202 lines
7.5 KiB
Python
202 lines
7.5 KiB
Python
|
import os
|
|||
|
import time
|
|||
|
import datetime
|
|||
|
|
|||
|
import torch
|
|||
|
|
|||
|
from src import UNet
|
|||
|
from train_utils import train_one_epoch, evaluate, create_lr_scheduler
|
|||
|
from my_dataset import DriveDataset
|
|||
|
import transforms as T
|
|||
|
|
|||
|
|
|||
|
class SegmentationPresetTrain:
|
|||
|
def __init__(self, base_size, crop_size, hflip_prob=0.5, vflip_prob=0.5,
|
|||
|
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
|
|||
|
min_size = int(0.5 * base_size)
|
|||
|
max_size = int(1.2 * base_size)
|
|||
|
|
|||
|
trans = [T.RandomResize(min_size, max_size)]
|
|||
|
if hflip_prob > 0:
|
|||
|
trans.append(T.RandomHorizontalFlip(hflip_prob))
|
|||
|
if vflip_prob > 0:
|
|||
|
trans.append(T.RandomVerticalFlip(vflip_prob))
|
|||
|
trans.extend([
|
|||
|
T.RandomCrop(crop_size),
|
|||
|
T.ToTensor(),
|
|||
|
T.Normalize(mean=mean, std=std),
|
|||
|
])
|
|||
|
self.transforms = T.Compose(trans)
|
|||
|
|
|||
|
def __call__(self, img, target):
|
|||
|
return self.transforms(img, target)
|
|||
|
|
|||
|
|
|||
|
class SegmentationPresetEval:
|
|||
|
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
|
|||
|
self.transforms = T.Compose([
|
|||
|
T.ToTensor(),
|
|||
|
T.Normalize(mean=mean, std=std),
|
|||
|
])
|
|||
|
|
|||
|
def __call__(self, img, target):
|
|||
|
return self.transforms(img, target)
|
|||
|
|
|||
|
|
|||
|
def get_transform(train, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
|
|||
|
base_size = 565
|
|||
|
crop_size = 480
|
|||
|
|
|||
|
if train:
|
|||
|
return SegmentationPresetTrain(base_size, crop_size, mean=mean, std=std)
|
|||
|
else:
|
|||
|
return SegmentationPresetEval(mean=mean, std=std)
|
|||
|
|
|||
|
|
|||
|
def create_model(num_classes):
|
|||
|
model = UNet(in_channels=3, num_classes=num_classes, base_c=32)
|
|||
|
return model
|
|||
|
|
|||
|
|
|||
|
def main(args):
|
|||
|
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
|
|||
|
batch_size = args.batch_size
|
|||
|
# segmentation nun_classes + background
|
|||
|
num_classes = args.num_classes + 1
|
|||
|
|
|||
|
# using compute_mean_std.py
|
|||
|
mean = (0.709, 0.381, 0.224)
|
|||
|
std = (0.127, 0.079, 0.043)
|
|||
|
|
|||
|
# 用来保存训练以及验证过程中信息
|
|||
|
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
|
|||
|
|
|||
|
train_dataset = DriveDataset(args.data_path,
|
|||
|
train=True,
|
|||
|
transforms=get_transform(train=True, mean=mean, std=std))
|
|||
|
|
|||
|
val_dataset = DriveDataset(args.data_path,
|
|||
|
train=False,
|
|||
|
transforms=get_transform(train=False, mean=mean, std=std))
|
|||
|
|
|||
|
num_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
|
|||
|
train_loader = torch.utils.data.DataLoader(train_dataset,
|
|||
|
batch_size=batch_size,
|
|||
|
num_workers=num_workers,
|
|||
|
shuffle=True,
|
|||
|
pin_memory=True,
|
|||
|
collate_fn=train_dataset.collate_fn)
|
|||
|
|
|||
|
val_loader = torch.utils.data.DataLoader(val_dataset,
|
|||
|
batch_size=1,
|
|||
|
num_workers=num_workers,
|
|||
|
pin_memory=True,
|
|||
|
collate_fn=val_dataset.collate_fn)
|
|||
|
|
|||
|
model = create_model(num_classes=num_classes)
|
|||
|
model.to(device)
|
|||
|
|
|||
|
params_to_optimize = [p for p in model.parameters() if p.requires_grad]
|
|||
|
|
|||
|
optimizer = torch.optim.SGD(
|
|||
|
params_to_optimize,
|
|||
|
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay
|
|||
|
)
|
|||
|
|
|||
|
scaler = torch.cuda.amp.GradScaler() if args.amp else None
|
|||
|
|
|||
|
# 创建学习率更新策略,这里是每个step更新一次(不是每个epoch)
|
|||
|
lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), args.epochs, warmup=True)
|
|||
|
|
|||
|
if args.resume:
|
|||
|
checkpoint = torch.load(args.resume, map_location='cpu')
|
|||
|
model.load_state_dict(checkpoint['model'])
|
|||
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|||
|
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
|||
|
args.start_epoch = checkpoint['epoch'] + 1
|
|||
|
if args.amp:
|
|||
|
scaler.load_state_dict(checkpoint["scaler"])
|
|||
|
|
|||
|
best_dice = 0.
|
|||
|
start_time = time.time()
|
|||
|
for epoch in range(args.start_epoch, args.epochs):
|
|||
|
mean_loss, lr = train_one_epoch(model, optimizer, train_loader, device, epoch, num_classes,
|
|||
|
lr_scheduler=lr_scheduler, print_freq=args.print_freq, scaler=scaler)
|
|||
|
|
|||
|
confmat, dice = evaluate(model, val_loader, device=device, num_classes=num_classes)
|
|||
|
val_info = str(confmat)
|
|||
|
print(val_info)
|
|||
|
print(f"dice coefficient: {dice:.3f}")
|
|||
|
# write into txt
|
|||
|
with open(results_file, "a") as f:
|
|||
|
# 记录每个epoch对应的train_loss、lr以及验证集各指标
|
|||
|
train_info = f"[epoch: {epoch}]\n" \
|
|||
|
f"train_loss: {mean_loss:.4f}\n" \
|
|||
|
f"lr: {lr:.6f}\n" \
|
|||
|
f"dice coefficient: {dice:.3f}\n"
|
|||
|
f.write(train_info + val_info + "\n\n")
|
|||
|
|
|||
|
if args.save_best is True:
|
|||
|
if best_dice < dice:
|
|||
|
best_dice = dice
|
|||
|
else:
|
|||
|
continue
|
|||
|
|
|||
|
save_file = {"model": model.state_dict(),
|
|||
|
"optimizer": optimizer.state_dict(),
|
|||
|
"lr_scheduler": lr_scheduler.state_dict(),
|
|||
|
"epoch": epoch,
|
|||
|
"args": args}
|
|||
|
if args.amp:
|
|||
|
save_file["scaler"] = scaler.state_dict()
|
|||
|
|
|||
|
if args.save_best is True:
|
|||
|
torch.save(save_file, "save_weights/best_model.pth")
|
|||
|
else:
|
|||
|
torch.save(save_file, "save_weights/model_{}.pth".format(epoch))
|
|||
|
|
|||
|
total_time = time.time() - start_time
|
|||
|
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
|||
|
print("training time {}".format(total_time_str))
|
|||
|
|
|||
|
|
|||
|
def parse_args():
|
|||
|
import argparse
|
|||
|
parser = argparse.ArgumentParser(description="pytorch unet training")
|
|||
|
|
|||
|
parser.add_argument("--data-path", default="./", help="DRIVE root")
|
|||
|
# exclude background
|
|||
|
parser.add_argument("--num-classes", default=1, type=int)
|
|||
|
parser.add_argument("--device", default="cuda", help="training device")
|
|||
|
parser.add_argument("-b", "--batch-size", default=4, type=int)
|
|||
|
parser.add_argument("--epochs", default=200, type=int, metavar="N",
|
|||
|
help="number of total epochs to train")
|
|||
|
|
|||
|
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
|
|||
|
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
|
|||
|
help='momentum')
|
|||
|
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
|
|||
|
metavar='W', help='weight decay (default: 1e-4)',
|
|||
|
dest='weight_decay')
|
|||
|
parser.add_argument('--print-freq', default=1, type=int, help='print frequency')
|
|||
|
parser.add_argument('--resume', default='', help='resume from checkpoint')
|
|||
|
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
|
|||
|
help='start epoch')
|
|||
|
parser.add_argument('--save-best', default=True, type=bool, help='only save best dice weights')
|
|||
|
# Mixed precision training parameters
|
|||
|
parser.add_argument("--amp", default=False, type=bool,
|
|||
|
help="Use torch.cuda.amp for mixed precision training")
|
|||
|
|
|||
|
args = parser.parse_args()
|
|||
|
|
|||
|
return args
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
args = parse_args()
|
|||
|
|
|||
|
if not os.path.exists("./save_weights"):
|
|||
|
os.mkdir("./save_weights")
|
|||
|
|
|||
|
main(args)
|