Tan_pytorch_segmentation/pytorch_segmentation/Plug-and-Play/MobileViTv2Attention.py

63 lines
1.9 KiB
Python
Raw Normal View History

2025-05-19 20:48:24 +08:00
import numpy as np
import torch
from torch import nn
from torch.nn import init
class MobileViTv2Attention(nn.Module):
'''
Scaled dot-product attention
'''
def __init__(self, d_model):
'''
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
'''
super(MobileViTv2Attention, self).__init__()
self.fc_i = nn.Linear(d_model, 1)
self.fc_k = nn.Linear(d_model, d_model)
self.fc_v = nn.Linear(d_model, d_model)
self.fc_o = nn.Linear(d_model, d_model)
self.d_model = d_model
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input):
'''
Computes
:param queries: Queries (b_s, nq, d_model)
:return:
'''
i = self.fc_i(input) # (bs,nq,1)
weight_i = torch.softmax(i, dim=1) # bs,nq,1
context_score = weight_i * self.fc_k(input) # bs,nq,d_model
context_vector = torch.sum(context_score, dim=1, keepdim=True) # bs,1,d_model
v = self.fc_v(input) * context_vector # bs,nq,d_model
out = self.fc_o(v) # bs,nq,d_model
return out
if __name__ == '__main__':
block = MobileViTv2Attention(d_model=512).cuda()
input = torch.rand(64, 64, 512).cuda()
output = block(input)
print(input.size(), output.size())