76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import init
|
||
|
|
||
|
|
||
|
class PSA(nn.Module):
|
||
|
|
||
|
def __init__(self, channel=512, reduction=4, S=4):
|
||
|
super().__init__()
|
||
|
self.S = S
|
||
|
|
||
|
self.convs = []
|
||
|
for i in range(S):
|
||
|
self.convs.append(nn.Conv2d(channel // S, channel // S, kernel_size=2 * (i + 1) + 1, padding=i + 1))
|
||
|
|
||
|
self.se_blocks = []
|
||
|
for i in range(S):
|
||
|
self.se_blocks.append(nn.Sequential(
|
||
|
nn.AdaptiveAvgPool2d(1),
|
||
|
nn.Conv2d(channel // S, channel // (S * reduction), kernel_size=1, bias=False),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(channel // (S * reduction), channel // S, kernel_size=1, bias=False),
|
||
|
nn.Sigmoid()
|
||
|
))
|
||
|
|
||
|
self.softmax = nn.Softmax(dim=1)
|
||
|
|
||
|
def init_weights(self):
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
||
|
if m.bias is not None:
|
||
|
init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.BatchNorm2d):
|
||
|
init.constant_(m.weight, 1)
|
||
|
init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
init.normal_(m.weight, std=0.001)
|
||
|
if m.bias is not None:
|
||
|
init.constant_(m.bias, 0)
|
||
|
|
||
|
def forward(self, x):
|
||
|
b, c, h, w = x.size()
|
||
|
|
||
|
# Step1:SPC module
|
||
|
SPC_out = x.view(b, self.S, c // self.S, h, w) # bs,s,ci,h,w
|
||
|
for idx, conv in enumerate(self.convs):
|
||
|
SPC_out[:, idx, :, :, :] = conv(SPC_out[:, idx, :, :, :])
|
||
|
|
||
|
# Step2:SE weight
|
||
|
se_out = []
|
||
|
for idx, se in enumerate(self.se_blocks):
|
||
|
se_out.append(se(SPC_out[:, idx, :, :, :]))
|
||
|
SE_out = torch.stack(se_out, dim=1)
|
||
|
SE_out = SE_out.expand_as(SPC_out)
|
||
|
|
||
|
# Step3:Softmax
|
||
|
softmax_out = self.softmax(SE_out)
|
||
|
|
||
|
# Step4:SPA
|
||
|
PSA_out = SPC_out * softmax_out
|
||
|
PSA_out = PSA_out.view(b, -1, h, w)
|
||
|
|
||
|
return PSA_out
|
||
|
|
||
|
|
||
|
# 输入 N C H W, 输出 N C H W
|
||
|
if __name__ == '__main__':
|
||
|
input = torch.randn(3, 512, 64, 64)
|
||
|
psa = PSA(channel=512, reduction=8)
|
||
|
output = psa(input)
|
||
|
a = output.view(-1).sum()
|
||
|
a.backward()
|
||
|
print(output.shape)
|