77 lines
2.3 KiB
Python
77 lines
2.3 KiB
Python
|
import os
|
||
|
import time
|
||
|
import json
|
||
|
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
|
||
|
from src import lraspp_mobilenetv3_large
|
||
|
|
||
|
|
||
|
def time_synchronized():
|
||
|
torch.cuda.synchronize() if torch.cuda.is_available() else None
|
||
|
return time.time()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
classes = 20
|
||
|
weights_path = "./save_weights/model_29.pth"
|
||
|
img_path = "./test.jpg"
|
||
|
palette_path = "./palette.json"
|
||
|
assert os.path.exists(weights_path), f"weights {weights_path} not found."
|
||
|
assert os.path.exists(img_path), f"image {img_path} not found."
|
||
|
assert os.path.exists(palette_path), f"palette {palette_path} not found."
|
||
|
with open(palette_path, "rb") as f:
|
||
|
pallette_dict = json.load(f)
|
||
|
pallette = []
|
||
|
for v in pallette_dict.values():
|
||
|
pallette += v
|
||
|
|
||
|
# get devices
|
||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
|
print("using {} device.".format(device))
|
||
|
|
||
|
# create model
|
||
|
model = lraspp_mobilenetv3_large(num_classes=classes+1)
|
||
|
|
||
|
# load weights
|
||
|
weights_dict = torch.load(weights_path, map_location='cpu')['model']
|
||
|
model.load_state_dict(weights_dict)
|
||
|
model.to(device)
|
||
|
|
||
|
# load image
|
||
|
original_img = Image.open(img_path)
|
||
|
|
||
|
# from pil image to tensor and normalize
|
||
|
data_transform = transforms.Compose([transforms.Resize(520),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=(0.485, 0.456, 0.406),
|
||
|
std=(0.229, 0.224, 0.225))])
|
||
|
img = data_transform(original_img)
|
||
|
# expand batch dimension
|
||
|
img = torch.unsqueeze(img, dim=0)
|
||
|
|
||
|
model.eval() # 进入验证模式
|
||
|
with torch.no_grad():
|
||
|
# init model
|
||
|
img_height, img_width = img.shape[-2:]
|
||
|
init_img = torch.zeros((1, 3, img_height, img_width), device=device)
|
||
|
model(init_img)
|
||
|
|
||
|
t_start = time_synchronized()
|
||
|
output = model(img.to(device))
|
||
|
t_end = time_synchronized()
|
||
|
print("inference time: {}".format(t_end - t_start))
|
||
|
|
||
|
prediction = output['out'].argmax(1).squeeze(0)
|
||
|
prediction = prediction.to("cpu").numpy().astype(np.uint8)
|
||
|
mask = Image.fromarray(prediction)
|
||
|
mask.putpalette(pallette)
|
||
|
mask.save("test_result.png")
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|