Tan_pytorch_segmentation/pytorch_segmentation/Plug-and-Play/EMSA.py

97 lines
3.7 KiB
Python
Raw Normal View History

2025-05-19 20:48:24 +08:00
import numpy as np
import torch
from torch import nn
from torch.nn import init
class EMSA(nn.Module):
def __init__(self, d_model, d_k, d_v, h, dropout=.1, H=7, W=7, ratio=3, apply_transform=True):
super(EMSA, self).__init__()
self.H = H
self.W = W
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.ratio = ratio
if (self.ratio > 1):
self.sr = nn.Sequential()
self.sr_conv = nn.Conv2d(d_model, d_model, kernel_size=ratio + 1, stride=ratio, padding=ratio // 2,
groups=d_model)
self.sr_ln = nn.LayerNorm(d_model)
self.apply_transform = apply_transform and h > 1
if (self.apply_transform):
self.transform = nn.Sequential()
self.transform.add_module('conv', nn.Conv2d(h, h, kernel_size=1, stride=1))
self.transform.add_module('softmax', nn.Softmax(-1))
self.transform.add_module('in', nn.InstanceNorm2d(h))
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None, attention_weights=None):
b_s, nq, c = queries.shape
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k)
if (self.ratio > 1):
x = queries.permute(0, 2, 1).view(b_s, c, self.H, self.W) # bs,c,H,W
x = self.sr_conv(x) # bs,c,h,w
x = x.contiguous().view(b_s, c, -1).permute(0, 2, 1) # bs,n',c
x = self.sr_ln(x)
k = self.fc_k(x).view(b_s, -1, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, n')
v = self.fc_v(x).view(b_s, -1, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, n', d_v)
else:
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v)
if (self.apply_transform):
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
att = self.transform(att) # (b_s, h, nq, n')
else:
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n')
att = torch.softmax(att, -1) # (b_s, h, nq, n')
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v)
out = self.fc_o(out) # (b_s, nq, d_model)
return out
if __name__ == '__main__':
block = EMSA(d_model=512, d_k=512, d_v=512, h=8, H=8, W=8, ratio=2, apply_transform=True).cuda()
input = torch.rand(64, 64, 512).cuda()
output = block(input, input, input)
print(input.size(), output.size())