
||
|
return out
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
block = EMSA(d_model=512, d_k=512, d_v=512, h=8, H=8, W=8, ratio=2, apply_transform=True).cuda()
|
||
|
input = torch.rand(64, 64, 512).cuda()
|
||
|
output = block(input, input, input)
|
||
|
print(input.size(), output.size())
|