218 lines
8.8 KiB
Python
218 lines
8.8 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange, repeat
|
||
|
|
||
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||
|
import timm
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange
|
||
|
from torch.nn.init import trunc_normal_
|
||
|
class ConvBNReLU(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
|
||
|
super(ConvBNReLU, self).__init__(
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
|
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
|
||
|
norm_layer(out_channels),
|
||
|
nn.ReLU6()
|
||
|
)
|
||
|
|
||
|
|
||
|
class ConvBN(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
|
||
|
super(ConvBN, self).__init__(
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
|
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
|
||
|
norm_layer(out_channels)
|
||
|
)
|
||
|
|
||
|
|
||
|
class Conv(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
|
||
|
super(Conv, self).__init__(
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
|
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
|
||
|
)
|
||
|
|
||
|
|
||
|
class SelfAttention(nn.Module):
|
||
|
def __init__(self, dim, num_heads):
|
||
|
super(SelfAttention, self).__init__()
|
||
|
self.num_heads = num_heads
|
||
|
head_dim = dim // self.num_heads
|
||
|
self.scale = head_dim ** -0.5
|
||
|
|
||
|
self.qkv = nn.Linear(dim, 3 * dim)
|
||
|
self.o_proj = nn.Linear(dim, dim)
|
||
|
|
||
|
def forward(self, x):
|
||
|
B, C, H, W = x.shape
|
||
|
qkv = self.qkv(x).view(B, -1, self.num_heads, 3, H * W).permute(3, 0, 2, 1, 4)
|
||
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
||
|
|
||
|
dots = torch.matmul(q.transpose(-2, -1), k) * self.scale
|
||
|
attn = dots.softmax(dim=-1)
|
||
|
out = torch.matmul(attn, v).transpose(1, 2).reshape(B, C, H, W)
|
||
|
|
||
|
return self.o_proj(out)
|
||
|
|
||
|
class SeparableConvBNReLU(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
|
||
|
norm_layer=nn.BatchNorm2d):
|
||
|
super(SeparableConvBNReLU, self).__init__(
|
||
|
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
|
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
|
groups=in_channels, bias=False),
|
||
|
norm_layer(out_channels),
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
||
|
nn.ReLU6()
|
||
|
)
|
||
|
|
||
|
|
||
|
class SeparableConvBN(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
|
||
|
norm_layer=nn.BatchNorm2d):
|
||
|
super(SeparableConvBN, self).__init__(
|
||
|
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
|
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
|
groups=in_channels, bias=False),
|
||
|
norm_layer(out_channels),
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
||
|
)
|
||
|
|
||
|
|
||
|
class SeparableConv(nn.Sequential):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||
|
super(SeparableConv, self).__init__(
|
||
|
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
|
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
|
groups=in_channels, bias=False),
|
||
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
||
|
)
|
||
|
|
||
|
class SEBlock(nn.Module):
|
||
|
def __init__(self, in_channels, reduction=16):
|
||
|
super(SEBlock, self).__init__()
|
||
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||
|
self.fc = nn.Sequential(
|
||
|
nn.Linear(in_channels, in_channels // reduction, bias=False),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Linear(in_channels // reduction, in_channels, bias=False),
|
||
|
nn.Sigmoid()
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, c, _, _ = x.size()
|
||
|
y = self.avg_pool(x).view(b, c)
|
||
|
y = self.fc(y).view(b, c, 1, 1)
|
||
|
return x * y.expand_as(x)
|
||
|
|
||
|
class ImprovedLocalAttention(nn.Module):
|
||
|
def __init__(self, dim):
|
||
|
super(ImprovedLocalAttention, self).__init__()
|
||
|
self.conv1x1 = nn.Conv2d(dim, dim, kernel_size=1, bias=False)
|
||
|
self.conv3x3 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False)
|
||
|
self.conv5x5 = nn.Conv2d(dim, dim, kernel_size=5, padding=2, bias=False)
|
||
|
self.bn = nn.BatchNorm2d(dim)
|
||
|
self.se = SEBlock(dim)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out1 = self.conv1x1(x)
|
||
|
out2 = self.conv3x3(x)
|
||
|
out3 = self.conv5x5(x)
|
||
|
out = out1 + out2 + out3
|
||
|
out = self.bn(out)
|
||
|
out = self.se(out)
|
||
|
return out
|
||
|
|
||
|
class MultiHeadGlobalAttention(nn.Module):
|
||
|
def __init__(self, dim=256, num_heads=16, qkv_bias=False, window_size=8, relative_pos_embedding=True):
|
||
|
super().__init__()
|
||
|
self.num_heads = num_heads
|
||
|
head_dim = dim // self.num_heads
|
||
|
self.scale = head_dim ** -0.5
|
||
|
self.ws = window_size
|
||
|
|
||
|
self.qkv = nn.Conv2d(dim, 3 * dim, kernel_size=1, bias=qkv_bias)
|
||
|
self.proj = nn.Conv2d(dim, dim, kernel_size=1, bias=False)
|
||
|
|
||
|
self.relative_pos_embedding = relative_pos_embedding
|
||
|
|
||
|
if self.relative_pos_embedding:
|
||
|
self.relative_position_bias_table = nn.Parameter(
|
||
|
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads))
|
||
|
|
||
|
coords_h = torch.arange(self.ws)
|
||
|
coords_w = torch.arange(self.ws)
|
||
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
||
|
coords_flatten = torch.flatten(coords, 1)
|
||
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
||
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
||
|
relative_coords[:, :, 0] += self.ws - 1
|
||
|
relative_coords[:, :, 1] += self.ws - 1
|
||
|
relative_coords[:, :, 0] *= 2 * self.ws - 1
|
||
|
relative_position_index = relative_coords.sum(-1)
|
||
|
self.register_buffer("relative_position_index", relative_position_index)
|
||
|
|
||
|
nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
|
||
|
|
||
|
def pad(self, x, ps):
|
||
|
_, _, H, W = x.size()
|
||
|
if W % ps != 0:
|
||
|
x = F.pad(x, (0, ps - W % ps), mode='reflect')
|
||
|
if H % ps != 0:
|
||
|
x = F.pad(x, (0, 0, 0, ps - H % ps), mode='reflect')
|
||
|
return x
|
||
|
|
||
|
def forward(self, x):
|
||
|
B, C, H, W = x.shape
|
||
|
|
||
|
x = self.pad(x, self.ws)
|
||
|
B, C, Hp, Wp = x.shape
|
||
|
qkv = self.qkv(x)
|
||
|
|
||
|
q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h (ws1 ws2) d', h=self.num_heads,
|
||
|
d=C // self.num_heads, hh=Hp // self.ws, ww=Wp // self.ws, qkv=3, ws1=self.ws, ws2=self.ws)
|
||
|
|
||
|
dots = (q @ k.transpose(-2, -1)) * self.scale
|
||
|
|
||
|
if self.relative_pos_embedding:
|
||
|
relative_position_bias = self.relative_position_bias_table[
|
||
|
self.relative_position_index.view(-1)].view(
|
||
|
self.ws * self.ws, self.ws * self.ws, -1)
|
||
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
||
|
dots += relative_position_bias.unsqueeze(0)
|
||
|
|
||
|
attn = dots.softmax(dim=-1)
|
||
|
attn = attn @ v
|
||
|
|
||
|
attn = rearrange(attn, '(b hh ww) h (ws1 ws2) d -> b (h d) (hh ws1) (ww ws2)', h=self.num_heads,
|
||
|
d=C // self.num_heads, hh=Hp // self.ws, ww=Wp // self.ws, ws1=self.ws, ws2=self.ws)
|
||
|
|
||
|
attn = attn[:, :, :H, :W]
|
||
|
|
||
|
out = self.proj(attn)
|
||
|
out = out[:, :, :H, :W]
|
||
|
7
|
||
|
return out
|
||
|
|
||
|
class GlobalLocalAttention(nn.Module):
|
||
|
def __init__(self, dim=256, num_heads=16, qkv_bias=False, window_size=8, relative_pos_embedding=True):
|
||
|
super(GlobalLocalAttention, self).__init__()
|
||
|
self.local1 = ImprovedLocalAttention(dim)
|
||
|
self.local2 = ImprovedLocalAttention(dim)
|
||
|
self.global_attention = MultiHeadGlobalAttention(dim, num_heads, qkv_bias, window_size, relative_pos_embedding)
|
||
|
|
||
|
def forward(self, x):
|
||
|
local = self.local2(x) + self.local1(x)
|
||
|
global_attn = self.global_attention(x)
|
||
|
return local + global_attn
|
||
|
|
||
|
gl_attention = GlobalLocalAttention(dim=256, num_heads=16, qkv_bias=False, window_size=8, relative_pos_embedding=True)
|
||
|
x = torch.randn(1, 256, 64, 64)
|
||
|
output = gl_attention(x)
|
||
|
print(output.shape) # 输出应为 (1, 256, 64, 64)
|